Merge branch 'master' of /pub/scm/linux/kernel/git/torvalds/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31 * Host-side wrappers for standard USB descriptors ... these are parsed
32 * from the data provided by devices. Parsing turns them from a flat
33 * sequence of descriptors into a hierarchy:
34 *
35 * - devices have one (usually) or more configs;
36 * - configs have one (often) or more interfaces;
37 * - interfaces have one (usually) or more settings;
38 * - each interface setting has zero or (usually) more endpoints.
39 *
40 * And there might be other descriptors mixed in with those.
41 *
42 * Devices may also have class-specific or vendor-specific descriptors.
43 */
44
45 struct ep_device;
46
47 /**
48 * struct usb_host_endpoint - host-side endpoint descriptor and queue
49 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50 * @urb_list: urbs queued to this endpoint; maintained by usbcore
51 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52 * with one or more transfer descriptors (TDs) per urb
53 * @ep_dev: ep_device for sysfs info
54 * @extra: descriptors following this endpoint in the configuration
55 * @extralen: how many bytes of "extra" are valid
56 * @enabled: URBs may be submitted to this endpoint
57 *
58 * USB requests are always queued to a given endpoint, identified by a
59 * descriptor within an active interface in a given USB configuration.
60 */
61 struct usb_host_endpoint {
62 struct usb_endpoint_descriptor desc;
63 struct list_head urb_list;
64 void *hcpriv;
65 struct ep_device *ep_dev; /* For sysfs info */
66
67 unsigned char *extra; /* Extra descriptors */
68 int extralen;
69 int enabled;
70 };
71
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74 struct usb_interface_descriptor desc;
75
76 /* array of desc.bNumEndpoint endpoints associated with this
77 * interface setting. these will be in no particular order.
78 */
79 struct usb_host_endpoint *endpoint;
80
81 char *string; /* iInterface string, if present */
82 unsigned char *extra; /* Extra descriptors */
83 int extralen;
84 };
85
86 enum usb_interface_condition {
87 USB_INTERFACE_UNBOUND = 0,
88 USB_INTERFACE_BINDING,
89 USB_INTERFACE_BOUND,
90 USB_INTERFACE_UNBINDING,
91 };
92
93 /**
94 * struct usb_interface - what usb device drivers talk to
95 * @altsetting: array of interface structures, one for each alternate
96 * setting that may be selected. Each one includes a set of
97 * endpoint configurations. They will be in no particular order.
98 * @cur_altsetting: the current altsetting.
99 * @num_altsetting: number of altsettings defined.
100 * @intf_assoc: interface association descriptor
101 * @minor: the minor number assigned to this interface, if this
102 * interface is bound to a driver that uses the USB major number.
103 * If this interface does not use the USB major, this field should
104 * be unused. The driver should set this value in the probe()
105 * function of the driver, after it has been assigned a minor
106 * number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 * (in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @sysfs_files_created: sysfs attributes exist
111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112 * capability during autosuspend.
113 * @dev: driver model's view of this device
114 * @usb_dev: if an interface is bound to the USB major, this will point
115 * to the sysfs representation for that device.
116 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
117 * allowed unless the counter is 0.
118 *
119 * USB device drivers attach to interfaces on a physical device. Each
120 * interface encapsulates a single high level function, such as feeding
121 * an audio stream to a speaker or reporting a change in a volume control.
122 * Many USB devices only have one interface. The protocol used to talk to
123 * an interface's endpoints can be defined in a usb "class" specification,
124 * or by a product's vendor. The (default) control endpoint is part of
125 * every interface, but is never listed among the interface's descriptors.
126 *
127 * The driver that is bound to the interface can use standard driver model
128 * calls such as dev_get_drvdata() on the dev member of this structure.
129 *
130 * Each interface may have alternate settings. The initial configuration
131 * of a device sets altsetting 0, but the device driver can change
132 * that setting using usb_set_interface(). Alternate settings are often
133 * used to control the use of periodic endpoints, such as by having
134 * different endpoints use different amounts of reserved USB bandwidth.
135 * All standards-conformant USB devices that use isochronous endpoints
136 * will use them in non-default settings.
137 *
138 * The USB specification says that alternate setting numbers must run from
139 * 0 to one less than the total number of alternate settings. But some
140 * devices manage to mess this up, and the structures aren't necessarily
141 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
142 * look up an alternate setting in the altsetting array based on its number.
143 */
144 struct usb_interface {
145 /* array of alternate settings for this interface,
146 * stored in no particular order */
147 struct usb_host_interface *altsetting;
148
149 struct usb_host_interface *cur_altsetting; /* the currently
150 * active alternate setting */
151 unsigned num_altsetting; /* number of alternate settings */
152
153 /* If there is an interface association descriptor then it will list
154 * the associated interfaces */
155 struct usb_interface_assoc_descriptor *intf_assoc;
156
157 int minor; /* minor number this interface is
158 * bound to */
159 enum usb_interface_condition condition; /* state of binding */
160 unsigned is_active:1; /* the interface is not suspended */
161 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
162 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
163
164 struct device dev; /* interface specific device info */
165 struct device *usb_dev;
166 int pm_usage_cnt; /* usage counter for autosuspend */
167 };
168 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
169 #define interface_to_usbdev(intf) \
170 container_of(intf->dev.parent, struct usb_device, dev)
171
172 static inline void *usb_get_intfdata(struct usb_interface *intf)
173 {
174 return dev_get_drvdata(&intf->dev);
175 }
176
177 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
178 {
179 dev_set_drvdata(&intf->dev, data);
180 }
181
182 struct usb_interface *usb_get_intf(struct usb_interface *intf);
183 void usb_put_intf(struct usb_interface *intf);
184
185 /* this maximum is arbitrary */
186 #define USB_MAXINTERFACES 32
187 #define USB_MAXIADS USB_MAXINTERFACES/2
188
189 /**
190 * struct usb_interface_cache - long-term representation of a device interface
191 * @num_altsetting: number of altsettings defined.
192 * @ref: reference counter.
193 * @altsetting: variable-length array of interface structures, one for
194 * each alternate setting that may be selected. Each one includes a
195 * set of endpoint configurations. They will be in no particular order.
196 *
197 * These structures persist for the lifetime of a usb_device, unlike
198 * struct usb_interface (which persists only as long as its configuration
199 * is installed). The altsetting arrays can be accessed through these
200 * structures at any time, permitting comparison of configurations and
201 * providing support for the /proc/bus/usb/devices pseudo-file.
202 */
203 struct usb_interface_cache {
204 unsigned num_altsetting; /* number of alternate settings */
205 struct kref ref; /* reference counter */
206
207 /* variable-length array of alternate settings for this interface,
208 * stored in no particular order */
209 struct usb_host_interface altsetting[0];
210 };
211 #define ref_to_usb_interface_cache(r) \
212 container_of(r, struct usb_interface_cache, ref)
213 #define altsetting_to_usb_interface_cache(a) \
214 container_of(a, struct usb_interface_cache, altsetting[0])
215
216 /**
217 * struct usb_host_config - representation of a device's configuration
218 * @desc: the device's configuration descriptor.
219 * @string: pointer to the cached version of the iConfiguration string, if
220 * present for this configuration.
221 * @intf_assoc: list of any interface association descriptors in this config
222 * @interface: array of pointers to usb_interface structures, one for each
223 * interface in the configuration. The number of interfaces is stored
224 * in desc.bNumInterfaces. These pointers are valid only while the
225 * the configuration is active.
226 * @intf_cache: array of pointers to usb_interface_cache structures, one
227 * for each interface in the configuration. These structures exist
228 * for the entire life of the device.
229 * @extra: pointer to buffer containing all extra descriptors associated
230 * with this configuration (those preceding the first interface
231 * descriptor).
232 * @extralen: length of the extra descriptors buffer.
233 *
234 * USB devices may have multiple configurations, but only one can be active
235 * at any time. Each encapsulates a different operational environment;
236 * for example, a dual-speed device would have separate configurations for
237 * full-speed and high-speed operation. The number of configurations
238 * available is stored in the device descriptor as bNumConfigurations.
239 *
240 * A configuration can contain multiple interfaces. Each corresponds to
241 * a different function of the USB device, and all are available whenever
242 * the configuration is active. The USB standard says that interfaces
243 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
244 * of devices get this wrong. In addition, the interface array is not
245 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
246 * look up an interface entry based on its number.
247 *
248 * Device drivers should not attempt to activate configurations. The choice
249 * of which configuration to install is a policy decision based on such
250 * considerations as available power, functionality provided, and the user's
251 * desires (expressed through userspace tools). However, drivers can call
252 * usb_reset_configuration() to reinitialize the current configuration and
253 * all its interfaces.
254 */
255 struct usb_host_config {
256 struct usb_config_descriptor desc;
257
258 char *string; /* iConfiguration string, if present */
259
260 /* List of any Interface Association Descriptors in this
261 * configuration. */
262 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
263
264 /* the interfaces associated with this configuration,
265 * stored in no particular order */
266 struct usb_interface *interface[USB_MAXINTERFACES];
267
268 /* Interface information available even when this is not the
269 * active configuration */
270 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
271
272 unsigned char *extra; /* Extra descriptors */
273 int extralen;
274 };
275
276 int __usb_get_extra_descriptor(char *buffer, unsigned size,
277 unsigned char type, void **ptr);
278 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
279 __usb_get_extra_descriptor((ifpoint)->extra, \
280 (ifpoint)->extralen, \
281 type, (void **)ptr)
282
283 /* ----------------------------------------------------------------------- */
284
285 /* USB device number allocation bitmap */
286 struct usb_devmap {
287 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
288 };
289
290 /*
291 * Allocated per bus (tree of devices) we have:
292 */
293 struct usb_bus {
294 struct device *controller; /* host/master side hardware */
295 int busnum; /* Bus number (in order of reg) */
296 char *bus_name; /* stable id (PCI slot_name etc) */
297 u8 uses_dma; /* Does the host controller use DMA? */
298 u8 otg_port; /* 0, or number of OTG/HNP port */
299 unsigned is_b_host:1; /* true during some HNP roleswitches */
300 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
301
302 int devnum_next; /* Next open device number in
303 * round-robin allocation */
304
305 struct usb_devmap devmap; /* device address allocation map */
306 struct usb_device *root_hub; /* Root hub */
307 struct list_head bus_list; /* list of busses */
308
309 int bandwidth_allocated; /* on this bus: how much of the time
310 * reserved for periodic (intr/iso)
311 * requests is used, on average?
312 * Units: microseconds/frame.
313 * Limits: Full/low speed reserve 90%,
314 * while high speed reserves 80%.
315 */
316 int bandwidth_int_reqs; /* number of Interrupt requests */
317 int bandwidth_isoc_reqs; /* number of Isoc. requests */
318
319 #ifdef CONFIG_USB_DEVICEFS
320 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
321 #endif
322 struct device *dev; /* device for this bus */
323
324 #if defined(CONFIG_USB_MON)
325 struct mon_bus *mon_bus; /* non-null when associated */
326 int monitored; /* non-zero when monitored */
327 #endif
328 };
329
330 /* ----------------------------------------------------------------------- */
331
332 /* This is arbitrary.
333 * From USB 2.0 spec Table 11-13, offset 7, a hub can
334 * have up to 255 ports. The most yet reported is 10.
335 *
336 * Current Wireless USB host hardware (Intel i1480 for example) allows
337 * up to 22 devices to connect. Upcoming hardware might raise that
338 * limit. Because the arrays need to add a bit for hub status data, we
339 * do 31, so plus one evens out to four bytes.
340 */
341 #define USB_MAXCHILDREN (31)
342
343 struct usb_tt;
344
345 /**
346 * struct usb_device - kernel's representation of a USB device
347 * @devnum: device number; address on a USB bus
348 * @devpath: device ID string for use in messages (e.g., /port/...)
349 * @state: device state: configured, not attached, etc.
350 * @speed: device speed: high/full/low (or error)
351 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
352 * @ttport: device port on that tt hub
353 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
354 * @parent: our hub, unless we're the root
355 * @bus: bus we're part of
356 * @ep0: endpoint 0 data (default control pipe)
357 * @dev: generic device interface
358 * @descriptor: USB device descriptor
359 * @config: all of the device's configs
360 * @actconfig: the active configuration
361 * @ep_in: array of IN endpoints
362 * @ep_out: array of OUT endpoints
363 * @rawdescriptors: raw descriptors for each config
364 * @bus_mA: Current available from the bus
365 * @portnum: parent port number (origin 1)
366 * @level: number of USB hub ancestors
367 * @can_submit: URBs may be submitted
368 * @discon_suspended: disconnected while suspended
369 * @persist_enabled: USB_PERSIST enabled for this device
370 * @have_langid: whether string_langid is valid
371 * @authorized: policy has said we can use it;
372 * (user space) policy determines if we authorize this device to be
373 * used or not. By default, wired USB devices are authorized.
374 * WUSB devices are not, until we authorize them from user space.
375 * FIXME -- complete doc
376 * @authenticated: Crypto authentication passed
377 * @wusb: device is Wireless USB
378 * @string_langid: language ID for strings
379 * @product: iProduct string, if present (static)
380 * @manufacturer: iManufacturer string, if present (static)
381 * @serial: iSerialNumber string, if present (static)
382 * @filelist: usbfs files that are open to this device
383 * @usb_classdev: USB class device that was created for usbfs device
384 * access from userspace
385 * @usbfs_dentry: usbfs dentry entry for the device
386 * @maxchild: number of ports if hub
387 * @children: child devices - USB devices that are attached to this hub
388 * @pm_usage_cnt: usage counter for autosuspend
389 * @quirks: quirks of the whole device
390 * @urbnum: number of URBs submitted for the whole device
391 * @active_duration: total time device is not suspended
392 * @autosuspend: for delayed autosuspends
393 * @pm_mutex: protects PM operations
394 * @last_busy: time of last use
395 * @autosuspend_delay: in jiffies
396 * @connect_time: time device was first connected
397 * @auto_pm: autosuspend/resume in progress
398 * @do_remote_wakeup: remote wakeup should be enabled
399 * @reset_resume: needs reset instead of resume
400 * @autosuspend_disabled: autosuspend disabled by the user
401 * @autoresume_disabled: autoresume disabled by the user
402 * @skip_sys_resume: skip the next system resume
403 *
404 * Notes:
405 * Usbcore drivers should not set usbdev->state directly. Instead use
406 * usb_set_device_state().
407 */
408 struct usb_device {
409 int devnum;
410 char devpath [16];
411 enum usb_device_state state;
412 enum usb_device_speed speed;
413
414 struct usb_tt *tt;
415 int ttport;
416
417 unsigned int toggle[2];
418
419 struct usb_device *parent;
420 struct usb_bus *bus;
421 struct usb_host_endpoint ep0;
422
423 struct device dev;
424
425 struct usb_device_descriptor descriptor;
426 struct usb_host_config *config;
427
428 struct usb_host_config *actconfig;
429 struct usb_host_endpoint *ep_in[16];
430 struct usb_host_endpoint *ep_out[16];
431
432 char **rawdescriptors;
433
434 unsigned short bus_mA;
435 u8 portnum;
436 u8 level;
437
438 unsigned can_submit:1;
439 unsigned discon_suspended:1;
440 unsigned persist_enabled:1;
441 unsigned have_langid:1;
442 unsigned authorized:1;
443 unsigned authenticated:1;
444 unsigned wusb:1;
445 int string_langid;
446
447 /* static strings from the device */
448 char *product;
449 char *manufacturer;
450 char *serial;
451
452 struct list_head filelist;
453 #ifdef CONFIG_USB_DEVICE_CLASS
454 struct device *usb_classdev;
455 #endif
456 #ifdef CONFIG_USB_DEVICEFS
457 struct dentry *usbfs_dentry;
458 #endif
459
460 int maxchild;
461 struct usb_device *children[USB_MAXCHILDREN];
462
463 int pm_usage_cnt;
464 u32 quirks;
465 atomic_t urbnum;
466
467 unsigned long active_duration;
468
469 #ifdef CONFIG_PM
470 struct delayed_work autosuspend;
471 struct mutex pm_mutex;
472
473 unsigned long last_busy;
474 int autosuspend_delay;
475 unsigned long connect_time;
476
477 unsigned auto_pm:1;
478 unsigned do_remote_wakeup:1;
479 unsigned reset_resume:1;
480 unsigned autosuspend_disabled:1;
481 unsigned autoresume_disabled:1;
482 unsigned skip_sys_resume:1;
483 #endif
484 struct wusb_dev *wusb_dev;
485 };
486 #define to_usb_device(d) container_of(d, struct usb_device, dev)
487
488 extern struct usb_device *usb_get_dev(struct usb_device *dev);
489 extern void usb_put_dev(struct usb_device *dev);
490
491 /* USB device locking */
492 #define usb_lock_device(udev) down(&(udev)->dev.sem)
493 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
494 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
495 extern int usb_lock_device_for_reset(struct usb_device *udev,
496 const struct usb_interface *iface);
497
498 /* USB port reset for device reinitialization */
499 extern int usb_reset_device(struct usb_device *dev);
500 extern int usb_reset_composite_device(struct usb_device *dev,
501 struct usb_interface *iface);
502
503 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
504
505 /* USB autosuspend and autoresume */
506 #ifdef CONFIG_USB_SUSPEND
507 extern int usb_autopm_set_interface(struct usb_interface *intf);
508 extern int usb_autopm_get_interface(struct usb_interface *intf);
509 extern void usb_autopm_put_interface(struct usb_interface *intf);
510
511 static inline void usb_autopm_enable(struct usb_interface *intf)
512 {
513 intf->pm_usage_cnt = 0;
514 usb_autopm_set_interface(intf);
515 }
516
517 static inline void usb_autopm_disable(struct usb_interface *intf)
518 {
519 intf->pm_usage_cnt = 1;
520 usb_autopm_set_interface(intf);
521 }
522
523 static inline void usb_mark_last_busy(struct usb_device *udev)
524 {
525 udev->last_busy = jiffies;
526 }
527
528 #else
529
530 static inline int usb_autopm_set_interface(struct usb_interface *intf)
531 { return 0; }
532
533 static inline int usb_autopm_get_interface(struct usb_interface *intf)
534 { return 0; }
535
536 static inline void usb_autopm_put_interface(struct usb_interface *intf)
537 { }
538 static inline void usb_autopm_enable(struct usb_interface *intf)
539 { }
540 static inline void usb_autopm_disable(struct usb_interface *intf)
541 { }
542 static inline void usb_mark_last_busy(struct usb_device *udev)
543 { }
544 #endif
545
546 /*-------------------------------------------------------------------------*/
547
548 /* for drivers using iso endpoints */
549 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
550
551 /* used these for multi-interface device registration */
552 extern int usb_driver_claim_interface(struct usb_driver *driver,
553 struct usb_interface *iface, void *priv);
554
555 /**
556 * usb_interface_claimed - returns true iff an interface is claimed
557 * @iface: the interface being checked
558 *
559 * Returns true (nonzero) iff the interface is claimed, else false (zero).
560 * Callers must own the driver model's usb bus readlock. So driver
561 * probe() entries don't need extra locking, but other call contexts
562 * may need to explicitly claim that lock.
563 *
564 */
565 static inline int usb_interface_claimed(struct usb_interface *iface)
566 {
567 return (iface->dev.driver != NULL);
568 }
569
570 extern void usb_driver_release_interface(struct usb_driver *driver,
571 struct usb_interface *iface);
572 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
573 const struct usb_device_id *id);
574 extern int usb_match_one_id(struct usb_interface *interface,
575 const struct usb_device_id *id);
576
577 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
578 int minor);
579 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
580 unsigned ifnum);
581 extern struct usb_host_interface *usb_altnum_to_altsetting(
582 const struct usb_interface *intf, unsigned int altnum);
583
584
585 /**
586 * usb_make_path - returns stable device path in the usb tree
587 * @dev: the device whose path is being constructed
588 * @buf: where to put the string
589 * @size: how big is "buf"?
590 *
591 * Returns length of the string (> 0) or negative if size was too small.
592 *
593 * This identifier is intended to be "stable", reflecting physical paths in
594 * hardware such as physical bus addresses for host controllers or ports on
595 * USB hubs. That makes it stay the same until systems are physically
596 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
597 * controllers. Adding and removing devices, including virtual root hubs
598 * in host controller driver modules, does not change these path identifers;
599 * neither does rebooting or re-enumerating. These are more useful identifiers
600 * than changeable ("unstable") ones like bus numbers or device addresses.
601 *
602 * With a partial exception for devices connected to USB 2.0 root hubs, these
603 * identifiers are also predictable. So long as the device tree isn't changed,
604 * plugging any USB device into a given hub port always gives it the same path.
605 * Because of the use of "companion" controllers, devices connected to ports on
606 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
607 * high speed, and a different one if they are full or low speed.
608 */
609 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
610 {
611 int actual;
612 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
613 dev->devpath);
614 return (actual >= (int)size) ? -1 : actual;
615 }
616
617 /*-------------------------------------------------------------------------*/
618
619 /**
620 * usb_endpoint_num - get the endpoint's number
621 * @epd: endpoint to be checked
622 *
623 * Returns @epd's number: 0 to 15.
624 */
625 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
626 {
627 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
628 }
629
630 /**
631 * usb_endpoint_type - get the endpoint's transfer type
632 * @epd: endpoint to be checked
633 *
634 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
635 * to @epd's transfer type.
636 */
637 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
638 {
639 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
640 }
641
642 /**
643 * usb_endpoint_dir_in - check if the endpoint has IN direction
644 * @epd: endpoint to be checked
645 *
646 * Returns true if the endpoint is of type IN, otherwise it returns false.
647 */
648 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
649 {
650 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
651 }
652
653 /**
654 * usb_endpoint_dir_out - check if the endpoint has OUT direction
655 * @epd: endpoint to be checked
656 *
657 * Returns true if the endpoint is of type OUT, otherwise it returns false.
658 */
659 static inline int usb_endpoint_dir_out(
660 const struct usb_endpoint_descriptor *epd)
661 {
662 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
663 }
664
665 /**
666 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
667 * @epd: endpoint to be checked
668 *
669 * Returns true if the endpoint is of type bulk, otherwise it returns false.
670 */
671 static inline int usb_endpoint_xfer_bulk(
672 const struct usb_endpoint_descriptor *epd)
673 {
674 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
675 USB_ENDPOINT_XFER_BULK);
676 }
677
678 /**
679 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
680 * @epd: endpoint to be checked
681 *
682 * Returns true if the endpoint is of type control, otherwise it returns false.
683 */
684 static inline int usb_endpoint_xfer_control(
685 const struct usb_endpoint_descriptor *epd)
686 {
687 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
688 USB_ENDPOINT_XFER_CONTROL);
689 }
690
691 /**
692 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
693 * @epd: endpoint to be checked
694 *
695 * Returns true if the endpoint is of type interrupt, otherwise it returns
696 * false.
697 */
698 static inline int usb_endpoint_xfer_int(
699 const struct usb_endpoint_descriptor *epd)
700 {
701 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
702 USB_ENDPOINT_XFER_INT);
703 }
704
705 /**
706 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
707 * @epd: endpoint to be checked
708 *
709 * Returns true if the endpoint is of type isochronous, otherwise it returns
710 * false.
711 */
712 static inline int usb_endpoint_xfer_isoc(
713 const struct usb_endpoint_descriptor *epd)
714 {
715 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
716 USB_ENDPOINT_XFER_ISOC);
717 }
718
719 /**
720 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
721 * @epd: endpoint to be checked
722 *
723 * Returns true if the endpoint has bulk transfer type and IN direction,
724 * otherwise it returns false.
725 */
726 static inline int usb_endpoint_is_bulk_in(
727 const struct usb_endpoint_descriptor *epd)
728 {
729 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
730 }
731
732 /**
733 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
734 * @epd: endpoint to be checked
735 *
736 * Returns true if the endpoint has bulk transfer type and OUT direction,
737 * otherwise it returns false.
738 */
739 static inline int usb_endpoint_is_bulk_out(
740 const struct usb_endpoint_descriptor *epd)
741 {
742 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
743 }
744
745 /**
746 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
747 * @epd: endpoint to be checked
748 *
749 * Returns true if the endpoint has interrupt transfer type and IN direction,
750 * otherwise it returns false.
751 */
752 static inline int usb_endpoint_is_int_in(
753 const struct usb_endpoint_descriptor *epd)
754 {
755 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
756 }
757
758 /**
759 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
760 * @epd: endpoint to be checked
761 *
762 * Returns true if the endpoint has interrupt transfer type and OUT direction,
763 * otherwise it returns false.
764 */
765 static inline int usb_endpoint_is_int_out(
766 const struct usb_endpoint_descriptor *epd)
767 {
768 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
769 }
770
771 /**
772 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
773 * @epd: endpoint to be checked
774 *
775 * Returns true if the endpoint has isochronous transfer type and IN direction,
776 * otherwise it returns false.
777 */
778 static inline int usb_endpoint_is_isoc_in(
779 const struct usb_endpoint_descriptor *epd)
780 {
781 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
782 }
783
784 /**
785 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
786 * @epd: endpoint to be checked
787 *
788 * Returns true if the endpoint has isochronous transfer type and OUT direction,
789 * otherwise it returns false.
790 */
791 static inline int usb_endpoint_is_isoc_out(
792 const struct usb_endpoint_descriptor *epd)
793 {
794 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
795 }
796
797 /*-------------------------------------------------------------------------*/
798
799 #define USB_DEVICE_ID_MATCH_DEVICE \
800 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
801 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
802 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
803 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
804 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
805 #define USB_DEVICE_ID_MATCH_DEV_INFO \
806 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
807 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
808 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
809 #define USB_DEVICE_ID_MATCH_INT_INFO \
810 (USB_DEVICE_ID_MATCH_INT_CLASS | \
811 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
812 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
813
814 /**
815 * USB_DEVICE - macro used to describe a specific usb device
816 * @vend: the 16 bit USB Vendor ID
817 * @prod: the 16 bit USB Product ID
818 *
819 * This macro is used to create a struct usb_device_id that matches a
820 * specific device.
821 */
822 #define USB_DEVICE(vend,prod) \
823 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
824 .idVendor = (vend), \
825 .idProduct = (prod)
826 /**
827 * USB_DEVICE_VER - describe a specific usb device with a version range
828 * @vend: the 16 bit USB Vendor ID
829 * @prod: the 16 bit USB Product ID
830 * @lo: the bcdDevice_lo value
831 * @hi: the bcdDevice_hi value
832 *
833 * This macro is used to create a struct usb_device_id that matches a
834 * specific device, with a version range.
835 */
836 #define USB_DEVICE_VER(vend, prod, lo, hi) \
837 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
838 .idVendor = (vend), \
839 .idProduct = (prod), \
840 .bcdDevice_lo = (lo), \
841 .bcdDevice_hi = (hi)
842
843 /**
844 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
845 * @vend: the 16 bit USB Vendor ID
846 * @prod: the 16 bit USB Product ID
847 * @pr: bInterfaceProtocol value
848 *
849 * This macro is used to create a struct usb_device_id that matches a
850 * specific interface protocol of devices.
851 */
852 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
854 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
855 .idVendor = (vend), \
856 .idProduct = (prod), \
857 .bInterfaceProtocol = (pr)
858
859 /**
860 * USB_DEVICE_INFO - macro used to describe a class of usb devices
861 * @cl: bDeviceClass value
862 * @sc: bDeviceSubClass value
863 * @pr: bDeviceProtocol value
864 *
865 * This macro is used to create a struct usb_device_id that matches a
866 * specific class of devices.
867 */
868 #define USB_DEVICE_INFO(cl, sc, pr) \
869 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
870 .bDeviceClass = (cl), \
871 .bDeviceSubClass = (sc), \
872 .bDeviceProtocol = (pr)
873
874 /**
875 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
876 * @cl: bInterfaceClass value
877 * @sc: bInterfaceSubClass value
878 * @pr: bInterfaceProtocol value
879 *
880 * This macro is used to create a struct usb_device_id that matches a
881 * specific class of interfaces.
882 */
883 #define USB_INTERFACE_INFO(cl, sc, pr) \
884 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
885 .bInterfaceClass = (cl), \
886 .bInterfaceSubClass = (sc), \
887 .bInterfaceProtocol = (pr)
888
889 /**
890 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
891 * @vend: the 16 bit USB Vendor ID
892 * @prod: the 16 bit USB Product ID
893 * @cl: bInterfaceClass value
894 * @sc: bInterfaceSubClass value
895 * @pr: bInterfaceProtocol value
896 *
897 * This macro is used to create a struct usb_device_id that matches a
898 * specific device with a specific class of interfaces.
899 *
900 * This is especially useful when explicitly matching devices that have
901 * vendor specific bDeviceClass values, but standards-compliant interfaces.
902 */
903 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
904 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
905 | USB_DEVICE_ID_MATCH_DEVICE, \
906 .idVendor = (vend), \
907 .idProduct = (prod), \
908 .bInterfaceClass = (cl), \
909 .bInterfaceSubClass = (sc), \
910 .bInterfaceProtocol = (pr)
911
912 /* ----------------------------------------------------------------------- */
913
914 /* Stuff for dynamic usb ids */
915 struct usb_dynids {
916 spinlock_t lock;
917 struct list_head list;
918 };
919
920 struct usb_dynid {
921 struct list_head node;
922 struct usb_device_id id;
923 };
924
925 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
926 struct device_driver *driver,
927 const char *buf, size_t count);
928
929 /**
930 * struct usbdrv_wrap - wrapper for driver-model structure
931 * @driver: The driver-model core driver structure.
932 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
933 */
934 struct usbdrv_wrap {
935 struct device_driver driver;
936 int for_devices;
937 };
938
939 /**
940 * struct usb_driver - identifies USB interface driver to usbcore
941 * @name: The driver name should be unique among USB drivers,
942 * and should normally be the same as the module name.
943 * @probe: Called to see if the driver is willing to manage a particular
944 * interface on a device. If it is, probe returns zero and uses
945 * usb_set_intfdata() to associate driver-specific data with the
946 * interface. It may also use usb_set_interface() to specify the
947 * appropriate altsetting. If unwilling to manage the interface,
948 * return -ENODEV, if genuine IO errors occured, an appropriate
949 * negative errno value.
950 * @disconnect: Called when the interface is no longer accessible, usually
951 * because its device has been (or is being) disconnected or the
952 * driver module is being unloaded.
953 * @ioctl: Used for drivers that want to talk to userspace through
954 * the "usbfs" filesystem. This lets devices provide ways to
955 * expose information to user space regardless of where they
956 * do (or don't) show up otherwise in the filesystem.
957 * @suspend: Called when the device is going to be suspended by the system.
958 * @resume: Called when the device is being resumed by the system.
959 * @reset_resume: Called when the suspended device has been reset instead
960 * of being resumed.
961 * @pre_reset: Called by usb_reset_composite_device() when the device
962 * is about to be reset.
963 * @post_reset: Called by usb_reset_composite_device() after the device
964 * has been reset
965 * @id_table: USB drivers use ID table to support hotplugging.
966 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
967 * or your driver's probe function will never get called.
968 * @dynids: used internally to hold the list of dynamically added device
969 * ids for this driver.
970 * @drvwrap: Driver-model core structure wrapper.
971 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
972 * added to this driver by preventing the sysfs file from being created.
973 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
974 * for interfaces bound to this driver.
975 *
976 * USB interface drivers must provide a name, probe() and disconnect()
977 * methods, and an id_table. Other driver fields are optional.
978 *
979 * The id_table is used in hotplugging. It holds a set of descriptors,
980 * and specialized data may be associated with each entry. That table
981 * is used by both user and kernel mode hotplugging support.
982 *
983 * The probe() and disconnect() methods are called in a context where
984 * they can sleep, but they should avoid abusing the privilege. Most
985 * work to connect to a device should be done when the device is opened,
986 * and undone at the last close. The disconnect code needs to address
987 * concurrency issues with respect to open() and close() methods, as
988 * well as forcing all pending I/O requests to complete (by unlinking
989 * them as necessary, and blocking until the unlinks complete).
990 */
991 struct usb_driver {
992 const char *name;
993
994 int (*probe) (struct usb_interface *intf,
995 const struct usb_device_id *id);
996
997 void (*disconnect) (struct usb_interface *intf);
998
999 int (*ioctl) (struct usb_interface *intf, unsigned int code,
1000 void *buf);
1001
1002 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1003 int (*resume) (struct usb_interface *intf);
1004 int (*reset_resume)(struct usb_interface *intf);
1005
1006 int (*pre_reset)(struct usb_interface *intf);
1007 int (*post_reset)(struct usb_interface *intf);
1008
1009 const struct usb_device_id *id_table;
1010
1011 struct usb_dynids dynids;
1012 struct usbdrv_wrap drvwrap;
1013 unsigned int no_dynamic_id:1;
1014 unsigned int supports_autosuspend:1;
1015 };
1016 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1017
1018 /**
1019 * struct usb_device_driver - identifies USB device driver to usbcore
1020 * @name: The driver name should be unique among USB drivers,
1021 * and should normally be the same as the module name.
1022 * @probe: Called to see if the driver is willing to manage a particular
1023 * device. If it is, probe returns zero and uses dev_set_drvdata()
1024 * to associate driver-specific data with the device. If unwilling
1025 * to manage the device, return a negative errno value.
1026 * @disconnect: Called when the device is no longer accessible, usually
1027 * because it has been (or is being) disconnected or the driver's
1028 * module is being unloaded.
1029 * @suspend: Called when the device is going to be suspended by the system.
1030 * @resume: Called when the device is being resumed by the system.
1031 * @drvwrap: Driver-model core structure wrapper.
1032 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1033 * for devices bound to this driver.
1034 *
1035 * USB drivers must provide all the fields listed above except drvwrap.
1036 */
1037 struct usb_device_driver {
1038 const char *name;
1039
1040 int (*probe) (struct usb_device *udev);
1041 void (*disconnect) (struct usb_device *udev);
1042
1043 int (*suspend) (struct usb_device *udev, pm_message_t message);
1044 int (*resume) (struct usb_device *udev);
1045 struct usbdrv_wrap drvwrap;
1046 unsigned int supports_autosuspend:1;
1047 };
1048 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1049 drvwrap.driver)
1050
1051 extern struct bus_type usb_bus_type;
1052
1053 /**
1054 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1055 * @name: the usb class device name for this driver. Will show up in sysfs.
1056 * @fops: pointer to the struct file_operations of this driver.
1057 * @minor_base: the start of the minor range for this driver.
1058 *
1059 * This structure is used for the usb_register_dev() and
1060 * usb_unregister_dev() functions, to consolidate a number of the
1061 * parameters used for them.
1062 */
1063 struct usb_class_driver {
1064 char *name;
1065 const struct file_operations *fops;
1066 int minor_base;
1067 };
1068
1069 /*
1070 * use these in module_init()/module_exit()
1071 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1072 */
1073 extern int usb_register_driver(struct usb_driver *, struct module *,
1074 const char *);
1075 static inline int usb_register(struct usb_driver *driver)
1076 {
1077 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1078 }
1079 extern void usb_deregister(struct usb_driver *);
1080
1081 extern int usb_register_device_driver(struct usb_device_driver *,
1082 struct module *);
1083 extern void usb_deregister_device_driver(struct usb_device_driver *);
1084
1085 extern int usb_register_dev(struct usb_interface *intf,
1086 struct usb_class_driver *class_driver);
1087 extern void usb_deregister_dev(struct usb_interface *intf,
1088 struct usb_class_driver *class_driver);
1089
1090 extern int usb_disabled(void);
1091
1092 /* ----------------------------------------------------------------------- */
1093
1094 /*
1095 * URB support, for asynchronous request completions
1096 */
1097
1098 /*
1099 * urb->transfer_flags:
1100 *
1101 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1102 */
1103 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1104 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1105 * ignored */
1106 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1107 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1108 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1109 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1110 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1111 * needed */
1112 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1113
1114 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1115 #define URB_DIR_OUT 0
1116 #define URB_DIR_MASK URB_DIR_IN
1117
1118 struct usb_iso_packet_descriptor {
1119 unsigned int offset;
1120 unsigned int length; /* expected length */
1121 unsigned int actual_length;
1122 int status;
1123 };
1124
1125 struct urb;
1126
1127 struct usb_anchor {
1128 struct list_head urb_list;
1129 wait_queue_head_t wait;
1130 spinlock_t lock;
1131 };
1132
1133 static inline void init_usb_anchor(struct usb_anchor *anchor)
1134 {
1135 INIT_LIST_HEAD(&anchor->urb_list);
1136 init_waitqueue_head(&anchor->wait);
1137 spin_lock_init(&anchor->lock);
1138 }
1139
1140 typedef void (*usb_complete_t)(struct urb *);
1141
1142 /**
1143 * struct urb - USB Request Block
1144 * @urb_list: For use by current owner of the URB.
1145 * @anchor_list: membership in the list of an anchor
1146 * @anchor: to anchor URBs to a common mooring
1147 * @ep: Points to the endpoint's data structure. Will eventually
1148 * replace @pipe.
1149 * @pipe: Holds endpoint number, direction, type, and more.
1150 * Create these values with the eight macros available;
1151 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1152 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1153 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1154 * numbers range from zero to fifteen. Note that "in" endpoint two
1155 * is a different endpoint (and pipe) from "out" endpoint two.
1156 * The current configuration controls the existence, type, and
1157 * maximum packet size of any given endpoint.
1158 * @dev: Identifies the USB device to perform the request.
1159 * @status: This is read in non-iso completion functions to get the
1160 * status of the particular request. ISO requests only use it
1161 * to tell whether the URB was unlinked; detailed status for
1162 * each frame is in the fields of the iso_frame-desc.
1163 * @transfer_flags: A variety of flags may be used to affect how URB
1164 * submission, unlinking, or operation are handled. Different
1165 * kinds of URB can use different flags.
1166 * @transfer_buffer: This identifies the buffer to (or from) which
1167 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1168 * is set). This buffer must be suitable for DMA; allocate it with
1169 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1170 * of this buffer will be modified. This buffer is used for the data
1171 * stage of control transfers.
1172 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1173 * the device driver is saying that it provided this DMA address,
1174 * which the host controller driver should use in preference to the
1175 * transfer_buffer.
1176 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1177 * be broken up into chunks according to the current maximum packet
1178 * size for the endpoint, which is a function of the configuration
1179 * and is encoded in the pipe. When the length is zero, neither
1180 * transfer_buffer nor transfer_dma is used.
1181 * @actual_length: This is read in non-iso completion functions, and
1182 * it tells how many bytes (out of transfer_buffer_length) were
1183 * transferred. It will normally be the same as requested, unless
1184 * either an error was reported or a short read was performed.
1185 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1186 * short reads be reported as errors.
1187 * @setup_packet: Only used for control transfers, this points to eight bytes
1188 * of setup data. Control transfers always start by sending this data
1189 * to the device. Then transfer_buffer is read or written, if needed.
1190 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1191 * device driver has provided this DMA address for the setup packet.
1192 * The host controller driver should use this in preference to
1193 * setup_packet.
1194 * @start_frame: Returns the initial frame for isochronous transfers.
1195 * @number_of_packets: Lists the number of ISO transfer buffers.
1196 * @interval: Specifies the polling interval for interrupt or isochronous
1197 * transfers. The units are frames (milliseconds) for for full and low
1198 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1199 * @error_count: Returns the number of ISO transfers that reported errors.
1200 * @context: For use in completion functions. This normally points to
1201 * request-specific driver context.
1202 * @complete: Completion handler. This URB is passed as the parameter to the
1203 * completion function. The completion function may then do what
1204 * it likes with the URB, including resubmitting or freeing it.
1205 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1206 * collect the transfer status for each buffer.
1207 *
1208 * This structure identifies USB transfer requests. URBs must be allocated by
1209 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1210 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1211 * are submitted using usb_submit_urb(), and pending requests may be canceled
1212 * using usb_unlink_urb() or usb_kill_urb().
1213 *
1214 * Data Transfer Buffers:
1215 *
1216 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1217 * taken from the general page pool. That is provided by transfer_buffer
1218 * (control requests also use setup_packet), and host controller drivers
1219 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1220 * mapping operations can be expensive on some platforms (perhaps using a dma
1221 * bounce buffer or talking to an IOMMU),
1222 * although they're cheap on commodity x86 and ppc hardware.
1223 *
1224 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1225 * which tell the host controller driver that no such mapping is needed since
1226 * the device driver is DMA-aware. For example, a device driver might
1227 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1228 * When these transfer flags are provided, host controller drivers will
1229 * attempt to use the dma addresses found in the transfer_dma and/or
1230 * setup_dma fields rather than determining a dma address themselves. (Note
1231 * that transfer_buffer and setup_packet must still be set because not all
1232 * host controllers use DMA, nor do virtual root hubs).
1233 *
1234 * Initialization:
1235 *
1236 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1237 * zero), and complete fields. All URBs must also initialize
1238 * transfer_buffer and transfer_buffer_length. They may provide the
1239 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1240 * to be treated as errors; that flag is invalid for write requests.
1241 *
1242 * Bulk URBs may
1243 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1244 * should always terminate with a short packet, even if it means adding an
1245 * extra zero length packet.
1246 *
1247 * Control URBs must provide a setup_packet. The setup_packet and
1248 * transfer_buffer may each be mapped for DMA or not, independently of
1249 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1250 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1251 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1252 *
1253 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1254 * or, for highspeed devices, 125 microsecond units)
1255 * to poll for transfers. After the URB has been submitted, the interval
1256 * field reflects how the transfer was actually scheduled.
1257 * The polling interval may be more frequent than requested.
1258 * For example, some controllers have a maximum interval of 32 milliseconds,
1259 * while others support intervals of up to 1024 milliseconds.
1260 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1261 * endpoints, as well as high speed interrupt endpoints, the encoding of
1262 * the transfer interval in the endpoint descriptor is logarithmic.
1263 * Device drivers must convert that value to linear units themselves.)
1264 *
1265 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1266 * the host controller to schedule the transfer as soon as bandwidth
1267 * utilization allows, and then set start_frame to reflect the actual frame
1268 * selected during submission. Otherwise drivers must specify the start_frame
1269 * and handle the case where the transfer can't begin then. However, drivers
1270 * won't know how bandwidth is currently allocated, and while they can
1271 * find the current frame using usb_get_current_frame_number () they can't
1272 * know the range for that frame number. (Ranges for frame counter values
1273 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1274 *
1275 * Isochronous URBs have a different data transfer model, in part because
1276 * the quality of service is only "best effort". Callers provide specially
1277 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1278 * at the end. Each such packet is an individual ISO transfer. Isochronous
1279 * URBs are normally queued, submitted by drivers to arrange that
1280 * transfers are at least double buffered, and then explicitly resubmitted
1281 * in completion handlers, so
1282 * that data (such as audio or video) streams at as constant a rate as the
1283 * host controller scheduler can support.
1284 *
1285 * Completion Callbacks:
1286 *
1287 * The completion callback is made in_interrupt(), and one of the first
1288 * things that a completion handler should do is check the status field.
1289 * The status field is provided for all URBs. It is used to report
1290 * unlinked URBs, and status for all non-ISO transfers. It should not
1291 * be examined before the URB is returned to the completion handler.
1292 *
1293 * The context field is normally used to link URBs back to the relevant
1294 * driver or request state.
1295 *
1296 * When the completion callback is invoked for non-isochronous URBs, the
1297 * actual_length field tells how many bytes were transferred. This field
1298 * is updated even when the URB terminated with an error or was unlinked.
1299 *
1300 * ISO transfer status is reported in the status and actual_length fields
1301 * of the iso_frame_desc array, and the number of errors is reported in
1302 * error_count. Completion callbacks for ISO transfers will normally
1303 * (re)submit URBs to ensure a constant transfer rate.
1304 *
1305 * Note that even fields marked "public" should not be touched by the driver
1306 * when the urb is owned by the hcd, that is, since the call to
1307 * usb_submit_urb() till the entry into the completion routine.
1308 */
1309 struct urb {
1310 /* private: usb core and host controller only fields in the urb */
1311 struct kref kref; /* reference count of the URB */
1312 void *hcpriv; /* private data for host controller */
1313 atomic_t use_count; /* concurrent submissions counter */
1314 u8 reject; /* submissions will fail */
1315 int unlinked; /* unlink error code */
1316
1317 /* public: documented fields in the urb that can be used by drivers */
1318 struct list_head urb_list; /* list head for use by the urb's
1319 * current owner */
1320 struct list_head anchor_list; /* the URB may be anchored */
1321 struct usb_anchor *anchor;
1322 struct usb_device *dev; /* (in) pointer to associated device */
1323 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1324 unsigned int pipe; /* (in) pipe information */
1325 int status; /* (return) non-ISO status */
1326 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1327 void *transfer_buffer; /* (in) associated data buffer */
1328 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1329 int transfer_buffer_length; /* (in) data buffer length */
1330 int actual_length; /* (return) actual transfer length */
1331 unsigned char *setup_packet; /* (in) setup packet (control only) */
1332 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1333 int start_frame; /* (modify) start frame (ISO) */
1334 int number_of_packets; /* (in) number of ISO packets */
1335 int interval; /* (modify) transfer interval
1336 * (INT/ISO) */
1337 int error_count; /* (return) number of ISO errors */
1338 void *context; /* (in) context for completion */
1339 usb_complete_t complete; /* (in) completion routine */
1340 struct usb_iso_packet_descriptor iso_frame_desc[0];
1341 /* (in) ISO ONLY */
1342 };
1343
1344 /* ----------------------------------------------------------------------- */
1345
1346 /**
1347 * usb_fill_control_urb - initializes a control urb
1348 * @urb: pointer to the urb to initialize.
1349 * @dev: pointer to the struct usb_device for this urb.
1350 * @pipe: the endpoint pipe
1351 * @setup_packet: pointer to the setup_packet buffer
1352 * @transfer_buffer: pointer to the transfer buffer
1353 * @buffer_length: length of the transfer buffer
1354 * @complete_fn: pointer to the usb_complete_t function
1355 * @context: what to set the urb context to.
1356 *
1357 * Initializes a control urb with the proper information needed to submit
1358 * it to a device.
1359 */
1360 static inline void usb_fill_control_urb(struct urb *urb,
1361 struct usb_device *dev,
1362 unsigned int pipe,
1363 unsigned char *setup_packet,
1364 void *transfer_buffer,
1365 int buffer_length,
1366 usb_complete_t complete_fn,
1367 void *context)
1368 {
1369 urb->dev = dev;
1370 urb->pipe = pipe;
1371 urb->setup_packet = setup_packet;
1372 urb->transfer_buffer = transfer_buffer;
1373 urb->transfer_buffer_length = buffer_length;
1374 urb->complete = complete_fn;
1375 urb->context = context;
1376 }
1377
1378 /**
1379 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1380 * @urb: pointer to the urb to initialize.
1381 * @dev: pointer to the struct usb_device for this urb.
1382 * @pipe: the endpoint pipe
1383 * @transfer_buffer: pointer to the transfer buffer
1384 * @buffer_length: length of the transfer buffer
1385 * @complete_fn: pointer to the usb_complete_t function
1386 * @context: what to set the urb context to.
1387 *
1388 * Initializes a bulk urb with the proper information needed to submit it
1389 * to a device.
1390 */
1391 static inline void usb_fill_bulk_urb(struct urb *urb,
1392 struct usb_device *dev,
1393 unsigned int pipe,
1394 void *transfer_buffer,
1395 int buffer_length,
1396 usb_complete_t complete_fn,
1397 void *context)
1398 {
1399 urb->dev = dev;
1400 urb->pipe = pipe;
1401 urb->transfer_buffer = transfer_buffer;
1402 urb->transfer_buffer_length = buffer_length;
1403 urb->complete = complete_fn;
1404 urb->context = context;
1405 }
1406
1407 /**
1408 * usb_fill_int_urb - macro to help initialize a interrupt urb
1409 * @urb: pointer to the urb to initialize.
1410 * @dev: pointer to the struct usb_device for this urb.
1411 * @pipe: the endpoint pipe
1412 * @transfer_buffer: pointer to the transfer buffer
1413 * @buffer_length: length of the transfer buffer
1414 * @complete_fn: pointer to the usb_complete_t function
1415 * @context: what to set the urb context to.
1416 * @interval: what to set the urb interval to, encoded like
1417 * the endpoint descriptor's bInterval value.
1418 *
1419 * Initializes a interrupt urb with the proper information needed to submit
1420 * it to a device.
1421 * Note that high speed interrupt endpoints use a logarithmic encoding of
1422 * the endpoint interval, and express polling intervals in microframes
1423 * (eight per millisecond) rather than in frames (one per millisecond).
1424 */
1425 static inline void usb_fill_int_urb(struct urb *urb,
1426 struct usb_device *dev,
1427 unsigned int pipe,
1428 void *transfer_buffer,
1429 int buffer_length,
1430 usb_complete_t complete_fn,
1431 void *context,
1432 int interval)
1433 {
1434 urb->dev = dev;
1435 urb->pipe = pipe;
1436 urb->transfer_buffer = transfer_buffer;
1437 urb->transfer_buffer_length = buffer_length;
1438 urb->complete = complete_fn;
1439 urb->context = context;
1440 if (dev->speed == USB_SPEED_HIGH)
1441 urb->interval = 1 << (interval - 1);
1442 else
1443 urb->interval = interval;
1444 urb->start_frame = -1;
1445 }
1446
1447 extern void usb_init_urb(struct urb *urb);
1448 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1449 extern void usb_free_urb(struct urb *urb);
1450 #define usb_put_urb usb_free_urb
1451 extern struct urb *usb_get_urb(struct urb *urb);
1452 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1453 extern int usb_unlink_urb(struct urb *urb);
1454 extern void usb_kill_urb(struct urb *urb);
1455 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1456 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1457 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1458 extern void usb_unanchor_urb(struct urb *urb);
1459 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1460 unsigned int timeout);
1461
1462 /**
1463 * usb_urb_dir_in - check if an URB describes an IN transfer
1464 * @urb: URB to be checked
1465 *
1466 * Returns 1 if @urb describes an IN transfer (device-to-host),
1467 * otherwise 0.
1468 */
1469 static inline int usb_urb_dir_in(struct urb *urb)
1470 {
1471 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1472 }
1473
1474 /**
1475 * usb_urb_dir_out - check if an URB describes an OUT transfer
1476 * @urb: URB to be checked
1477 *
1478 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1479 * otherwise 0.
1480 */
1481 static inline int usb_urb_dir_out(struct urb *urb)
1482 {
1483 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1484 }
1485
1486 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1487 gfp_t mem_flags, dma_addr_t *dma);
1488 void usb_buffer_free(struct usb_device *dev, size_t size,
1489 void *addr, dma_addr_t dma);
1490
1491 #if 0
1492 struct urb *usb_buffer_map(struct urb *urb);
1493 void usb_buffer_dmasync(struct urb *urb);
1494 void usb_buffer_unmap(struct urb *urb);
1495 #endif
1496
1497 struct scatterlist;
1498 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1499 struct scatterlist *sg, int nents);
1500 #if 0
1501 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1502 struct scatterlist *sg, int n_hw_ents);
1503 #endif
1504 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1505 struct scatterlist *sg, int n_hw_ents);
1506
1507 /*-------------------------------------------------------------------*
1508 * SYNCHRONOUS CALL SUPPORT *
1509 *-------------------------------------------------------------------*/
1510
1511 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1512 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1513 void *data, __u16 size, int timeout);
1514 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1515 void *data, int len, int *actual_length, int timeout);
1516 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1517 void *data, int len, int *actual_length,
1518 int timeout);
1519
1520 /* wrappers around usb_control_msg() for the most common standard requests */
1521 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1522 unsigned char descindex, void *buf, int size);
1523 extern int usb_get_status(struct usb_device *dev,
1524 int type, int target, void *data);
1525 extern int usb_string(struct usb_device *dev, int index,
1526 char *buf, size_t size);
1527
1528 /* wrappers that also update important state inside usbcore */
1529 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1530 extern int usb_reset_configuration(struct usb_device *dev);
1531 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1532
1533 /* this request isn't really synchronous, but it belongs with the others */
1534 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1535
1536 /*
1537 * timeouts, in milliseconds, used for sending/receiving control messages
1538 * they typically complete within a few frames (msec) after they're issued
1539 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1540 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1541 */
1542 #define USB_CTRL_GET_TIMEOUT 5000
1543 #define USB_CTRL_SET_TIMEOUT 5000
1544
1545
1546 /**
1547 * struct usb_sg_request - support for scatter/gather I/O
1548 * @status: zero indicates success, else negative errno
1549 * @bytes: counts bytes transferred.
1550 *
1551 * These requests are initialized using usb_sg_init(), and then are used
1552 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1553 * members of the request object aren't for driver access.
1554 *
1555 * The status and bytecount values are valid only after usb_sg_wait()
1556 * returns. If the status is zero, then the bytecount matches the total
1557 * from the request.
1558 *
1559 * After an error completion, drivers may need to clear a halt condition
1560 * on the endpoint.
1561 */
1562 struct usb_sg_request {
1563 int status;
1564 size_t bytes;
1565
1566 /*
1567 * members below are private: to usbcore,
1568 * and are not provided for driver access!
1569 */
1570 spinlock_t lock;
1571
1572 struct usb_device *dev;
1573 int pipe;
1574 struct scatterlist *sg;
1575 int nents;
1576
1577 int entries;
1578 struct urb **urbs;
1579
1580 int count;
1581 struct completion complete;
1582 };
1583
1584 int usb_sg_init(
1585 struct usb_sg_request *io,
1586 struct usb_device *dev,
1587 unsigned pipe,
1588 unsigned period,
1589 struct scatterlist *sg,
1590 int nents,
1591 size_t length,
1592 gfp_t mem_flags
1593 );
1594 void usb_sg_cancel(struct usb_sg_request *io);
1595 void usb_sg_wait(struct usb_sg_request *io);
1596
1597
1598 /* ----------------------------------------------------------------------- */
1599
1600 /*
1601 * For various legacy reasons, Linux has a small cookie that's paired with
1602 * a struct usb_device to identify an endpoint queue. Queue characteristics
1603 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1604 * an unsigned int encoded as:
1605 *
1606 * - direction: bit 7 (0 = Host-to-Device [Out],
1607 * 1 = Device-to-Host [In] ...
1608 * like endpoint bEndpointAddress)
1609 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1610 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1611 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1612 * 10 = control, 11 = bulk)
1613 *
1614 * Given the device address and endpoint descriptor, pipes are redundant.
1615 */
1616
1617 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1618 /* (yet ... they're the values used by usbfs) */
1619 #define PIPE_ISOCHRONOUS 0
1620 #define PIPE_INTERRUPT 1
1621 #define PIPE_CONTROL 2
1622 #define PIPE_BULK 3
1623
1624 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1625 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1626
1627 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1628 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1629
1630 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1631 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1632 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1633 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1634 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1635
1636 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1637 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1638 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1639 #define usb_settoggle(dev, ep, out, bit) \
1640 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1641 ((bit) << (ep)))
1642
1643
1644 static inline unsigned int __create_pipe(struct usb_device *dev,
1645 unsigned int endpoint)
1646 {
1647 return (dev->devnum << 8) | (endpoint << 15);
1648 }
1649
1650 /* Create various pipes... */
1651 #define usb_sndctrlpipe(dev,endpoint) \
1652 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1653 #define usb_rcvctrlpipe(dev,endpoint) \
1654 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1655 #define usb_sndisocpipe(dev,endpoint) \
1656 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1657 #define usb_rcvisocpipe(dev,endpoint) \
1658 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1659 #define usb_sndbulkpipe(dev,endpoint) \
1660 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1661 #define usb_rcvbulkpipe(dev,endpoint) \
1662 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1663 #define usb_sndintpipe(dev,endpoint) \
1664 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1665 #define usb_rcvintpipe(dev,endpoint) \
1666 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1667
1668 /*-------------------------------------------------------------------------*/
1669
1670 static inline __u16
1671 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1672 {
1673 struct usb_host_endpoint *ep;
1674 unsigned epnum = usb_pipeendpoint(pipe);
1675
1676 if (is_out) {
1677 WARN_ON(usb_pipein(pipe));
1678 ep = udev->ep_out[epnum];
1679 } else {
1680 WARN_ON(usb_pipeout(pipe));
1681 ep = udev->ep_in[epnum];
1682 }
1683 if (!ep)
1684 return 0;
1685
1686 /* NOTE: only 0x07ff bits are for packet size... */
1687 return le16_to_cpu(ep->desc.wMaxPacketSize);
1688 }
1689
1690 /* ----------------------------------------------------------------------- */
1691
1692 /* Events from the usb core */
1693 #define USB_DEVICE_ADD 0x0001
1694 #define USB_DEVICE_REMOVE 0x0002
1695 #define USB_BUS_ADD 0x0003
1696 #define USB_BUS_REMOVE 0x0004
1697 extern void usb_register_notify(struct notifier_block *nb);
1698 extern void usb_unregister_notify(struct notifier_block *nb);
1699
1700 #ifdef DEBUG
1701 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1702 __FILE__ , ## arg)
1703 #else
1704 #define dbg(format, arg...) do {} while (0)
1705 #endif
1706
1707 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1708 format "\n" , ## arg)
1709 #define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \
1710 format "\n" , ## arg)
1711 #define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \
1712 format "\n" , ## arg)
1713
1714 #endif /* __KERNEL__ */
1715
1716 #endif