USB: Convert from class_device to device for USB core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44 struct ep_device;
45
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 * @enabled: URBs may be submitted to this endpoint
56 *
57 * USB requests are always queued to a given endpoint, identified by a
58 * descriptor within an active interface in a given USB configuration.
59 */
60 struct usb_host_endpoint {
61 struct usb_endpoint_descriptor desc;
62 struct list_head urb_list;
63 void *hcpriv;
64 struct ep_device *ep_dev; /* For sysfs info */
65
66 unsigned char *extra; /* Extra descriptors */
67 int extralen;
68 int enabled;
69 };
70
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 struct usb_interface_descriptor desc;
74
75 /* array of desc.bNumEndpoint endpoints associated with this
76 * interface setting. these will be in no particular order.
77 */
78 struct usb_host_endpoint *endpoint;
79
80 char *string; /* iInterface string, if present */
81 unsigned char *extra; /* Extra descriptors */
82 int extralen;
83 };
84
85 enum usb_interface_condition {
86 USB_INTERFACE_UNBOUND = 0,
87 USB_INTERFACE_BINDING,
88 USB_INTERFACE_BOUND,
89 USB_INTERFACE_UNBINDING,
90 };
91
92 /**
93 * struct usb_interface - what usb device drivers talk to
94 * @altsetting: array of interface structures, one for each alternate
95 * setting that may be selected. Each one includes a set of
96 * endpoint configurations. They will be in no particular order.
97 * @num_altsetting: number of altsettings defined.
98 * @cur_altsetting: the current altsetting.
99 * @intf_assoc: interface association descriptor
100 * @driver: the USB driver that is bound to this interface.
101 * @minor: the minor number assigned to this interface, if this
102 * interface is bound to a driver that uses the USB major number.
103 * If this interface does not use the USB major, this field should
104 * be unused. The driver should set this value in the probe()
105 * function of the driver, after it has been assigned a minor
106 * number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 * (in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @sysfs_files_created: sysfs attributes exist
111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112 * capability during autosuspend.
113 * @dev: driver model's view of this device
114 * @usb_dev: if an interface is bound to the USB major, this will point
115 * to the sysfs representation for that device.
116 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
117 * allowed unless the counter is 0.
118 *
119 * USB device drivers attach to interfaces on a physical device. Each
120 * interface encapsulates a single high level function, such as feeding
121 * an audio stream to a speaker or reporting a change in a volume control.
122 * Many USB devices only have one interface. The protocol used to talk to
123 * an interface's endpoints can be defined in a usb "class" specification,
124 * or by a product's vendor. The (default) control endpoint is part of
125 * every interface, but is never listed among the interface's descriptors.
126 *
127 * The driver that is bound to the interface can use standard driver model
128 * calls such as dev_get_drvdata() on the dev member of this structure.
129 *
130 * Each interface may have alternate settings. The initial configuration
131 * of a device sets altsetting 0, but the device driver can change
132 * that setting using usb_set_interface(). Alternate settings are often
133 * used to control the use of periodic endpoints, such as by having
134 * different endpoints use different amounts of reserved USB bandwidth.
135 * All standards-conformant USB devices that use isochronous endpoints
136 * will use them in non-default settings.
137 *
138 * The USB specification says that alternate setting numbers must run from
139 * 0 to one less than the total number of alternate settings. But some
140 * devices manage to mess this up, and the structures aren't necessarily
141 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
142 * look up an alternate setting in the altsetting array based on its number.
143 */
144 struct usb_interface {
145 /* array of alternate settings for this interface,
146 * stored in no particular order */
147 struct usb_host_interface *altsetting;
148
149 struct usb_host_interface *cur_altsetting; /* the currently
150 * active alternate setting */
151 unsigned num_altsetting; /* number of alternate settings */
152
153 /* If there is an interface association descriptor then it will list
154 * the associated interfaces */
155 struct usb_interface_assoc_descriptor *intf_assoc;
156
157 int minor; /* minor number this interface is
158 * bound to */
159 enum usb_interface_condition condition; /* state of binding */
160 unsigned is_active:1; /* the interface is not suspended */
161 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
162 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
163
164 struct device dev; /* interface specific device info */
165 struct device *usb_dev; /* pointer to the usb class's device, if any */
166 int pm_usage_cnt; /* usage counter for autosuspend */
167 };
168 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
169 #define interface_to_usbdev(intf) \
170 container_of(intf->dev.parent, struct usb_device, dev)
171
172 static inline void *usb_get_intfdata (struct usb_interface *intf)
173 {
174 return dev_get_drvdata (&intf->dev);
175 }
176
177 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
178 {
179 dev_set_drvdata(&intf->dev, data);
180 }
181
182 struct usb_interface *usb_get_intf(struct usb_interface *intf);
183 void usb_put_intf(struct usb_interface *intf);
184
185 /* this maximum is arbitrary */
186 #define USB_MAXINTERFACES 32
187 #define USB_MAXIADS USB_MAXINTERFACES/2
188
189 /**
190 * struct usb_interface_cache - long-term representation of a device interface
191 * @num_altsetting: number of altsettings defined.
192 * @ref: reference counter.
193 * @altsetting: variable-length array of interface structures, one for
194 * each alternate setting that may be selected. Each one includes a
195 * set of endpoint configurations. They will be in no particular order.
196 *
197 * These structures persist for the lifetime of a usb_device, unlike
198 * struct usb_interface (which persists only as long as its configuration
199 * is installed). The altsetting arrays can be accessed through these
200 * structures at any time, permitting comparison of configurations and
201 * providing support for the /proc/bus/usb/devices pseudo-file.
202 */
203 struct usb_interface_cache {
204 unsigned num_altsetting; /* number of alternate settings */
205 struct kref ref; /* reference counter */
206
207 /* variable-length array of alternate settings for this interface,
208 * stored in no particular order */
209 struct usb_host_interface altsetting[0];
210 };
211 #define ref_to_usb_interface_cache(r) \
212 container_of(r, struct usb_interface_cache, ref)
213 #define altsetting_to_usb_interface_cache(a) \
214 container_of(a, struct usb_interface_cache, altsetting[0])
215
216 /**
217 * struct usb_host_config - representation of a device's configuration
218 * @desc: the device's configuration descriptor.
219 * @string: pointer to the cached version of the iConfiguration string, if
220 * present for this configuration.
221 * @intf_assoc: list of any interface association descriptors in this config
222 * @interface: array of pointers to usb_interface structures, one for each
223 * interface in the configuration. The number of interfaces is stored
224 * in desc.bNumInterfaces. These pointers are valid only while the
225 * the configuration is active.
226 * @intf_cache: array of pointers to usb_interface_cache structures, one
227 * for each interface in the configuration. These structures exist
228 * for the entire life of the device.
229 * @extra: pointer to buffer containing all extra descriptors associated
230 * with this configuration (those preceding the first interface
231 * descriptor).
232 * @extralen: length of the extra descriptors buffer.
233 *
234 * USB devices may have multiple configurations, but only one can be active
235 * at any time. Each encapsulates a different operational environment;
236 * for example, a dual-speed device would have separate configurations for
237 * full-speed and high-speed operation. The number of configurations
238 * available is stored in the device descriptor as bNumConfigurations.
239 *
240 * A configuration can contain multiple interfaces. Each corresponds to
241 * a different function of the USB device, and all are available whenever
242 * the configuration is active. The USB standard says that interfaces
243 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
244 * of devices get this wrong. In addition, the interface array is not
245 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
246 * look up an interface entry based on its number.
247 *
248 * Device drivers should not attempt to activate configurations. The choice
249 * of which configuration to install is a policy decision based on such
250 * considerations as available power, functionality provided, and the user's
251 * desires (expressed through userspace tools). However, drivers can call
252 * usb_reset_configuration() to reinitialize the current configuration and
253 * all its interfaces.
254 */
255 struct usb_host_config {
256 struct usb_config_descriptor desc;
257
258 char *string; /* iConfiguration string, if present */
259
260 /* List of any Interface Association Descriptors in this
261 * configuration. */
262 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
263
264 /* the interfaces associated with this configuration,
265 * stored in no particular order */
266 struct usb_interface *interface[USB_MAXINTERFACES];
267
268 /* Interface information available even when this is not the
269 * active configuration */
270 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
271
272 unsigned char *extra; /* Extra descriptors */
273 int extralen;
274 };
275
276 int __usb_get_extra_descriptor(char *buffer, unsigned size,
277 unsigned char type, void **ptr);
278 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
279 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
280 type,(void**)ptr)
281
282 /* ----------------------------------------------------------------------- */
283
284 /* USB device number allocation bitmap */
285 struct usb_devmap {
286 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
287 };
288
289 /*
290 * Allocated per bus (tree of devices) we have:
291 */
292 struct usb_bus {
293 struct device *controller; /* host/master side hardware */
294 int busnum; /* Bus number (in order of reg) */
295 char *bus_name; /* stable id (PCI slot_name etc) */
296 u8 uses_dma; /* Does the host controller use DMA? */
297 u8 otg_port; /* 0, or number of OTG/HNP port */
298 unsigned is_b_host:1; /* true during some HNP roleswitches */
299 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
300
301 int devnum_next; /* Next open device number in
302 * round-robin allocation */
303
304 struct usb_devmap devmap; /* device address allocation map */
305 struct usb_device *root_hub; /* Root hub */
306 struct list_head bus_list; /* list of busses */
307
308 int bandwidth_allocated; /* on this bus: how much of the time
309 * reserved for periodic (intr/iso)
310 * requests is used, on average?
311 * Units: microseconds/frame.
312 * Limits: Full/low speed reserve 90%,
313 * while high speed reserves 80%.
314 */
315 int bandwidth_int_reqs; /* number of Interrupt requests */
316 int bandwidth_isoc_reqs; /* number of Isoc. requests */
317
318 #ifdef CONFIG_USB_DEVICEFS
319 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
320 #endif
321 struct device *dev; /* device for this bus */
322
323 #if defined(CONFIG_USB_MON)
324 struct mon_bus *mon_bus; /* non-null when associated */
325 int monitored; /* non-zero when monitored */
326 #endif
327 };
328
329 /* ----------------------------------------------------------------------- */
330
331 /* This is arbitrary.
332 * From USB 2.0 spec Table 11-13, offset 7, a hub can
333 * have up to 255 ports. The most yet reported is 10.
334 *
335 * Current Wireless USB host hardware (Intel i1480 for example) allows
336 * up to 22 devices to connect. Upcoming hardware might raise that
337 * limit. Because the arrays need to add a bit for hub status data, we
338 * do 31, so plus one evens out to four bytes.
339 */
340 #define USB_MAXCHILDREN (31)
341
342 struct usb_tt;
343
344 /*
345 * struct usb_device - kernel's representation of a USB device
346 *
347 * FIXME: Write the kerneldoc!
348 *
349 * Usbcore drivers should not set usbdev->state directly. Instead use
350 * usb_set_device_state().
351 *
352 * @authorized: (user space) policy determines if we authorize this
353 * device to be used or not. By default, wired USB
354 * devices are authorized. WUSB devices are not, until we
355 * authorize them from user space. FIXME -- complete doc
356 */
357 struct usb_device {
358 int devnum; /* Address on USB bus */
359 char devpath [16]; /* Use in messages: /port/port/... */
360 enum usb_device_state state; /* configured, not attached, etc */
361 enum usb_device_speed speed; /* high/full/low (or error) */
362
363 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
364 int ttport; /* device port on that tt hub */
365
366 unsigned int toggle[2]; /* one bit for each endpoint
367 * ([0] = IN, [1] = OUT) */
368
369 struct usb_device *parent; /* our hub, unless we're the root */
370 struct usb_bus *bus; /* Bus we're part of */
371 struct usb_host_endpoint ep0;
372
373 struct device dev; /* Generic device interface */
374
375 struct usb_device_descriptor descriptor;/* Descriptor */
376 struct usb_host_config *config; /* All of the configs */
377
378 struct usb_host_config *actconfig;/* the active configuration */
379 struct usb_host_endpoint *ep_in[16];
380 struct usb_host_endpoint *ep_out[16];
381
382 char **rawdescriptors; /* Raw descriptors for each config */
383
384 unsigned short bus_mA; /* Current available from the bus */
385 u8 portnum; /* Parent port number (origin 1) */
386 u8 level; /* Number of USB hub ancestors */
387
388 unsigned can_submit:1; /* URBs may be submitted */
389 unsigned discon_suspended:1; /* Disconnected while suspended */
390 unsigned have_langid:1; /* whether string_langid is valid */
391 unsigned authorized:1; /* Policy has determined we can use it */
392 unsigned wusb:1; /* Device is Wireless USB */
393 int string_langid; /* language ID for strings */
394
395 /* static strings from the device */
396 char *product; /* iProduct string, if present */
397 char *manufacturer; /* iManufacturer string, if present */
398 char *serial; /* iSerialNumber string, if present */
399
400 struct list_head filelist;
401 #ifdef CONFIG_USB_DEVICE_CLASS
402 struct device *usb_classdev;
403 #endif
404 #ifdef CONFIG_USB_DEVICEFS
405 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
406 #endif
407 /*
408 * Child devices - these can be either new devices
409 * (if this is a hub device), or different instances
410 * of this same device.
411 *
412 * Each instance needs its own set of data structures.
413 */
414
415 int maxchild; /* Number of ports if hub */
416 struct usb_device *children[USB_MAXCHILDREN];
417
418 int pm_usage_cnt; /* usage counter for autosuspend */
419 u32 quirks; /* quirks of the whole device */
420 atomic_t urbnum; /* number of URBs submitted for the whole device */
421
422 #ifdef CONFIG_PM
423 struct delayed_work autosuspend; /* for delayed autosuspends */
424 struct mutex pm_mutex; /* protects PM operations */
425
426 unsigned long last_busy; /* time of last use */
427 int autosuspend_delay; /* in jiffies */
428
429 unsigned auto_pm:1; /* autosuspend/resume in progress */
430 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
431 unsigned reset_resume:1; /* needs reset instead of resume */
432 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */
433 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
434 unsigned autoresume_disabled:1; /* disabled by the user */
435 unsigned skip_sys_resume:1; /* skip the next system resume */
436 #endif
437 };
438 #define to_usb_device(d) container_of(d, struct usb_device, dev)
439
440 extern struct usb_device *usb_get_dev(struct usb_device *dev);
441 extern void usb_put_dev(struct usb_device *dev);
442
443 /* USB device locking */
444 #define usb_lock_device(udev) down(&(udev)->dev.sem)
445 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
446 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
447 extern int usb_lock_device_for_reset(struct usb_device *udev,
448 const struct usb_interface *iface);
449
450 /* USB port reset for device reinitialization */
451 extern int usb_reset_device(struct usb_device *dev);
452 extern int usb_reset_composite_device(struct usb_device *dev,
453 struct usb_interface *iface);
454
455 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
456
457 /* USB autosuspend and autoresume */
458 #ifdef CONFIG_USB_SUSPEND
459 extern int usb_autopm_set_interface(struct usb_interface *intf);
460 extern int usb_autopm_get_interface(struct usb_interface *intf);
461 extern void usb_autopm_put_interface(struct usb_interface *intf);
462
463 static inline void usb_autopm_enable(struct usb_interface *intf)
464 {
465 intf->pm_usage_cnt = 0;
466 usb_autopm_set_interface(intf);
467 }
468
469 static inline void usb_autopm_disable(struct usb_interface *intf)
470 {
471 intf->pm_usage_cnt = 1;
472 usb_autopm_set_interface(intf);
473 }
474
475 static inline void usb_mark_last_busy(struct usb_device *udev)
476 {
477 udev->last_busy = jiffies;
478 }
479
480 #else
481
482 static inline int usb_autopm_set_interface(struct usb_interface *intf)
483 { return 0; }
484
485 static inline int usb_autopm_get_interface(struct usb_interface *intf)
486 { return 0; }
487
488 static inline void usb_autopm_put_interface(struct usb_interface *intf)
489 { }
490 static inline void usb_autopm_enable(struct usb_interface *intf)
491 { }
492 static inline void usb_autopm_disable(struct usb_interface *intf)
493 { }
494 static inline void usb_mark_last_busy(struct usb_device *udev)
495 { }
496 #endif
497
498 /*-------------------------------------------------------------------------*/
499
500 /* for drivers using iso endpoints */
501 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
502
503 /* used these for multi-interface device registration */
504 extern int usb_driver_claim_interface(struct usb_driver *driver,
505 struct usb_interface *iface, void* priv);
506
507 /**
508 * usb_interface_claimed - returns true iff an interface is claimed
509 * @iface: the interface being checked
510 *
511 * Returns true (nonzero) iff the interface is claimed, else false (zero).
512 * Callers must own the driver model's usb bus readlock. So driver
513 * probe() entries don't need extra locking, but other call contexts
514 * may need to explicitly claim that lock.
515 *
516 */
517 static inline int usb_interface_claimed(struct usb_interface *iface) {
518 return (iface->dev.driver != NULL);
519 }
520
521 extern void usb_driver_release_interface(struct usb_driver *driver,
522 struct usb_interface *iface);
523 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
524 const struct usb_device_id *id);
525 extern int usb_match_one_id(struct usb_interface *interface,
526 const struct usb_device_id *id);
527
528 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
529 int minor);
530 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
531 unsigned ifnum);
532 extern struct usb_host_interface *usb_altnum_to_altsetting(
533 const struct usb_interface *intf, unsigned int altnum);
534
535
536 /**
537 * usb_make_path - returns stable device path in the usb tree
538 * @dev: the device whose path is being constructed
539 * @buf: where to put the string
540 * @size: how big is "buf"?
541 *
542 * Returns length of the string (> 0) or negative if size was too small.
543 *
544 * This identifier is intended to be "stable", reflecting physical paths in
545 * hardware such as physical bus addresses for host controllers or ports on
546 * USB hubs. That makes it stay the same until systems are physically
547 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
548 * controllers. Adding and removing devices, including virtual root hubs
549 * in host controller driver modules, does not change these path identifers;
550 * neither does rebooting or re-enumerating. These are more useful identifiers
551 * than changeable ("unstable") ones like bus numbers or device addresses.
552 *
553 * With a partial exception for devices connected to USB 2.0 root hubs, these
554 * identifiers are also predictable. So long as the device tree isn't changed,
555 * plugging any USB device into a given hub port always gives it the same path.
556 * Because of the use of "companion" controllers, devices connected to ports on
557 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
558 * high speed, and a different one if they are full or low speed.
559 */
560 static inline int usb_make_path (struct usb_device *dev, char *buf,
561 size_t size)
562 {
563 int actual;
564 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
565 dev->devpath);
566 return (actual >= (int)size) ? -1 : actual;
567 }
568
569 /*-------------------------------------------------------------------------*/
570
571 /**
572 * usb_endpoint_num - get the endpoint's number
573 * @epd: endpoint to be checked
574 *
575 * Returns @epd's number: 0 to 15.
576 */
577 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
578 {
579 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
580 }
581
582 /**
583 * usb_endpoint_type - get the endpoint's transfer type
584 * @epd: endpoint to be checked
585 *
586 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
587 * to @epd's transfer type.
588 */
589 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
590 {
591 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
592 }
593
594 /**
595 * usb_endpoint_dir_in - check if the endpoint has IN direction
596 * @epd: endpoint to be checked
597 *
598 * Returns true if the endpoint is of type IN, otherwise it returns false.
599 */
600 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
601 {
602 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
603 }
604
605 /**
606 * usb_endpoint_dir_out - check if the endpoint has OUT direction
607 * @epd: endpoint to be checked
608 *
609 * Returns true if the endpoint is of type OUT, otherwise it returns false.
610 */
611 static inline int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
612 {
613 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
614 }
615
616 /**
617 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
618 * @epd: endpoint to be checked
619 *
620 * Returns true if the endpoint is of type bulk, otherwise it returns false.
621 */
622 static inline int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
623 {
624 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
625 USB_ENDPOINT_XFER_BULK);
626 }
627
628 /**
629 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
630 * @epd: endpoint to be checked
631 *
632 * Returns true if the endpoint is of type control, otherwise it returns false.
633 */
634 static inline int usb_endpoint_xfer_control(const struct usb_endpoint_descriptor *epd)
635 {
636 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
637 USB_ENDPOINT_XFER_CONTROL);
638 }
639
640 /**
641 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
642 * @epd: endpoint to be checked
643 *
644 * Returns true if the endpoint is of type interrupt, otherwise it returns
645 * false.
646 */
647 static inline int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
648 {
649 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
650 USB_ENDPOINT_XFER_INT);
651 }
652
653 /**
654 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
655 * @epd: endpoint to be checked
656 *
657 * Returns true if the endpoint is of type isochronous, otherwise it returns
658 * false.
659 */
660 static inline int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
661 {
662 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
663 USB_ENDPOINT_XFER_ISOC);
664 }
665
666 /**
667 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
668 * @epd: endpoint to be checked
669 *
670 * Returns true if the endpoint has bulk transfer type and IN direction,
671 * otherwise it returns false.
672 */
673 static inline int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
674 {
675 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
676 }
677
678 /**
679 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
680 * @epd: endpoint to be checked
681 *
682 * Returns true if the endpoint has bulk transfer type and OUT direction,
683 * otherwise it returns false.
684 */
685 static inline int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
686 {
687 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
688 }
689
690 /**
691 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
692 * @epd: endpoint to be checked
693 *
694 * Returns true if the endpoint has interrupt transfer type and IN direction,
695 * otherwise it returns false.
696 */
697 static inline int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
698 {
699 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
700 }
701
702 /**
703 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
704 * @epd: endpoint to be checked
705 *
706 * Returns true if the endpoint has interrupt transfer type and OUT direction,
707 * otherwise it returns false.
708 */
709 static inline int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
710 {
711 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
712 }
713
714 /**
715 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
716 * @epd: endpoint to be checked
717 *
718 * Returns true if the endpoint has isochronous transfer type and IN direction,
719 * otherwise it returns false.
720 */
721 static inline int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
722 {
723 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
724 }
725
726 /**
727 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
728 * @epd: endpoint to be checked
729 *
730 * Returns true if the endpoint has isochronous transfer type and OUT direction,
731 * otherwise it returns false.
732 */
733 static inline int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
734 {
735 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
736 }
737
738 /*-------------------------------------------------------------------------*/
739
740 #define USB_DEVICE_ID_MATCH_DEVICE \
741 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
742 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
743 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
744 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
745 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
746 #define USB_DEVICE_ID_MATCH_DEV_INFO \
747 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
748 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
749 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
750 #define USB_DEVICE_ID_MATCH_INT_INFO \
751 (USB_DEVICE_ID_MATCH_INT_CLASS | \
752 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
753 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
754
755 /**
756 * USB_DEVICE - macro used to describe a specific usb device
757 * @vend: the 16 bit USB Vendor ID
758 * @prod: the 16 bit USB Product ID
759 *
760 * This macro is used to create a struct usb_device_id that matches a
761 * specific device.
762 */
763 #define USB_DEVICE(vend,prod) \
764 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
765 .idProduct = (prod)
766 /**
767 * USB_DEVICE_VER - macro used to describe a specific usb device with a
768 * version range
769 * @vend: the 16 bit USB Vendor ID
770 * @prod: the 16 bit USB Product ID
771 * @lo: the bcdDevice_lo value
772 * @hi: the bcdDevice_hi value
773 *
774 * This macro is used to create a struct usb_device_id that matches a
775 * specific device, with a version range.
776 */
777 #define USB_DEVICE_VER(vend,prod,lo,hi) \
778 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
779 .idVendor = (vend), .idProduct = (prod), \
780 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
781
782 /**
783 * USB_DEVICE_INTERFACE_PROTOCOL - macro used to describe a usb
784 * device with a specific interface protocol
785 * @vend: the 16 bit USB Vendor ID
786 * @prod: the 16 bit USB Product ID
787 * @pr: bInterfaceProtocol value
788 *
789 * This macro is used to create a struct usb_device_id that matches a
790 * specific interface protocol of devices.
791 */
792 #define USB_DEVICE_INTERFACE_PROTOCOL(vend,prod,pr) \
793 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
794 .idVendor = (vend), \
795 .idProduct = (prod), \
796 .bInterfaceProtocol = (pr)
797
798 /**
799 * USB_DEVICE_INFO - macro used to describe a class of usb devices
800 * @cl: bDeviceClass value
801 * @sc: bDeviceSubClass value
802 * @pr: bDeviceProtocol value
803 *
804 * This macro is used to create a struct usb_device_id that matches a
805 * specific class of devices.
806 */
807 #define USB_DEVICE_INFO(cl,sc,pr) \
808 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
809 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
810
811 /**
812 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
813 * @cl: bInterfaceClass value
814 * @sc: bInterfaceSubClass value
815 * @pr: bInterfaceProtocol value
816 *
817 * This macro is used to create a struct usb_device_id that matches a
818 * specific class of interfaces.
819 */
820 #define USB_INTERFACE_INFO(cl,sc,pr) \
821 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
822 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
823
824 /**
825 * USB_DEVICE_AND_INTERFACE_INFO - macro used to describe a specific usb device
826 * with a class of usb interfaces
827 * @vend: the 16 bit USB Vendor ID
828 * @prod: the 16 bit USB Product ID
829 * @cl: bInterfaceClass value
830 * @sc: bInterfaceSubClass value
831 * @pr: bInterfaceProtocol value
832 *
833 * This macro is used to create a struct usb_device_id that matches a
834 * specific device with a specific class of interfaces.
835 *
836 * This is especially useful when explicitly matching devices that have
837 * vendor specific bDeviceClass values, but standards-compliant interfaces.
838 */
839 #define USB_DEVICE_AND_INTERFACE_INFO(vend,prod,cl,sc,pr) \
840 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
841 | USB_DEVICE_ID_MATCH_DEVICE, \
842 .idVendor = (vend), .idProduct = (prod), \
843 .bInterfaceClass = (cl), \
844 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
845
846 /* ----------------------------------------------------------------------- */
847
848 /* Stuff for dynamic usb ids */
849 struct usb_dynids {
850 spinlock_t lock;
851 struct list_head list;
852 };
853
854 struct usb_dynid {
855 struct list_head node;
856 struct usb_device_id id;
857 };
858
859 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
860 struct device_driver *driver,
861 const char *buf, size_t count);
862
863 /**
864 * struct usbdrv_wrap - wrapper for driver-model structure
865 * @driver: The driver-model core driver structure.
866 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
867 */
868 struct usbdrv_wrap {
869 struct device_driver driver;
870 int for_devices;
871 };
872
873 /**
874 * struct usb_driver - identifies USB interface driver to usbcore
875 * @name: The driver name should be unique among USB drivers,
876 * and should normally be the same as the module name.
877 * @probe: Called to see if the driver is willing to manage a particular
878 * interface on a device. If it is, probe returns zero and uses
879 * dev_set_drvdata() to associate driver-specific data with the
880 * interface. It may also use usb_set_interface() to specify the
881 * appropriate altsetting. If unwilling to manage the interface,
882 * return a negative errno value.
883 * @disconnect: Called when the interface is no longer accessible, usually
884 * because its device has been (or is being) disconnected or the
885 * driver module is being unloaded.
886 * @ioctl: Used for drivers that want to talk to userspace through
887 * the "usbfs" filesystem. This lets devices provide ways to
888 * expose information to user space regardless of where they
889 * do (or don't) show up otherwise in the filesystem.
890 * @suspend: Called when the device is going to be suspended by the system.
891 * @resume: Called when the device is being resumed by the system.
892 * @reset_resume: Called when the suspended device has been reset instead
893 * of being resumed.
894 * @pre_reset: Called by usb_reset_composite_device() when the device
895 * is about to be reset.
896 * @post_reset: Called by usb_reset_composite_device() after the device
897 * has been reset, or in lieu of @resume following a reset-resume
898 * (i.e., the device is reset instead of being resumed, as might
899 * happen if power was lost). The second argument tells which is
900 * the reason.
901 * @id_table: USB drivers use ID table to support hotplugging.
902 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
903 * or your driver's probe function will never get called.
904 * @dynids: used internally to hold the list of dynamically added device
905 * ids for this driver.
906 * @drvwrap: Driver-model core structure wrapper.
907 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
908 * added to this driver by preventing the sysfs file from being created.
909 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
910 * for interfaces bound to this driver.
911 *
912 * USB interface drivers must provide a name, probe() and disconnect()
913 * methods, and an id_table. Other driver fields are optional.
914 *
915 * The id_table is used in hotplugging. It holds a set of descriptors,
916 * and specialized data may be associated with each entry. That table
917 * is used by both user and kernel mode hotplugging support.
918 *
919 * The probe() and disconnect() methods are called in a context where
920 * they can sleep, but they should avoid abusing the privilege. Most
921 * work to connect to a device should be done when the device is opened,
922 * and undone at the last close. The disconnect code needs to address
923 * concurrency issues with respect to open() and close() methods, as
924 * well as forcing all pending I/O requests to complete (by unlinking
925 * them as necessary, and blocking until the unlinks complete).
926 */
927 struct usb_driver {
928 const char *name;
929
930 int (*probe) (struct usb_interface *intf,
931 const struct usb_device_id *id);
932
933 void (*disconnect) (struct usb_interface *intf);
934
935 int (*ioctl) (struct usb_interface *intf, unsigned int code,
936 void *buf);
937
938 int (*suspend) (struct usb_interface *intf, pm_message_t message);
939 int (*resume) (struct usb_interface *intf);
940 int (*reset_resume)(struct usb_interface *intf);
941
942 int (*pre_reset)(struct usb_interface *intf);
943 int (*post_reset)(struct usb_interface *intf);
944
945 const struct usb_device_id *id_table;
946
947 struct usb_dynids dynids;
948 struct usbdrv_wrap drvwrap;
949 unsigned int no_dynamic_id:1;
950 unsigned int supports_autosuspend:1;
951 };
952 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
953
954 /**
955 * struct usb_device_driver - identifies USB device driver to usbcore
956 * @name: The driver name should be unique among USB drivers,
957 * and should normally be the same as the module name.
958 * @probe: Called to see if the driver is willing to manage a particular
959 * device. If it is, probe returns zero and uses dev_set_drvdata()
960 * to associate driver-specific data with the device. If unwilling
961 * to manage the device, return a negative errno value.
962 * @disconnect: Called when the device is no longer accessible, usually
963 * because it has been (or is being) disconnected or the driver's
964 * module is being unloaded.
965 * @suspend: Called when the device is going to be suspended by the system.
966 * @resume: Called when the device is being resumed by the system.
967 * @drvwrap: Driver-model core structure wrapper.
968 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
969 * for devices bound to this driver.
970 *
971 * USB drivers must provide all the fields listed above except drvwrap.
972 */
973 struct usb_device_driver {
974 const char *name;
975
976 int (*probe) (struct usb_device *udev);
977 void (*disconnect) (struct usb_device *udev);
978
979 int (*suspend) (struct usb_device *udev, pm_message_t message);
980 int (*resume) (struct usb_device *udev);
981 struct usbdrv_wrap drvwrap;
982 unsigned int supports_autosuspend:1;
983 };
984 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
985 drvwrap.driver)
986
987 extern struct bus_type usb_bus_type;
988
989 /**
990 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
991 * @name: the usb class device name for this driver. Will show up in sysfs.
992 * @fops: pointer to the struct file_operations of this driver.
993 * @minor_base: the start of the minor range for this driver.
994 *
995 * This structure is used for the usb_register_dev() and
996 * usb_unregister_dev() functions, to consolidate a number of the
997 * parameters used for them.
998 */
999 struct usb_class_driver {
1000 char *name;
1001 const struct file_operations *fops;
1002 int minor_base;
1003 };
1004
1005 /*
1006 * use these in module_init()/module_exit()
1007 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1008 */
1009 extern int usb_register_driver(struct usb_driver *, struct module *,
1010 const char *);
1011 static inline int usb_register(struct usb_driver *driver)
1012 {
1013 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1014 }
1015 extern void usb_deregister(struct usb_driver *);
1016
1017 extern int usb_register_device_driver(struct usb_device_driver *,
1018 struct module *);
1019 extern void usb_deregister_device_driver(struct usb_device_driver *);
1020
1021 extern int usb_register_dev(struct usb_interface *intf,
1022 struct usb_class_driver *class_driver);
1023 extern void usb_deregister_dev(struct usb_interface *intf,
1024 struct usb_class_driver *class_driver);
1025
1026 extern int usb_disabled(void);
1027
1028 /* ----------------------------------------------------------------------- */
1029
1030 /*
1031 * URB support, for asynchronous request completions
1032 */
1033
1034 /*
1035 * urb->transfer_flags:
1036 *
1037 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1038 */
1039 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1040 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1041 * ignored */
1042 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1043 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1044 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1045 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1046 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1047 * needed */
1048 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1049
1050 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1051 #define URB_DIR_OUT 0
1052 #define URB_DIR_MASK URB_DIR_IN
1053
1054 struct usb_iso_packet_descriptor {
1055 unsigned int offset;
1056 unsigned int length; /* expected length */
1057 unsigned int actual_length;
1058 int status;
1059 };
1060
1061 struct urb;
1062
1063 struct usb_anchor {
1064 struct list_head urb_list;
1065 wait_queue_head_t wait;
1066 spinlock_t lock;
1067 };
1068
1069 static inline void init_usb_anchor(struct usb_anchor *anchor)
1070 {
1071 INIT_LIST_HEAD(&anchor->urb_list);
1072 init_waitqueue_head(&anchor->wait);
1073 spin_lock_init(&anchor->lock);
1074 }
1075
1076 typedef void (*usb_complete_t)(struct urb *);
1077
1078 /**
1079 * struct urb - USB Request Block
1080 * @urb_list: For use by current owner of the URB.
1081 * @anchor_list: membership in the list of an anchor
1082 * @anchor: to anchor URBs to a common mooring
1083 * @ep: Points to the endpoint's data structure. Will eventually
1084 * replace @pipe.
1085 * @pipe: Holds endpoint number, direction, type, and more.
1086 * Create these values with the eight macros available;
1087 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1088 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1089 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1090 * numbers range from zero to fifteen. Note that "in" endpoint two
1091 * is a different endpoint (and pipe) from "out" endpoint two.
1092 * The current configuration controls the existence, type, and
1093 * maximum packet size of any given endpoint.
1094 * @dev: Identifies the USB device to perform the request.
1095 * @status: This is read in non-iso completion functions to get the
1096 * status of the particular request. ISO requests only use it
1097 * to tell whether the URB was unlinked; detailed status for
1098 * each frame is in the fields of the iso_frame-desc.
1099 * @transfer_flags: A variety of flags may be used to affect how URB
1100 * submission, unlinking, or operation are handled. Different
1101 * kinds of URB can use different flags.
1102 * @transfer_buffer: This identifies the buffer to (or from) which
1103 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1104 * is set). This buffer must be suitable for DMA; allocate it with
1105 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1106 * of this buffer will be modified. This buffer is used for the data
1107 * stage of control transfers.
1108 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1109 * the device driver is saying that it provided this DMA address,
1110 * which the host controller driver should use in preference to the
1111 * transfer_buffer.
1112 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1113 * be broken up into chunks according to the current maximum packet
1114 * size for the endpoint, which is a function of the configuration
1115 * and is encoded in the pipe. When the length is zero, neither
1116 * transfer_buffer nor transfer_dma is used.
1117 * @actual_length: This is read in non-iso completion functions, and
1118 * it tells how many bytes (out of transfer_buffer_length) were
1119 * transferred. It will normally be the same as requested, unless
1120 * either an error was reported or a short read was performed.
1121 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1122 * short reads be reported as errors.
1123 * @setup_packet: Only used for control transfers, this points to eight bytes
1124 * of setup data. Control transfers always start by sending this data
1125 * to the device. Then transfer_buffer is read or written, if needed.
1126 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1127 * device driver has provided this DMA address for the setup packet.
1128 * The host controller driver should use this in preference to
1129 * setup_packet.
1130 * @start_frame: Returns the initial frame for isochronous transfers.
1131 * @number_of_packets: Lists the number of ISO transfer buffers.
1132 * @interval: Specifies the polling interval for interrupt or isochronous
1133 * transfers. The units are frames (milliseconds) for for full and low
1134 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1135 * @error_count: Returns the number of ISO transfers that reported errors.
1136 * @context: For use in completion functions. This normally points to
1137 * request-specific driver context.
1138 * @complete: Completion handler. This URB is passed as the parameter to the
1139 * completion function. The completion function may then do what
1140 * it likes with the URB, including resubmitting or freeing it.
1141 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1142 * collect the transfer status for each buffer.
1143 *
1144 * This structure identifies USB transfer requests. URBs must be allocated by
1145 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1146 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1147 * are submitted using usb_submit_urb(), and pending requests may be canceled
1148 * using usb_unlink_urb() or usb_kill_urb().
1149 *
1150 * Data Transfer Buffers:
1151 *
1152 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1153 * taken from the general page pool. That is provided by transfer_buffer
1154 * (control requests also use setup_packet), and host controller drivers
1155 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1156 * mapping operations can be expensive on some platforms (perhaps using a dma
1157 * bounce buffer or talking to an IOMMU),
1158 * although they're cheap on commodity x86 and ppc hardware.
1159 *
1160 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1161 * which tell the host controller driver that no such mapping is needed since
1162 * the device driver is DMA-aware. For example, a device driver might
1163 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1164 * When these transfer flags are provided, host controller drivers will
1165 * attempt to use the dma addresses found in the transfer_dma and/or
1166 * setup_dma fields rather than determining a dma address themselves. (Note
1167 * that transfer_buffer and setup_packet must still be set because not all
1168 * host controllers use DMA, nor do virtual root hubs).
1169 *
1170 * Initialization:
1171 *
1172 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1173 * zero), and complete fields. All URBs must also initialize
1174 * transfer_buffer and transfer_buffer_length. They may provide the
1175 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1176 * to be treated as errors; that flag is invalid for write requests.
1177 *
1178 * Bulk URBs may
1179 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1180 * should always terminate with a short packet, even if it means adding an
1181 * extra zero length packet.
1182 *
1183 * Control URBs must provide a setup_packet. The setup_packet and
1184 * transfer_buffer may each be mapped for DMA or not, independently of
1185 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1186 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1187 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1188 *
1189 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1190 * or, for highspeed devices, 125 microsecond units)
1191 * to poll for transfers. After the URB has been submitted, the interval
1192 * field reflects how the transfer was actually scheduled.
1193 * The polling interval may be more frequent than requested.
1194 * For example, some controllers have a maximum interval of 32 milliseconds,
1195 * while others support intervals of up to 1024 milliseconds.
1196 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1197 * endpoints, as well as high speed interrupt endpoints, the encoding of
1198 * the transfer interval in the endpoint descriptor is logarithmic.
1199 * Device drivers must convert that value to linear units themselves.)
1200 *
1201 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1202 * the host controller to schedule the transfer as soon as bandwidth
1203 * utilization allows, and then set start_frame to reflect the actual frame
1204 * selected during submission. Otherwise drivers must specify the start_frame
1205 * and handle the case where the transfer can't begin then. However, drivers
1206 * won't know how bandwidth is currently allocated, and while they can
1207 * find the current frame using usb_get_current_frame_number () they can't
1208 * know the range for that frame number. (Ranges for frame counter values
1209 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1210 *
1211 * Isochronous URBs have a different data transfer model, in part because
1212 * the quality of service is only "best effort". Callers provide specially
1213 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1214 * at the end. Each such packet is an individual ISO transfer. Isochronous
1215 * URBs are normally queued, submitted by drivers to arrange that
1216 * transfers are at least double buffered, and then explicitly resubmitted
1217 * in completion handlers, so
1218 * that data (such as audio or video) streams at as constant a rate as the
1219 * host controller scheduler can support.
1220 *
1221 * Completion Callbacks:
1222 *
1223 * The completion callback is made in_interrupt(), and one of the first
1224 * things that a completion handler should do is check the status field.
1225 * The status field is provided for all URBs. It is used to report
1226 * unlinked URBs, and status for all non-ISO transfers. It should not
1227 * be examined before the URB is returned to the completion handler.
1228 *
1229 * The context field is normally used to link URBs back to the relevant
1230 * driver or request state.
1231 *
1232 * When the completion callback is invoked for non-isochronous URBs, the
1233 * actual_length field tells how many bytes were transferred. This field
1234 * is updated even when the URB terminated with an error or was unlinked.
1235 *
1236 * ISO transfer status is reported in the status and actual_length fields
1237 * of the iso_frame_desc array, and the number of errors is reported in
1238 * error_count. Completion callbacks for ISO transfers will normally
1239 * (re)submit URBs to ensure a constant transfer rate.
1240 *
1241 * Note that even fields marked "public" should not be touched by the driver
1242 * when the urb is owned by the hcd, that is, since the call to
1243 * usb_submit_urb() till the entry into the completion routine.
1244 */
1245 struct urb
1246 {
1247 /* private: usb core and host controller only fields in the urb */
1248 struct kref kref; /* reference count of the URB */
1249 void *hcpriv; /* private data for host controller */
1250 atomic_t use_count; /* concurrent submissions counter */
1251 u8 reject; /* submissions will fail */
1252 int unlinked; /* unlink error code */
1253
1254 /* public: documented fields in the urb that can be used by drivers */
1255 struct list_head urb_list; /* list head for use by the urb's
1256 * current owner */
1257 struct list_head anchor_list; /* the URB may be anchored by the driver */
1258 struct usb_anchor *anchor;
1259 struct usb_device *dev; /* (in) pointer to associated device */
1260 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint struct */
1261 unsigned int pipe; /* (in) pipe information */
1262 int status; /* (return) non-ISO status */
1263 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1264 void *transfer_buffer; /* (in) associated data buffer */
1265 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1266 int transfer_buffer_length; /* (in) data buffer length */
1267 int actual_length; /* (return) actual transfer length */
1268 unsigned char *setup_packet; /* (in) setup packet (control only) */
1269 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1270 int start_frame; /* (modify) start frame (ISO) */
1271 int number_of_packets; /* (in) number of ISO packets */
1272 int interval; /* (modify) transfer interval
1273 * (INT/ISO) */
1274 int error_count; /* (return) number of ISO errors */
1275 void *context; /* (in) context for completion */
1276 usb_complete_t complete; /* (in) completion routine */
1277 struct usb_iso_packet_descriptor iso_frame_desc[0];
1278 /* (in) ISO ONLY */
1279 };
1280
1281 /* ----------------------------------------------------------------------- */
1282
1283 /**
1284 * usb_fill_control_urb - initializes a control urb
1285 * @urb: pointer to the urb to initialize.
1286 * @dev: pointer to the struct usb_device for this urb.
1287 * @pipe: the endpoint pipe
1288 * @setup_packet: pointer to the setup_packet buffer
1289 * @transfer_buffer: pointer to the transfer buffer
1290 * @buffer_length: length of the transfer buffer
1291 * @complete_fn: pointer to the usb_complete_t function
1292 * @context: what to set the urb context to.
1293 *
1294 * Initializes a control urb with the proper information needed to submit
1295 * it to a device.
1296 */
1297 static inline void usb_fill_control_urb (struct urb *urb,
1298 struct usb_device *dev,
1299 unsigned int pipe,
1300 unsigned char *setup_packet,
1301 void *transfer_buffer,
1302 int buffer_length,
1303 usb_complete_t complete_fn,
1304 void *context)
1305 {
1306 urb->dev = dev;
1307 urb->pipe = pipe;
1308 urb->setup_packet = setup_packet;
1309 urb->transfer_buffer = transfer_buffer;
1310 urb->transfer_buffer_length = buffer_length;
1311 urb->complete = complete_fn;
1312 urb->context = context;
1313 }
1314
1315 /**
1316 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1317 * @urb: pointer to the urb to initialize.
1318 * @dev: pointer to the struct usb_device for this urb.
1319 * @pipe: the endpoint pipe
1320 * @transfer_buffer: pointer to the transfer buffer
1321 * @buffer_length: length of the transfer buffer
1322 * @complete_fn: pointer to the usb_complete_t function
1323 * @context: what to set the urb context to.
1324 *
1325 * Initializes a bulk urb with the proper information needed to submit it
1326 * to a device.
1327 */
1328 static inline void usb_fill_bulk_urb (struct urb *urb,
1329 struct usb_device *dev,
1330 unsigned int pipe,
1331 void *transfer_buffer,
1332 int buffer_length,
1333 usb_complete_t complete_fn,
1334 void *context)
1335 {
1336 urb->dev = dev;
1337 urb->pipe = pipe;
1338 urb->transfer_buffer = transfer_buffer;
1339 urb->transfer_buffer_length = buffer_length;
1340 urb->complete = complete_fn;
1341 urb->context = context;
1342 }
1343
1344 /**
1345 * usb_fill_int_urb - macro to help initialize a interrupt urb
1346 * @urb: pointer to the urb to initialize.
1347 * @dev: pointer to the struct usb_device for this urb.
1348 * @pipe: the endpoint pipe
1349 * @transfer_buffer: pointer to the transfer buffer
1350 * @buffer_length: length of the transfer buffer
1351 * @complete_fn: pointer to the usb_complete_t function
1352 * @context: what to set the urb context to.
1353 * @interval: what to set the urb interval to, encoded like
1354 * the endpoint descriptor's bInterval value.
1355 *
1356 * Initializes a interrupt urb with the proper information needed to submit
1357 * it to a device.
1358 * Note that high speed interrupt endpoints use a logarithmic encoding of
1359 * the endpoint interval, and express polling intervals in microframes
1360 * (eight per millisecond) rather than in frames (one per millisecond).
1361 */
1362 static inline void usb_fill_int_urb (struct urb *urb,
1363 struct usb_device *dev,
1364 unsigned int pipe,
1365 void *transfer_buffer,
1366 int buffer_length,
1367 usb_complete_t complete_fn,
1368 void *context,
1369 int interval)
1370 {
1371 urb->dev = dev;
1372 urb->pipe = pipe;
1373 urb->transfer_buffer = transfer_buffer;
1374 urb->transfer_buffer_length = buffer_length;
1375 urb->complete = complete_fn;
1376 urb->context = context;
1377 if (dev->speed == USB_SPEED_HIGH)
1378 urb->interval = 1 << (interval - 1);
1379 else
1380 urb->interval = interval;
1381 urb->start_frame = -1;
1382 }
1383
1384 extern void usb_init_urb(struct urb *urb);
1385 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1386 extern void usb_free_urb(struct urb *urb);
1387 #define usb_put_urb usb_free_urb
1388 extern struct urb *usb_get_urb(struct urb *urb);
1389 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1390 extern int usb_unlink_urb(struct urb *urb);
1391 extern void usb_kill_urb(struct urb *urb);
1392 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1393 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1394 extern void usb_unanchor_urb(struct urb *urb);
1395 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1396 unsigned int timeout);
1397
1398 /**
1399 * usb_urb_dir_in - check if an URB describes an IN transfer
1400 * @urb: URB to be checked
1401 *
1402 * Returns 1 if @urb describes an IN transfer (device-to-host),
1403 * otherwise 0.
1404 */
1405 static inline int usb_urb_dir_in(struct urb *urb)
1406 {
1407 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1408 }
1409
1410 /**
1411 * usb_urb_dir_out - check if an URB describes an OUT transfer
1412 * @urb: URB to be checked
1413 *
1414 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1415 * otherwise 0.
1416 */
1417 static inline int usb_urb_dir_out(struct urb *urb)
1418 {
1419 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1420 }
1421
1422 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1423 gfp_t mem_flags, dma_addr_t *dma);
1424 void usb_buffer_free (struct usb_device *dev, size_t size,
1425 void *addr, dma_addr_t dma);
1426
1427 #if 0
1428 struct urb *usb_buffer_map (struct urb *urb);
1429 void usb_buffer_dmasync (struct urb *urb);
1430 void usb_buffer_unmap (struct urb *urb);
1431 #endif
1432
1433 struct scatterlist;
1434 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1435 struct scatterlist *sg, int nents);
1436 #if 0
1437 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1438 struct scatterlist *sg, int n_hw_ents);
1439 #endif
1440 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1441 struct scatterlist *sg, int n_hw_ents);
1442
1443 /*-------------------------------------------------------------------*
1444 * SYNCHRONOUS CALL SUPPORT *
1445 *-------------------------------------------------------------------*/
1446
1447 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1448 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1449 void *data, __u16 size, int timeout);
1450 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1451 void *data, int len, int *actual_length, int timeout);
1452 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1453 void *data, int len, int *actual_length,
1454 int timeout);
1455
1456 /* wrappers around usb_control_msg() for the most common standard requests */
1457 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1458 unsigned char descindex, void *buf, int size);
1459 extern int usb_get_status(struct usb_device *dev,
1460 int type, int target, void *data);
1461 extern int usb_string(struct usb_device *dev, int index,
1462 char *buf, size_t size);
1463
1464 /* wrappers that also update important state inside usbcore */
1465 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1466 extern int usb_reset_configuration(struct usb_device *dev);
1467 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1468
1469 /* this request isn't really synchronous, but it belongs with the others */
1470 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1471
1472 /*
1473 * timeouts, in milliseconds, used for sending/receiving control messages
1474 * they typically complete within a few frames (msec) after they're issued
1475 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1476 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1477 */
1478 #define USB_CTRL_GET_TIMEOUT 5000
1479 #define USB_CTRL_SET_TIMEOUT 5000
1480
1481
1482 /**
1483 * struct usb_sg_request - support for scatter/gather I/O
1484 * @status: zero indicates success, else negative errno
1485 * @bytes: counts bytes transferred.
1486 *
1487 * These requests are initialized using usb_sg_init(), and then are used
1488 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1489 * members of the request object aren't for driver access.
1490 *
1491 * The status and bytecount values are valid only after usb_sg_wait()
1492 * returns. If the status is zero, then the bytecount matches the total
1493 * from the request.
1494 *
1495 * After an error completion, drivers may need to clear a halt condition
1496 * on the endpoint.
1497 */
1498 struct usb_sg_request {
1499 int status;
1500 size_t bytes;
1501
1502 /*
1503 * members below are private: to usbcore,
1504 * and are not provided for driver access!
1505 */
1506 spinlock_t lock;
1507
1508 struct usb_device *dev;
1509 int pipe;
1510 struct scatterlist *sg;
1511 int nents;
1512
1513 int entries;
1514 struct urb **urbs;
1515
1516 int count;
1517 struct completion complete;
1518 };
1519
1520 int usb_sg_init (
1521 struct usb_sg_request *io,
1522 struct usb_device *dev,
1523 unsigned pipe,
1524 unsigned period,
1525 struct scatterlist *sg,
1526 int nents,
1527 size_t length,
1528 gfp_t mem_flags
1529 );
1530 void usb_sg_cancel (struct usb_sg_request *io);
1531 void usb_sg_wait (struct usb_sg_request *io);
1532
1533
1534 /* ----------------------------------------------------------------------- */
1535
1536 /*
1537 * For various legacy reasons, Linux has a small cookie that's paired with
1538 * a struct usb_device to identify an endpoint queue. Queue characteristics
1539 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1540 * an unsigned int encoded as:
1541 *
1542 * - direction: bit 7 (0 = Host-to-Device [Out],
1543 * 1 = Device-to-Host [In] ...
1544 * like endpoint bEndpointAddress)
1545 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1546 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1547 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1548 * 10 = control, 11 = bulk)
1549 *
1550 * Given the device address and endpoint descriptor, pipes are redundant.
1551 */
1552
1553 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1554 /* (yet ... they're the values used by usbfs) */
1555 #define PIPE_ISOCHRONOUS 0
1556 #define PIPE_INTERRUPT 1
1557 #define PIPE_CONTROL 2
1558 #define PIPE_BULK 3
1559
1560 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1561 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1562
1563 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1564 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1565
1566 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1567 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1568 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1569 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1570 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1571
1572 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1573 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1574 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1575 #define usb_settoggle(dev, ep, out, bit) \
1576 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1577 ((bit) << (ep)))
1578
1579
1580 static inline unsigned int __create_pipe(struct usb_device *dev,
1581 unsigned int endpoint)
1582 {
1583 return (dev->devnum << 8) | (endpoint << 15);
1584 }
1585
1586 /* Create various pipes... */
1587 #define usb_sndctrlpipe(dev,endpoint) \
1588 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1589 #define usb_rcvctrlpipe(dev,endpoint) \
1590 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1591 #define usb_sndisocpipe(dev,endpoint) \
1592 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1593 #define usb_rcvisocpipe(dev,endpoint) \
1594 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1595 #define usb_sndbulkpipe(dev,endpoint) \
1596 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1597 #define usb_rcvbulkpipe(dev,endpoint) \
1598 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1599 #define usb_sndintpipe(dev,endpoint) \
1600 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1601 #define usb_rcvintpipe(dev,endpoint) \
1602 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1603
1604 /*-------------------------------------------------------------------------*/
1605
1606 static inline __u16
1607 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1608 {
1609 struct usb_host_endpoint *ep;
1610 unsigned epnum = usb_pipeendpoint(pipe);
1611
1612 if (is_out) {
1613 WARN_ON(usb_pipein(pipe));
1614 ep = udev->ep_out[epnum];
1615 } else {
1616 WARN_ON(usb_pipeout(pipe));
1617 ep = udev->ep_in[epnum];
1618 }
1619 if (!ep)
1620 return 0;
1621
1622 /* NOTE: only 0x07ff bits are for packet size... */
1623 return le16_to_cpu(ep->desc.wMaxPacketSize);
1624 }
1625
1626 /* ----------------------------------------------------------------------- */
1627
1628 /* Events from the usb core */
1629 #define USB_DEVICE_ADD 0x0001
1630 #define USB_DEVICE_REMOVE 0x0002
1631 #define USB_BUS_ADD 0x0003
1632 #define USB_BUS_REMOVE 0x0004
1633 extern void usb_register_notify(struct notifier_block *nb);
1634 extern void usb_unregister_notify(struct notifier_block *nb);
1635
1636 #ifdef DEBUG
1637 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1638 __FILE__ , ## arg)
1639 #else
1640 #define dbg(format, arg...) do {} while (0)
1641 #endif
1642
1643 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1644 __FILE__ , ## arg)
1645 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1646 __FILE__ , ## arg)
1647 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1648 __FILE__ , ## arg)
1649
1650
1651 #endif /* __KERNEL__ */
1652
1653 #endif