Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44 struct ep_device;
45
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 * @enabled: URBs may be submitted to this endpoint
56 *
57 * USB requests are always queued to a given endpoint, identified by a
58 * descriptor within an active interface in a given USB configuration.
59 */
60 struct usb_host_endpoint {
61 struct usb_endpoint_descriptor desc;
62 struct list_head urb_list;
63 void *hcpriv;
64 struct ep_device *ep_dev; /* For sysfs info */
65
66 unsigned char *extra; /* Extra descriptors */
67 int extralen;
68 int enabled;
69 };
70
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 struct usb_interface_descriptor desc;
74
75 /* array of desc.bNumEndpoint endpoints associated with this
76 * interface setting. these will be in no particular order.
77 */
78 struct usb_host_endpoint *endpoint;
79
80 char *string; /* iInterface string, if present */
81 unsigned char *extra; /* Extra descriptors */
82 int extralen;
83 };
84
85 enum usb_interface_condition {
86 USB_INTERFACE_UNBOUND = 0,
87 USB_INTERFACE_BINDING,
88 USB_INTERFACE_BOUND,
89 USB_INTERFACE_UNBINDING,
90 };
91
92 /**
93 * struct usb_interface - what usb device drivers talk to
94 * @altsetting: array of interface structures, one for each alternate
95 * setting that may be selected. Each one includes a set of
96 * endpoint configurations. They will be in no particular order.
97 * @num_altsetting: number of altsettings defined.
98 * @cur_altsetting: the current altsetting.
99 * @intf_assoc: interface association descriptor
100 * @driver: the USB driver that is bound to this interface.
101 * @minor: the minor number assigned to this interface, if this
102 * interface is bound to a driver that uses the USB major number.
103 * If this interface does not use the USB major, this field should
104 * be unused. The driver should set this value in the probe()
105 * function of the driver, after it has been assigned a minor
106 * number from the USB core by calling usb_register_dev().
107 * @condition: binding state of the interface: not bound, binding
108 * (in probe()), bound to a driver, or unbinding (in disconnect())
109 * @is_active: flag set when the interface is bound and not suspended.
110 * @sysfs_files_created: sysfs attributes exist
111 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112 * capability during autosuspend.
113 * @dev: driver model's view of this device
114 * @usb_dev: if an interface is bound to the USB major, this will point
115 * to the sysfs representation for that device.
116 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
117 * allowed unless the counter is 0.
118 *
119 * USB device drivers attach to interfaces on a physical device. Each
120 * interface encapsulates a single high level function, such as feeding
121 * an audio stream to a speaker or reporting a change in a volume control.
122 * Many USB devices only have one interface. The protocol used to talk to
123 * an interface's endpoints can be defined in a usb "class" specification,
124 * or by a product's vendor. The (default) control endpoint is part of
125 * every interface, but is never listed among the interface's descriptors.
126 *
127 * The driver that is bound to the interface can use standard driver model
128 * calls such as dev_get_drvdata() on the dev member of this structure.
129 *
130 * Each interface may have alternate settings. The initial configuration
131 * of a device sets altsetting 0, but the device driver can change
132 * that setting using usb_set_interface(). Alternate settings are often
133 * used to control the use of periodic endpoints, such as by having
134 * different endpoints use different amounts of reserved USB bandwidth.
135 * All standards-conformant USB devices that use isochronous endpoints
136 * will use them in non-default settings.
137 *
138 * The USB specification says that alternate setting numbers must run from
139 * 0 to one less than the total number of alternate settings. But some
140 * devices manage to mess this up, and the structures aren't necessarily
141 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
142 * look up an alternate setting in the altsetting array based on its number.
143 */
144 struct usb_interface {
145 /* array of alternate settings for this interface,
146 * stored in no particular order */
147 struct usb_host_interface *altsetting;
148
149 struct usb_host_interface *cur_altsetting; /* the currently
150 * active alternate setting */
151 unsigned num_altsetting; /* number of alternate settings */
152
153 /* If there is an interface association descriptor then it will list
154 * the associated interfaces */
155 struct usb_interface_assoc_descriptor *intf_assoc;
156
157 int minor; /* minor number this interface is
158 * bound to */
159 enum usb_interface_condition condition; /* state of binding */
160 unsigned is_active:1; /* the interface is not suspended */
161 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
162 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
163
164 struct device dev; /* interface specific device info */
165 struct device *usb_dev;
166 int pm_usage_cnt; /* usage counter for autosuspend */
167 };
168 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
169 #define interface_to_usbdev(intf) \
170 container_of(intf->dev.parent, struct usb_device, dev)
171
172 static inline void *usb_get_intfdata(struct usb_interface *intf)
173 {
174 return dev_get_drvdata(&intf->dev);
175 }
176
177 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
178 {
179 dev_set_drvdata(&intf->dev, data);
180 }
181
182 struct usb_interface *usb_get_intf(struct usb_interface *intf);
183 void usb_put_intf(struct usb_interface *intf);
184
185 /* this maximum is arbitrary */
186 #define USB_MAXINTERFACES 32
187 #define USB_MAXIADS USB_MAXINTERFACES/2
188
189 /**
190 * struct usb_interface_cache - long-term representation of a device interface
191 * @num_altsetting: number of altsettings defined.
192 * @ref: reference counter.
193 * @altsetting: variable-length array of interface structures, one for
194 * each alternate setting that may be selected. Each one includes a
195 * set of endpoint configurations. They will be in no particular order.
196 *
197 * These structures persist for the lifetime of a usb_device, unlike
198 * struct usb_interface (which persists only as long as its configuration
199 * is installed). The altsetting arrays can be accessed through these
200 * structures at any time, permitting comparison of configurations and
201 * providing support for the /proc/bus/usb/devices pseudo-file.
202 */
203 struct usb_interface_cache {
204 unsigned num_altsetting; /* number of alternate settings */
205 struct kref ref; /* reference counter */
206
207 /* variable-length array of alternate settings for this interface,
208 * stored in no particular order */
209 struct usb_host_interface altsetting[0];
210 };
211 #define ref_to_usb_interface_cache(r) \
212 container_of(r, struct usb_interface_cache, ref)
213 #define altsetting_to_usb_interface_cache(a) \
214 container_of(a, struct usb_interface_cache, altsetting[0])
215
216 /**
217 * struct usb_host_config - representation of a device's configuration
218 * @desc: the device's configuration descriptor.
219 * @string: pointer to the cached version of the iConfiguration string, if
220 * present for this configuration.
221 * @intf_assoc: list of any interface association descriptors in this config
222 * @interface: array of pointers to usb_interface structures, one for each
223 * interface in the configuration. The number of interfaces is stored
224 * in desc.bNumInterfaces. These pointers are valid only while the
225 * the configuration is active.
226 * @intf_cache: array of pointers to usb_interface_cache structures, one
227 * for each interface in the configuration. These structures exist
228 * for the entire life of the device.
229 * @extra: pointer to buffer containing all extra descriptors associated
230 * with this configuration (those preceding the first interface
231 * descriptor).
232 * @extralen: length of the extra descriptors buffer.
233 *
234 * USB devices may have multiple configurations, but only one can be active
235 * at any time. Each encapsulates a different operational environment;
236 * for example, a dual-speed device would have separate configurations for
237 * full-speed and high-speed operation. The number of configurations
238 * available is stored in the device descriptor as bNumConfigurations.
239 *
240 * A configuration can contain multiple interfaces. Each corresponds to
241 * a different function of the USB device, and all are available whenever
242 * the configuration is active. The USB standard says that interfaces
243 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
244 * of devices get this wrong. In addition, the interface array is not
245 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
246 * look up an interface entry based on its number.
247 *
248 * Device drivers should not attempt to activate configurations. The choice
249 * of which configuration to install is a policy decision based on such
250 * considerations as available power, functionality provided, and the user's
251 * desires (expressed through userspace tools). However, drivers can call
252 * usb_reset_configuration() to reinitialize the current configuration and
253 * all its interfaces.
254 */
255 struct usb_host_config {
256 struct usb_config_descriptor desc;
257
258 char *string; /* iConfiguration string, if present */
259
260 /* List of any Interface Association Descriptors in this
261 * configuration. */
262 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
263
264 /* the interfaces associated with this configuration,
265 * stored in no particular order */
266 struct usb_interface *interface[USB_MAXINTERFACES];
267
268 /* Interface information available even when this is not the
269 * active configuration */
270 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
271
272 unsigned char *extra; /* Extra descriptors */
273 int extralen;
274 };
275
276 int __usb_get_extra_descriptor(char *buffer, unsigned size,
277 unsigned char type, void **ptr);
278 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
279 __usb_get_extra_descriptor((ifpoint)->extra, \
280 (ifpoint)->extralen, \
281 type, (void **)ptr)
282
283 /* ----------------------------------------------------------------------- */
284
285 /* USB device number allocation bitmap */
286 struct usb_devmap {
287 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
288 };
289
290 /*
291 * Allocated per bus (tree of devices) we have:
292 */
293 struct usb_bus {
294 struct device *controller; /* host/master side hardware */
295 int busnum; /* Bus number (in order of reg) */
296 char *bus_name; /* stable id (PCI slot_name etc) */
297 u8 uses_dma; /* Does the host controller use DMA? */
298 u8 otg_port; /* 0, or number of OTG/HNP port */
299 unsigned is_b_host:1; /* true during some HNP roleswitches */
300 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
301
302 int devnum_next; /* Next open device number in
303 * round-robin allocation */
304
305 struct usb_devmap devmap; /* device address allocation map */
306 struct usb_device *root_hub; /* Root hub */
307 struct list_head bus_list; /* list of busses */
308
309 int bandwidth_allocated; /* on this bus: how much of the time
310 * reserved for periodic (intr/iso)
311 * requests is used, on average?
312 * Units: microseconds/frame.
313 * Limits: Full/low speed reserve 90%,
314 * while high speed reserves 80%.
315 */
316 int bandwidth_int_reqs; /* number of Interrupt requests */
317 int bandwidth_isoc_reqs; /* number of Isoc. requests */
318
319 #ifdef CONFIG_USB_DEVICEFS
320 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
321 #endif
322 struct device *dev; /* device for this bus */
323
324 #if defined(CONFIG_USB_MON)
325 struct mon_bus *mon_bus; /* non-null when associated */
326 int monitored; /* non-zero when monitored */
327 #endif
328 };
329
330 /* ----------------------------------------------------------------------- */
331
332 /* This is arbitrary.
333 * From USB 2.0 spec Table 11-13, offset 7, a hub can
334 * have up to 255 ports. The most yet reported is 10.
335 *
336 * Current Wireless USB host hardware (Intel i1480 for example) allows
337 * up to 22 devices to connect. Upcoming hardware might raise that
338 * limit. Because the arrays need to add a bit for hub status data, we
339 * do 31, so plus one evens out to four bytes.
340 */
341 #define USB_MAXCHILDREN (31)
342
343 struct usb_tt;
344
345 /*
346 * struct usb_device - kernel's representation of a USB device
347 *
348 * FIXME: Write the kerneldoc!
349 *
350 * Usbcore drivers should not set usbdev->state directly. Instead use
351 * usb_set_device_state().
352 *
353 * @authorized: (user space) policy determines if we authorize this
354 * device to be used or not. By default, wired USB
355 * devices are authorized. WUSB devices are not, until we
356 * authorize them from user space. FIXME -- complete doc
357 */
358 struct usb_device {
359 int devnum; /* Address on USB bus */
360 char devpath [16]; /* Use in messages: /port/port/... */
361 enum usb_device_state state; /* configured, not attached, etc */
362 enum usb_device_speed speed; /* high/full/low (or error) */
363
364 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
365 int ttport; /* device port on that tt hub */
366
367 unsigned int toggle[2]; /* one bit for each endpoint
368 * ([0] = IN, [1] = OUT) */
369
370 struct usb_device *parent; /* our hub, unless we're the root */
371 struct usb_bus *bus; /* Bus we're part of */
372 struct usb_host_endpoint ep0;
373
374 struct device dev; /* Generic device interface */
375
376 struct usb_device_descriptor descriptor;/* Descriptor */
377 struct usb_host_config *config; /* All of the configs */
378
379 struct usb_host_config *actconfig;/* the active configuration */
380 struct usb_host_endpoint *ep_in[16];
381 struct usb_host_endpoint *ep_out[16];
382
383 char **rawdescriptors; /* Raw descriptors for each config */
384
385 unsigned short bus_mA; /* Current available from the bus */
386 u8 portnum; /* Parent port number (origin 1) */
387 u8 level; /* Number of USB hub ancestors */
388
389 unsigned can_submit:1; /* URBs may be submitted */
390 unsigned discon_suspended:1; /* Disconnected while suspended */
391 unsigned have_langid:1; /* whether string_langid is valid */
392 unsigned authorized:1; /* Policy has said we can use it */
393 unsigned wusb:1; /* Device is Wireless USB */
394 int string_langid; /* language ID for strings */
395
396 /* static strings from the device */
397 char *product; /* iProduct string, if present */
398 char *manufacturer; /* iManufacturer string, if present */
399 char *serial; /* iSerialNumber string, if present */
400
401 struct list_head filelist;
402 #ifdef CONFIG_USB_DEVICE_CLASS
403 struct device *usb_classdev;
404 #endif
405 #ifdef CONFIG_USB_DEVICEFS
406 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
407 #endif
408 /*
409 * Child devices - these can be either new devices
410 * (if this is a hub device), or different instances
411 * of this same device.
412 *
413 * Each instance needs its own set of data structures.
414 */
415
416 int maxchild; /* Number of ports if hub */
417 struct usb_device *children[USB_MAXCHILDREN];
418
419 int pm_usage_cnt; /* usage counter for autosuspend */
420 u32 quirks; /* quirks of the whole device */
421 atomic_t urbnum; /* number of URBs submitted for
422 the whole device */
423
424 unsigned long active_duration; /* total time device is not suspended */
425
426 #ifdef CONFIG_PM
427 struct delayed_work autosuspend; /* for delayed autosuspends */
428 struct mutex pm_mutex; /* protects PM operations */
429
430 unsigned long last_busy; /* time of last use */
431 int autosuspend_delay; /* in jiffies */
432 unsigned long connect_time; /* time device was first connected */
433
434 unsigned auto_pm:1; /* autosuspend/resume in progress */
435 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
436 unsigned reset_resume:1; /* needs reset instead of resume */
437 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */
438 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
439 unsigned autoresume_disabled:1; /* disabled by the user */
440 unsigned skip_sys_resume:1; /* skip the next system resume */
441 #endif
442 };
443 #define to_usb_device(d) container_of(d, struct usb_device, dev)
444
445 extern struct usb_device *usb_get_dev(struct usb_device *dev);
446 extern void usb_put_dev(struct usb_device *dev);
447
448 /* USB device locking */
449 #define usb_lock_device(udev) down(&(udev)->dev.sem)
450 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
451 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
452 extern int usb_lock_device_for_reset(struct usb_device *udev,
453 const struct usb_interface *iface);
454
455 /* USB port reset for device reinitialization */
456 extern int usb_reset_device(struct usb_device *dev);
457 extern int usb_reset_composite_device(struct usb_device *dev,
458 struct usb_interface *iface);
459
460 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
461
462 /* USB autosuspend and autoresume */
463 #ifdef CONFIG_USB_SUSPEND
464 extern int usb_autopm_set_interface(struct usb_interface *intf);
465 extern int usb_autopm_get_interface(struct usb_interface *intf);
466 extern void usb_autopm_put_interface(struct usb_interface *intf);
467
468 static inline void usb_autopm_enable(struct usb_interface *intf)
469 {
470 intf->pm_usage_cnt = 0;
471 usb_autopm_set_interface(intf);
472 }
473
474 static inline void usb_autopm_disable(struct usb_interface *intf)
475 {
476 intf->pm_usage_cnt = 1;
477 usb_autopm_set_interface(intf);
478 }
479
480 static inline void usb_mark_last_busy(struct usb_device *udev)
481 {
482 udev->last_busy = jiffies;
483 }
484
485 #else
486
487 static inline int usb_autopm_set_interface(struct usb_interface *intf)
488 { return 0; }
489
490 static inline int usb_autopm_get_interface(struct usb_interface *intf)
491 { return 0; }
492
493 static inline void usb_autopm_put_interface(struct usb_interface *intf)
494 { }
495 static inline void usb_autopm_enable(struct usb_interface *intf)
496 { }
497 static inline void usb_autopm_disable(struct usb_interface *intf)
498 { }
499 static inline void usb_mark_last_busy(struct usb_device *udev)
500 { }
501 #endif
502
503 /*-------------------------------------------------------------------------*/
504
505 /* for drivers using iso endpoints */
506 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
507
508 /* used these for multi-interface device registration */
509 extern int usb_driver_claim_interface(struct usb_driver *driver,
510 struct usb_interface *iface, void *priv);
511
512 /**
513 * usb_interface_claimed - returns true iff an interface is claimed
514 * @iface: the interface being checked
515 *
516 * Returns true (nonzero) iff the interface is claimed, else false (zero).
517 * Callers must own the driver model's usb bus readlock. So driver
518 * probe() entries don't need extra locking, but other call contexts
519 * may need to explicitly claim that lock.
520 *
521 */
522 static inline int usb_interface_claimed(struct usb_interface *iface)
523 {
524 return (iface->dev.driver != NULL);
525 }
526
527 extern void usb_driver_release_interface(struct usb_driver *driver,
528 struct usb_interface *iface);
529 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
530 const struct usb_device_id *id);
531 extern int usb_match_one_id(struct usb_interface *interface,
532 const struct usb_device_id *id);
533
534 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
535 int minor);
536 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
537 unsigned ifnum);
538 extern struct usb_host_interface *usb_altnum_to_altsetting(
539 const struct usb_interface *intf, unsigned int altnum);
540
541
542 /**
543 * usb_make_path - returns stable device path in the usb tree
544 * @dev: the device whose path is being constructed
545 * @buf: where to put the string
546 * @size: how big is "buf"?
547 *
548 * Returns length of the string (> 0) or negative if size was too small.
549 *
550 * This identifier is intended to be "stable", reflecting physical paths in
551 * hardware such as physical bus addresses for host controllers or ports on
552 * USB hubs. That makes it stay the same until systems are physically
553 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
554 * controllers. Adding and removing devices, including virtual root hubs
555 * in host controller driver modules, does not change these path identifers;
556 * neither does rebooting or re-enumerating. These are more useful identifiers
557 * than changeable ("unstable") ones like bus numbers or device addresses.
558 *
559 * With a partial exception for devices connected to USB 2.0 root hubs, these
560 * identifiers are also predictable. So long as the device tree isn't changed,
561 * plugging any USB device into a given hub port always gives it the same path.
562 * Because of the use of "companion" controllers, devices connected to ports on
563 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
564 * high speed, and a different one if they are full or low speed.
565 */
566 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
567 {
568 int actual;
569 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
570 dev->devpath);
571 return (actual >= (int)size) ? -1 : actual;
572 }
573
574 /*-------------------------------------------------------------------------*/
575
576 /**
577 * usb_endpoint_num - get the endpoint's number
578 * @epd: endpoint to be checked
579 *
580 * Returns @epd's number: 0 to 15.
581 */
582 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
583 {
584 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
585 }
586
587 /**
588 * usb_endpoint_type - get the endpoint's transfer type
589 * @epd: endpoint to be checked
590 *
591 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
592 * to @epd's transfer type.
593 */
594 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
595 {
596 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
597 }
598
599 /**
600 * usb_endpoint_dir_in - check if the endpoint has IN direction
601 * @epd: endpoint to be checked
602 *
603 * Returns true if the endpoint is of type IN, otherwise it returns false.
604 */
605 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
606 {
607 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
608 }
609
610 /**
611 * usb_endpoint_dir_out - check if the endpoint has OUT direction
612 * @epd: endpoint to be checked
613 *
614 * Returns true if the endpoint is of type OUT, otherwise it returns false.
615 */
616 static inline int usb_endpoint_dir_out(
617 const struct usb_endpoint_descriptor *epd)
618 {
619 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
620 }
621
622 /**
623 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
624 * @epd: endpoint to be checked
625 *
626 * Returns true if the endpoint is of type bulk, otherwise it returns false.
627 */
628 static inline int usb_endpoint_xfer_bulk(
629 const struct usb_endpoint_descriptor *epd)
630 {
631 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
632 USB_ENDPOINT_XFER_BULK);
633 }
634
635 /**
636 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
637 * @epd: endpoint to be checked
638 *
639 * Returns true if the endpoint is of type control, otherwise it returns false.
640 */
641 static inline int usb_endpoint_xfer_control(
642 const struct usb_endpoint_descriptor *epd)
643 {
644 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
645 USB_ENDPOINT_XFER_CONTROL);
646 }
647
648 /**
649 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
650 * @epd: endpoint to be checked
651 *
652 * Returns true if the endpoint is of type interrupt, otherwise it returns
653 * false.
654 */
655 static inline int usb_endpoint_xfer_int(
656 const struct usb_endpoint_descriptor *epd)
657 {
658 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
659 USB_ENDPOINT_XFER_INT);
660 }
661
662 /**
663 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
664 * @epd: endpoint to be checked
665 *
666 * Returns true if the endpoint is of type isochronous, otherwise it returns
667 * false.
668 */
669 static inline int usb_endpoint_xfer_isoc(
670 const struct usb_endpoint_descriptor *epd)
671 {
672 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
673 USB_ENDPOINT_XFER_ISOC);
674 }
675
676 /**
677 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
678 * @epd: endpoint to be checked
679 *
680 * Returns true if the endpoint has bulk transfer type and IN direction,
681 * otherwise it returns false.
682 */
683 static inline int usb_endpoint_is_bulk_in(
684 const struct usb_endpoint_descriptor *epd)
685 {
686 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
687 }
688
689 /**
690 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
691 * @epd: endpoint to be checked
692 *
693 * Returns true if the endpoint has bulk transfer type and OUT direction,
694 * otherwise it returns false.
695 */
696 static inline int usb_endpoint_is_bulk_out(
697 const struct usb_endpoint_descriptor *epd)
698 {
699 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
700 }
701
702 /**
703 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
704 * @epd: endpoint to be checked
705 *
706 * Returns true if the endpoint has interrupt transfer type and IN direction,
707 * otherwise it returns false.
708 */
709 static inline int usb_endpoint_is_int_in(
710 const struct usb_endpoint_descriptor *epd)
711 {
712 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
713 }
714
715 /**
716 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
717 * @epd: endpoint to be checked
718 *
719 * Returns true if the endpoint has interrupt transfer type and OUT direction,
720 * otherwise it returns false.
721 */
722 static inline int usb_endpoint_is_int_out(
723 const struct usb_endpoint_descriptor *epd)
724 {
725 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
726 }
727
728 /**
729 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
730 * @epd: endpoint to be checked
731 *
732 * Returns true if the endpoint has isochronous transfer type and IN direction,
733 * otherwise it returns false.
734 */
735 static inline int usb_endpoint_is_isoc_in(
736 const struct usb_endpoint_descriptor *epd)
737 {
738 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
739 }
740
741 /**
742 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
743 * @epd: endpoint to be checked
744 *
745 * Returns true if the endpoint has isochronous transfer type and OUT direction,
746 * otherwise it returns false.
747 */
748 static inline int usb_endpoint_is_isoc_out(
749 const struct usb_endpoint_descriptor *epd)
750 {
751 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
752 }
753
754 /*-------------------------------------------------------------------------*/
755
756 #define USB_DEVICE_ID_MATCH_DEVICE \
757 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
758 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
759 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
760 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
761 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
762 #define USB_DEVICE_ID_MATCH_DEV_INFO \
763 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
764 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
765 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
766 #define USB_DEVICE_ID_MATCH_INT_INFO \
767 (USB_DEVICE_ID_MATCH_INT_CLASS | \
768 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
769 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
770
771 /**
772 * USB_DEVICE - macro used to describe a specific usb device
773 * @vend: the 16 bit USB Vendor ID
774 * @prod: the 16 bit USB Product ID
775 *
776 * This macro is used to create a struct usb_device_id that matches a
777 * specific device.
778 */
779 #define USB_DEVICE(vend,prod) \
780 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
781 .idVendor = (vend), \
782 .idProduct = (prod)
783 /**
784 * USB_DEVICE_VER - describe a specific usb device with a version range
785 * @vend: the 16 bit USB Vendor ID
786 * @prod: the 16 bit USB Product ID
787 * @lo: the bcdDevice_lo value
788 * @hi: the bcdDevice_hi value
789 *
790 * This macro is used to create a struct usb_device_id that matches a
791 * specific device, with a version range.
792 */
793 #define USB_DEVICE_VER(vend, prod, lo, hi) \
794 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
795 .idVendor = (vend), \
796 .idProduct = (prod), \
797 .bcdDevice_lo = (lo), \
798 .bcdDevice_hi = (hi)
799
800 /**
801 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
802 * @vend: the 16 bit USB Vendor ID
803 * @prod: the 16 bit USB Product ID
804 * @pr: bInterfaceProtocol value
805 *
806 * This macro is used to create a struct usb_device_id that matches a
807 * specific interface protocol of devices.
808 */
809 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
810 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
811 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
812 .idVendor = (vend), \
813 .idProduct = (prod), \
814 .bInterfaceProtocol = (pr)
815
816 /**
817 * USB_DEVICE_INFO - macro used to describe a class of usb devices
818 * @cl: bDeviceClass value
819 * @sc: bDeviceSubClass value
820 * @pr: bDeviceProtocol value
821 *
822 * This macro is used to create a struct usb_device_id that matches a
823 * specific class of devices.
824 */
825 #define USB_DEVICE_INFO(cl, sc, pr) \
826 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
827 .bDeviceClass = (cl), \
828 .bDeviceSubClass = (sc), \
829 .bDeviceProtocol = (pr)
830
831 /**
832 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
833 * @cl: bInterfaceClass value
834 * @sc: bInterfaceSubClass value
835 * @pr: bInterfaceProtocol value
836 *
837 * This macro is used to create a struct usb_device_id that matches a
838 * specific class of interfaces.
839 */
840 #define USB_INTERFACE_INFO(cl, sc, pr) \
841 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
842 .bInterfaceClass = (cl), \
843 .bInterfaceSubClass = (sc), \
844 .bInterfaceProtocol = (pr)
845
846 /**
847 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
848 * @vend: the 16 bit USB Vendor ID
849 * @prod: the 16 bit USB Product ID
850 * @cl: bInterfaceClass value
851 * @sc: bInterfaceSubClass value
852 * @pr: bInterfaceProtocol value
853 *
854 * This macro is used to create a struct usb_device_id that matches a
855 * specific device with a specific class of interfaces.
856 *
857 * This is especially useful when explicitly matching devices that have
858 * vendor specific bDeviceClass values, but standards-compliant interfaces.
859 */
860 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
861 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
862 | USB_DEVICE_ID_MATCH_DEVICE, \
863 .idVendor = (vend), \
864 .idProduct = (prod), \
865 .bInterfaceClass = (cl), \
866 .bInterfaceSubClass = (sc), \
867 .bInterfaceProtocol = (pr)
868
869 /* ----------------------------------------------------------------------- */
870
871 /* Stuff for dynamic usb ids */
872 struct usb_dynids {
873 spinlock_t lock;
874 struct list_head list;
875 };
876
877 struct usb_dynid {
878 struct list_head node;
879 struct usb_device_id id;
880 };
881
882 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
883 struct device_driver *driver,
884 const char *buf, size_t count);
885
886 /**
887 * struct usbdrv_wrap - wrapper for driver-model structure
888 * @driver: The driver-model core driver structure.
889 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
890 */
891 struct usbdrv_wrap {
892 struct device_driver driver;
893 int for_devices;
894 };
895
896 /**
897 * struct usb_driver - identifies USB interface driver to usbcore
898 * @name: The driver name should be unique among USB drivers,
899 * and should normally be the same as the module name.
900 * @probe: Called to see if the driver is willing to manage a particular
901 * interface on a device. If it is, probe returns zero and uses
902 * dev_set_drvdata() to associate driver-specific data with the
903 * interface. It may also use usb_set_interface() to specify the
904 * appropriate altsetting. If unwilling to manage the interface,
905 * return a negative errno value.
906 * @disconnect: Called when the interface is no longer accessible, usually
907 * because its device has been (or is being) disconnected or the
908 * driver module is being unloaded.
909 * @ioctl: Used for drivers that want to talk to userspace through
910 * the "usbfs" filesystem. This lets devices provide ways to
911 * expose information to user space regardless of where they
912 * do (or don't) show up otherwise in the filesystem.
913 * @suspend: Called when the device is going to be suspended by the system.
914 * @resume: Called when the device is being resumed by the system.
915 * @reset_resume: Called when the suspended device has been reset instead
916 * of being resumed.
917 * @pre_reset: Called by usb_reset_composite_device() when the device
918 * is about to be reset.
919 * @post_reset: Called by usb_reset_composite_device() after the device
920 * has been reset, or in lieu of @resume following a reset-resume
921 * (i.e., the device is reset instead of being resumed, as might
922 * happen if power was lost). The second argument tells which is
923 * the reason.
924 * @id_table: USB drivers use ID table to support hotplugging.
925 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
926 * or your driver's probe function will never get called.
927 * @dynids: used internally to hold the list of dynamically added device
928 * ids for this driver.
929 * @drvwrap: Driver-model core structure wrapper.
930 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
931 * added to this driver by preventing the sysfs file from being created.
932 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
933 * for interfaces bound to this driver.
934 *
935 * USB interface drivers must provide a name, probe() and disconnect()
936 * methods, and an id_table. Other driver fields are optional.
937 *
938 * The id_table is used in hotplugging. It holds a set of descriptors,
939 * and specialized data may be associated with each entry. That table
940 * is used by both user and kernel mode hotplugging support.
941 *
942 * The probe() and disconnect() methods are called in a context where
943 * they can sleep, but they should avoid abusing the privilege. Most
944 * work to connect to a device should be done when the device is opened,
945 * and undone at the last close. The disconnect code needs to address
946 * concurrency issues with respect to open() and close() methods, as
947 * well as forcing all pending I/O requests to complete (by unlinking
948 * them as necessary, and blocking until the unlinks complete).
949 */
950 struct usb_driver {
951 const char *name;
952
953 int (*probe) (struct usb_interface *intf,
954 const struct usb_device_id *id);
955
956 void (*disconnect) (struct usb_interface *intf);
957
958 int (*ioctl) (struct usb_interface *intf, unsigned int code,
959 void *buf);
960
961 int (*suspend) (struct usb_interface *intf, pm_message_t message);
962 int (*resume) (struct usb_interface *intf);
963 int (*reset_resume)(struct usb_interface *intf);
964
965 int (*pre_reset)(struct usb_interface *intf);
966 int (*post_reset)(struct usb_interface *intf);
967
968 const struct usb_device_id *id_table;
969
970 struct usb_dynids dynids;
971 struct usbdrv_wrap drvwrap;
972 unsigned int no_dynamic_id:1;
973 unsigned int supports_autosuspend:1;
974 };
975 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
976
977 /**
978 * struct usb_device_driver - identifies USB device driver to usbcore
979 * @name: The driver name should be unique among USB drivers,
980 * and should normally be the same as the module name.
981 * @probe: Called to see if the driver is willing to manage a particular
982 * device. If it is, probe returns zero and uses dev_set_drvdata()
983 * to associate driver-specific data with the device. If unwilling
984 * to manage the device, return a negative errno value.
985 * @disconnect: Called when the device is no longer accessible, usually
986 * because it has been (or is being) disconnected or the driver's
987 * module is being unloaded.
988 * @suspend: Called when the device is going to be suspended by the system.
989 * @resume: Called when the device is being resumed by the system.
990 * @drvwrap: Driver-model core structure wrapper.
991 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
992 * for devices bound to this driver.
993 *
994 * USB drivers must provide all the fields listed above except drvwrap.
995 */
996 struct usb_device_driver {
997 const char *name;
998
999 int (*probe) (struct usb_device *udev);
1000 void (*disconnect) (struct usb_device *udev);
1001
1002 int (*suspend) (struct usb_device *udev, pm_message_t message);
1003 int (*resume) (struct usb_device *udev);
1004 struct usbdrv_wrap drvwrap;
1005 unsigned int supports_autosuspend:1;
1006 };
1007 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1008 drvwrap.driver)
1009
1010 extern struct bus_type usb_bus_type;
1011
1012 /**
1013 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1014 * @name: the usb class device name for this driver. Will show up in sysfs.
1015 * @fops: pointer to the struct file_operations of this driver.
1016 * @minor_base: the start of the minor range for this driver.
1017 *
1018 * This structure is used for the usb_register_dev() and
1019 * usb_unregister_dev() functions, to consolidate a number of the
1020 * parameters used for them.
1021 */
1022 struct usb_class_driver {
1023 char *name;
1024 const struct file_operations *fops;
1025 int minor_base;
1026 };
1027
1028 /*
1029 * use these in module_init()/module_exit()
1030 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1031 */
1032 extern int usb_register_driver(struct usb_driver *, struct module *,
1033 const char *);
1034 static inline int usb_register(struct usb_driver *driver)
1035 {
1036 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1037 }
1038 extern void usb_deregister(struct usb_driver *);
1039
1040 extern int usb_register_device_driver(struct usb_device_driver *,
1041 struct module *);
1042 extern void usb_deregister_device_driver(struct usb_device_driver *);
1043
1044 extern int usb_register_dev(struct usb_interface *intf,
1045 struct usb_class_driver *class_driver);
1046 extern void usb_deregister_dev(struct usb_interface *intf,
1047 struct usb_class_driver *class_driver);
1048
1049 extern int usb_disabled(void);
1050
1051 /* ----------------------------------------------------------------------- */
1052
1053 /*
1054 * URB support, for asynchronous request completions
1055 */
1056
1057 /*
1058 * urb->transfer_flags:
1059 *
1060 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1061 */
1062 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1063 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1064 * ignored */
1065 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1066 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1067 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1068 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1069 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1070 * needed */
1071 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1072
1073 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1074 #define URB_DIR_OUT 0
1075 #define URB_DIR_MASK URB_DIR_IN
1076
1077 struct usb_iso_packet_descriptor {
1078 unsigned int offset;
1079 unsigned int length; /* expected length */
1080 unsigned int actual_length;
1081 int status;
1082 };
1083
1084 struct urb;
1085
1086 struct usb_anchor {
1087 struct list_head urb_list;
1088 wait_queue_head_t wait;
1089 spinlock_t lock;
1090 };
1091
1092 static inline void init_usb_anchor(struct usb_anchor *anchor)
1093 {
1094 INIT_LIST_HEAD(&anchor->urb_list);
1095 init_waitqueue_head(&anchor->wait);
1096 spin_lock_init(&anchor->lock);
1097 }
1098
1099 typedef void (*usb_complete_t)(struct urb *);
1100
1101 /**
1102 * struct urb - USB Request Block
1103 * @urb_list: For use by current owner of the URB.
1104 * @anchor_list: membership in the list of an anchor
1105 * @anchor: to anchor URBs to a common mooring
1106 * @ep: Points to the endpoint's data structure. Will eventually
1107 * replace @pipe.
1108 * @pipe: Holds endpoint number, direction, type, and more.
1109 * Create these values with the eight macros available;
1110 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1111 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1112 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1113 * numbers range from zero to fifteen. Note that "in" endpoint two
1114 * is a different endpoint (and pipe) from "out" endpoint two.
1115 * The current configuration controls the existence, type, and
1116 * maximum packet size of any given endpoint.
1117 * @dev: Identifies the USB device to perform the request.
1118 * @status: This is read in non-iso completion functions to get the
1119 * status of the particular request. ISO requests only use it
1120 * to tell whether the URB was unlinked; detailed status for
1121 * each frame is in the fields of the iso_frame-desc.
1122 * @transfer_flags: A variety of flags may be used to affect how URB
1123 * submission, unlinking, or operation are handled. Different
1124 * kinds of URB can use different flags.
1125 * @transfer_buffer: This identifies the buffer to (or from) which
1126 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1127 * is set). This buffer must be suitable for DMA; allocate it with
1128 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1129 * of this buffer will be modified. This buffer is used for the data
1130 * stage of control transfers.
1131 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1132 * the device driver is saying that it provided this DMA address,
1133 * which the host controller driver should use in preference to the
1134 * transfer_buffer.
1135 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1136 * be broken up into chunks according to the current maximum packet
1137 * size for the endpoint, which is a function of the configuration
1138 * and is encoded in the pipe. When the length is zero, neither
1139 * transfer_buffer nor transfer_dma is used.
1140 * @actual_length: This is read in non-iso completion functions, and
1141 * it tells how many bytes (out of transfer_buffer_length) were
1142 * transferred. It will normally be the same as requested, unless
1143 * either an error was reported or a short read was performed.
1144 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1145 * short reads be reported as errors.
1146 * @setup_packet: Only used for control transfers, this points to eight bytes
1147 * of setup data. Control transfers always start by sending this data
1148 * to the device. Then transfer_buffer is read or written, if needed.
1149 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1150 * device driver has provided this DMA address for the setup packet.
1151 * The host controller driver should use this in preference to
1152 * setup_packet.
1153 * @start_frame: Returns the initial frame for isochronous transfers.
1154 * @number_of_packets: Lists the number of ISO transfer buffers.
1155 * @interval: Specifies the polling interval for interrupt or isochronous
1156 * transfers. The units are frames (milliseconds) for for full and low
1157 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1158 * @error_count: Returns the number of ISO transfers that reported errors.
1159 * @context: For use in completion functions. This normally points to
1160 * request-specific driver context.
1161 * @complete: Completion handler. This URB is passed as the parameter to the
1162 * completion function. The completion function may then do what
1163 * it likes with the URB, including resubmitting or freeing it.
1164 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1165 * collect the transfer status for each buffer.
1166 *
1167 * This structure identifies USB transfer requests. URBs must be allocated by
1168 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1169 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1170 * are submitted using usb_submit_urb(), and pending requests may be canceled
1171 * using usb_unlink_urb() or usb_kill_urb().
1172 *
1173 * Data Transfer Buffers:
1174 *
1175 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1176 * taken from the general page pool. That is provided by transfer_buffer
1177 * (control requests also use setup_packet), and host controller drivers
1178 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1179 * mapping operations can be expensive on some platforms (perhaps using a dma
1180 * bounce buffer or talking to an IOMMU),
1181 * although they're cheap on commodity x86 and ppc hardware.
1182 *
1183 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1184 * which tell the host controller driver that no such mapping is needed since
1185 * the device driver is DMA-aware. For example, a device driver might
1186 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1187 * When these transfer flags are provided, host controller drivers will
1188 * attempt to use the dma addresses found in the transfer_dma and/or
1189 * setup_dma fields rather than determining a dma address themselves. (Note
1190 * that transfer_buffer and setup_packet must still be set because not all
1191 * host controllers use DMA, nor do virtual root hubs).
1192 *
1193 * Initialization:
1194 *
1195 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1196 * zero), and complete fields. All URBs must also initialize
1197 * transfer_buffer and transfer_buffer_length. They may provide the
1198 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1199 * to be treated as errors; that flag is invalid for write requests.
1200 *
1201 * Bulk URBs may
1202 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1203 * should always terminate with a short packet, even if it means adding an
1204 * extra zero length packet.
1205 *
1206 * Control URBs must provide a setup_packet. The setup_packet and
1207 * transfer_buffer may each be mapped for DMA or not, independently of
1208 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1209 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1210 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1211 *
1212 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1213 * or, for highspeed devices, 125 microsecond units)
1214 * to poll for transfers. After the URB has been submitted, the interval
1215 * field reflects how the transfer was actually scheduled.
1216 * The polling interval may be more frequent than requested.
1217 * For example, some controllers have a maximum interval of 32 milliseconds,
1218 * while others support intervals of up to 1024 milliseconds.
1219 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1220 * endpoints, as well as high speed interrupt endpoints, the encoding of
1221 * the transfer interval in the endpoint descriptor is logarithmic.
1222 * Device drivers must convert that value to linear units themselves.)
1223 *
1224 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1225 * the host controller to schedule the transfer as soon as bandwidth
1226 * utilization allows, and then set start_frame to reflect the actual frame
1227 * selected during submission. Otherwise drivers must specify the start_frame
1228 * and handle the case where the transfer can't begin then. However, drivers
1229 * won't know how bandwidth is currently allocated, and while they can
1230 * find the current frame using usb_get_current_frame_number () they can't
1231 * know the range for that frame number. (Ranges for frame counter values
1232 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1233 *
1234 * Isochronous URBs have a different data transfer model, in part because
1235 * the quality of service is only "best effort". Callers provide specially
1236 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1237 * at the end. Each such packet is an individual ISO transfer. Isochronous
1238 * URBs are normally queued, submitted by drivers to arrange that
1239 * transfers are at least double buffered, and then explicitly resubmitted
1240 * in completion handlers, so
1241 * that data (such as audio or video) streams at as constant a rate as the
1242 * host controller scheduler can support.
1243 *
1244 * Completion Callbacks:
1245 *
1246 * The completion callback is made in_interrupt(), and one of the first
1247 * things that a completion handler should do is check the status field.
1248 * The status field is provided for all URBs. It is used to report
1249 * unlinked URBs, and status for all non-ISO transfers. It should not
1250 * be examined before the URB is returned to the completion handler.
1251 *
1252 * The context field is normally used to link URBs back to the relevant
1253 * driver or request state.
1254 *
1255 * When the completion callback is invoked for non-isochronous URBs, the
1256 * actual_length field tells how many bytes were transferred. This field
1257 * is updated even when the URB terminated with an error or was unlinked.
1258 *
1259 * ISO transfer status is reported in the status and actual_length fields
1260 * of the iso_frame_desc array, and the number of errors is reported in
1261 * error_count. Completion callbacks for ISO transfers will normally
1262 * (re)submit URBs to ensure a constant transfer rate.
1263 *
1264 * Note that even fields marked "public" should not be touched by the driver
1265 * when the urb is owned by the hcd, that is, since the call to
1266 * usb_submit_urb() till the entry into the completion routine.
1267 */
1268 struct urb {
1269 /* private: usb core and host controller only fields in the urb */
1270 struct kref kref; /* reference count of the URB */
1271 void *hcpriv; /* private data for host controller */
1272 atomic_t use_count; /* concurrent submissions counter */
1273 u8 reject; /* submissions will fail */
1274 int unlinked; /* unlink error code */
1275
1276 /* public: documented fields in the urb that can be used by drivers */
1277 struct list_head urb_list; /* list head for use by the urb's
1278 * current owner */
1279 struct list_head anchor_list; /* the URB may be anchored */
1280 struct usb_anchor *anchor;
1281 struct usb_device *dev; /* (in) pointer to associated device */
1282 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1283 unsigned int pipe; /* (in) pipe information */
1284 int status; /* (return) non-ISO status */
1285 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1286 void *transfer_buffer; /* (in) associated data buffer */
1287 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1288 int transfer_buffer_length; /* (in) data buffer length */
1289 int actual_length; /* (return) actual transfer length */
1290 unsigned char *setup_packet; /* (in) setup packet (control only) */
1291 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1292 int start_frame; /* (modify) start frame (ISO) */
1293 int number_of_packets; /* (in) number of ISO packets */
1294 int interval; /* (modify) transfer interval
1295 * (INT/ISO) */
1296 int error_count; /* (return) number of ISO errors */
1297 void *context; /* (in) context for completion */
1298 usb_complete_t complete; /* (in) completion routine */
1299 struct usb_iso_packet_descriptor iso_frame_desc[0];
1300 /* (in) ISO ONLY */
1301 };
1302
1303 /* ----------------------------------------------------------------------- */
1304
1305 /**
1306 * usb_fill_control_urb - initializes a control urb
1307 * @urb: pointer to the urb to initialize.
1308 * @dev: pointer to the struct usb_device for this urb.
1309 * @pipe: the endpoint pipe
1310 * @setup_packet: pointer to the setup_packet buffer
1311 * @transfer_buffer: pointer to the transfer buffer
1312 * @buffer_length: length of the transfer buffer
1313 * @complete_fn: pointer to the usb_complete_t function
1314 * @context: what to set the urb context to.
1315 *
1316 * Initializes a control urb with the proper information needed to submit
1317 * it to a device.
1318 */
1319 static inline void usb_fill_control_urb(struct urb *urb,
1320 struct usb_device *dev,
1321 unsigned int pipe,
1322 unsigned char *setup_packet,
1323 void *transfer_buffer,
1324 int buffer_length,
1325 usb_complete_t complete_fn,
1326 void *context)
1327 {
1328 urb->dev = dev;
1329 urb->pipe = pipe;
1330 urb->setup_packet = setup_packet;
1331 urb->transfer_buffer = transfer_buffer;
1332 urb->transfer_buffer_length = buffer_length;
1333 urb->complete = complete_fn;
1334 urb->context = context;
1335 }
1336
1337 /**
1338 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1339 * @urb: pointer to the urb to initialize.
1340 * @dev: pointer to the struct usb_device for this urb.
1341 * @pipe: the endpoint pipe
1342 * @transfer_buffer: pointer to the transfer buffer
1343 * @buffer_length: length of the transfer buffer
1344 * @complete_fn: pointer to the usb_complete_t function
1345 * @context: what to set the urb context to.
1346 *
1347 * Initializes a bulk urb with the proper information needed to submit it
1348 * to a device.
1349 */
1350 static inline void usb_fill_bulk_urb(struct urb *urb,
1351 struct usb_device *dev,
1352 unsigned int pipe,
1353 void *transfer_buffer,
1354 int buffer_length,
1355 usb_complete_t complete_fn,
1356 void *context)
1357 {
1358 urb->dev = dev;
1359 urb->pipe = pipe;
1360 urb->transfer_buffer = transfer_buffer;
1361 urb->transfer_buffer_length = buffer_length;
1362 urb->complete = complete_fn;
1363 urb->context = context;
1364 }
1365
1366 /**
1367 * usb_fill_int_urb - macro to help initialize a interrupt urb
1368 * @urb: pointer to the urb to initialize.
1369 * @dev: pointer to the struct usb_device for this urb.
1370 * @pipe: the endpoint pipe
1371 * @transfer_buffer: pointer to the transfer buffer
1372 * @buffer_length: length of the transfer buffer
1373 * @complete_fn: pointer to the usb_complete_t function
1374 * @context: what to set the urb context to.
1375 * @interval: what to set the urb interval to, encoded like
1376 * the endpoint descriptor's bInterval value.
1377 *
1378 * Initializes a interrupt urb with the proper information needed to submit
1379 * it to a device.
1380 * Note that high speed interrupt endpoints use a logarithmic encoding of
1381 * the endpoint interval, and express polling intervals in microframes
1382 * (eight per millisecond) rather than in frames (one per millisecond).
1383 */
1384 static inline void usb_fill_int_urb(struct urb *urb,
1385 struct usb_device *dev,
1386 unsigned int pipe,
1387 void *transfer_buffer,
1388 int buffer_length,
1389 usb_complete_t complete_fn,
1390 void *context,
1391 int interval)
1392 {
1393 urb->dev = dev;
1394 urb->pipe = pipe;
1395 urb->transfer_buffer = transfer_buffer;
1396 urb->transfer_buffer_length = buffer_length;
1397 urb->complete = complete_fn;
1398 urb->context = context;
1399 if (dev->speed == USB_SPEED_HIGH)
1400 urb->interval = 1 << (interval - 1);
1401 else
1402 urb->interval = interval;
1403 urb->start_frame = -1;
1404 }
1405
1406 extern void usb_init_urb(struct urb *urb);
1407 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1408 extern void usb_free_urb(struct urb *urb);
1409 #define usb_put_urb usb_free_urb
1410 extern struct urb *usb_get_urb(struct urb *urb);
1411 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1412 extern int usb_unlink_urb(struct urb *urb);
1413 extern void usb_kill_urb(struct urb *urb);
1414 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1415 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1416 extern void usb_unanchor_urb(struct urb *urb);
1417 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1418 unsigned int timeout);
1419
1420 /**
1421 * usb_urb_dir_in - check if an URB describes an IN transfer
1422 * @urb: URB to be checked
1423 *
1424 * Returns 1 if @urb describes an IN transfer (device-to-host),
1425 * otherwise 0.
1426 */
1427 static inline int usb_urb_dir_in(struct urb *urb)
1428 {
1429 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1430 }
1431
1432 /**
1433 * usb_urb_dir_out - check if an URB describes an OUT transfer
1434 * @urb: URB to be checked
1435 *
1436 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1437 * otherwise 0.
1438 */
1439 static inline int usb_urb_dir_out(struct urb *urb)
1440 {
1441 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1442 }
1443
1444 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1445 gfp_t mem_flags, dma_addr_t *dma);
1446 void usb_buffer_free(struct usb_device *dev, size_t size,
1447 void *addr, dma_addr_t dma);
1448
1449 #if 0
1450 struct urb *usb_buffer_map(struct urb *urb);
1451 void usb_buffer_dmasync(struct urb *urb);
1452 void usb_buffer_unmap(struct urb *urb);
1453 #endif
1454
1455 struct scatterlist;
1456 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1457 struct scatterlist *sg, int nents);
1458 #if 0
1459 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1460 struct scatterlist *sg, int n_hw_ents);
1461 #endif
1462 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1463 struct scatterlist *sg, int n_hw_ents);
1464
1465 /*-------------------------------------------------------------------*
1466 * SYNCHRONOUS CALL SUPPORT *
1467 *-------------------------------------------------------------------*/
1468
1469 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1470 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1471 void *data, __u16 size, int timeout);
1472 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1473 void *data, int len, int *actual_length, int timeout);
1474 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1475 void *data, int len, int *actual_length,
1476 int timeout);
1477
1478 /* wrappers around usb_control_msg() for the most common standard requests */
1479 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1480 unsigned char descindex, void *buf, int size);
1481 extern int usb_get_status(struct usb_device *dev,
1482 int type, int target, void *data);
1483 extern int usb_string(struct usb_device *dev, int index,
1484 char *buf, size_t size);
1485
1486 /* wrappers that also update important state inside usbcore */
1487 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1488 extern int usb_reset_configuration(struct usb_device *dev);
1489 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1490
1491 /* this request isn't really synchronous, but it belongs with the others */
1492 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1493
1494 /*
1495 * timeouts, in milliseconds, used for sending/receiving control messages
1496 * they typically complete within a few frames (msec) after they're issued
1497 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1498 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1499 */
1500 #define USB_CTRL_GET_TIMEOUT 5000
1501 #define USB_CTRL_SET_TIMEOUT 5000
1502
1503
1504 /**
1505 * struct usb_sg_request - support for scatter/gather I/O
1506 * @status: zero indicates success, else negative errno
1507 * @bytes: counts bytes transferred.
1508 *
1509 * These requests are initialized using usb_sg_init(), and then are used
1510 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1511 * members of the request object aren't for driver access.
1512 *
1513 * The status and bytecount values are valid only after usb_sg_wait()
1514 * returns. If the status is zero, then the bytecount matches the total
1515 * from the request.
1516 *
1517 * After an error completion, drivers may need to clear a halt condition
1518 * on the endpoint.
1519 */
1520 struct usb_sg_request {
1521 int status;
1522 size_t bytes;
1523
1524 /*
1525 * members below are private: to usbcore,
1526 * and are not provided for driver access!
1527 */
1528 spinlock_t lock;
1529
1530 struct usb_device *dev;
1531 int pipe;
1532 struct scatterlist *sg;
1533 int nents;
1534
1535 int entries;
1536 struct urb **urbs;
1537
1538 int count;
1539 struct completion complete;
1540 };
1541
1542 int usb_sg_init(
1543 struct usb_sg_request *io,
1544 struct usb_device *dev,
1545 unsigned pipe,
1546 unsigned period,
1547 struct scatterlist *sg,
1548 int nents,
1549 size_t length,
1550 gfp_t mem_flags
1551 );
1552 void usb_sg_cancel(struct usb_sg_request *io);
1553 void usb_sg_wait(struct usb_sg_request *io);
1554
1555
1556 /* ----------------------------------------------------------------------- */
1557
1558 /*
1559 * For various legacy reasons, Linux has a small cookie that's paired with
1560 * a struct usb_device to identify an endpoint queue. Queue characteristics
1561 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1562 * an unsigned int encoded as:
1563 *
1564 * - direction: bit 7 (0 = Host-to-Device [Out],
1565 * 1 = Device-to-Host [In] ...
1566 * like endpoint bEndpointAddress)
1567 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1568 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1569 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1570 * 10 = control, 11 = bulk)
1571 *
1572 * Given the device address and endpoint descriptor, pipes are redundant.
1573 */
1574
1575 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1576 /* (yet ... they're the values used by usbfs) */
1577 #define PIPE_ISOCHRONOUS 0
1578 #define PIPE_INTERRUPT 1
1579 #define PIPE_CONTROL 2
1580 #define PIPE_BULK 3
1581
1582 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1583 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1584
1585 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1586 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1587
1588 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1589 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1590 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1591 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1592 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1593
1594 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1595 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1596 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1597 #define usb_settoggle(dev, ep, out, bit) \
1598 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1599 ((bit) << (ep)))
1600
1601
1602 static inline unsigned int __create_pipe(struct usb_device *dev,
1603 unsigned int endpoint)
1604 {
1605 return (dev->devnum << 8) | (endpoint << 15);
1606 }
1607
1608 /* Create various pipes... */
1609 #define usb_sndctrlpipe(dev,endpoint) \
1610 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1611 #define usb_rcvctrlpipe(dev,endpoint) \
1612 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1613 #define usb_sndisocpipe(dev,endpoint) \
1614 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1615 #define usb_rcvisocpipe(dev,endpoint) \
1616 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1617 #define usb_sndbulkpipe(dev,endpoint) \
1618 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1619 #define usb_rcvbulkpipe(dev,endpoint) \
1620 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1621 #define usb_sndintpipe(dev,endpoint) \
1622 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1623 #define usb_rcvintpipe(dev,endpoint) \
1624 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1625
1626 /*-------------------------------------------------------------------------*/
1627
1628 static inline __u16
1629 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1630 {
1631 struct usb_host_endpoint *ep;
1632 unsigned epnum = usb_pipeendpoint(pipe);
1633
1634 if (is_out) {
1635 WARN_ON(usb_pipein(pipe));
1636 ep = udev->ep_out[epnum];
1637 } else {
1638 WARN_ON(usb_pipeout(pipe));
1639 ep = udev->ep_in[epnum];
1640 }
1641 if (!ep)
1642 return 0;
1643
1644 /* NOTE: only 0x07ff bits are for packet size... */
1645 return le16_to_cpu(ep->desc.wMaxPacketSize);
1646 }
1647
1648 /* ----------------------------------------------------------------------- */
1649
1650 /* Events from the usb core */
1651 #define USB_DEVICE_ADD 0x0001
1652 #define USB_DEVICE_REMOVE 0x0002
1653 #define USB_BUS_ADD 0x0003
1654 #define USB_BUS_REMOVE 0x0004
1655 extern void usb_register_notify(struct notifier_block *nb);
1656 extern void usb_unregister_notify(struct notifier_block *nb);
1657
1658 #ifdef DEBUG
1659 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1660 __FILE__ , ## arg)
1661 #else
1662 #define dbg(format, arg...) do {} while (0)
1663 #endif
1664
1665 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1666 __FILE__ , ## arg)
1667 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1668 __FILE__ , ## arg)
1669 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1670 __FILE__ , ## arg)
1671
1672
1673 #endif /* __KERNEL__ */
1674
1675 #endif