rename generic_setattr
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / slub_def.h
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
3
4 /*
5 * SLUB : A Slab allocator without object queues.
6 *
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 #include <linux/kmemtrace.h>
14 #include <linux/kmemleak.h>
15
16 enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 FREE_SLAB, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK, /* Number of times fallback was necessary */
35 NR_SLUB_STAT_ITEMS };
36
37 struct kmem_cache_cpu {
38 void **freelist; /* Pointer to first free per cpu object */
39 struct page *page; /* The slab from which we are allocating */
40 int node; /* The node of the page (or -1 for debug) */
41 #ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43 #endif
44 };
45
46 struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
49 struct list_head partial;
50 #ifdef CONFIG_SLUB_DEBUG
51 atomic_long_t nr_slabs;
52 atomic_long_t total_objects;
53 struct list_head full;
54 #endif
55 };
56
57 /*
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
61 */
62 struct kmem_cache_order_objects {
63 unsigned long x;
64 };
65
66 /*
67 * Slab cache management.
68 */
69 struct kmem_cache {
70 struct kmem_cache_cpu *cpu_slab;
71 /* Used for retriving partial slabs etc */
72 unsigned long flags;
73 int size; /* The size of an object including meta data */
74 int objsize; /* The size of an object without meta data */
75 int offset; /* Free pointer offset. */
76 struct kmem_cache_order_objects oo;
77
78 /* Allocation and freeing of slabs */
79 struct kmem_cache_order_objects max;
80 struct kmem_cache_order_objects min;
81 gfp_t allocflags; /* gfp flags to use on each alloc */
82 int refcount; /* Refcount for slab cache destroy */
83 void (*ctor)(void *);
84 int inuse; /* Offset to metadata */
85 int align; /* Alignment */
86 unsigned long min_partial;
87 const char *name; /* Name (only for display!) */
88 struct list_head list; /* List of slab caches */
89 #ifdef CONFIG_SLUB_DEBUG
90 struct kobject kobj; /* For sysfs */
91 #endif
92
93 #ifdef CONFIG_NUMA
94 /*
95 * Defragmentation by allocating from a remote node.
96 */
97 int remote_node_defrag_ratio;
98 struct kmem_cache_node *node[MAX_NUMNODES];
99 #else
100 /* Avoid an extra cache line for UP */
101 struct kmem_cache_node local_node;
102 #endif
103 };
104
105 /*
106 * Kmalloc subsystem.
107 */
108 #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
109 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
110 #else
111 #define KMALLOC_MIN_SIZE 8
112 #endif
113
114 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
115
116 #ifndef ARCH_KMALLOC_MINALIGN
117 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
118 #endif
119
120 #ifndef ARCH_SLAB_MINALIGN
121 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
122 #endif
123
124 /*
125 * Maximum kmalloc object size handled by SLUB. Larger object allocations
126 * are passed through to the page allocator. The page allocator "fastpath"
127 * is relatively slow so we need this value sufficiently high so that
128 * performance critical objects are allocated through the SLUB fastpath.
129 *
130 * This should be dropped to PAGE_SIZE / 2 once the page allocator
131 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 */
133 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
134
135 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
136
137 #ifdef CONFIG_ZONE_DMA
138 #define SLUB_DMA __GFP_DMA
139 /* Reserve extra caches for potential DMA use */
140 #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
141 #else
142 /* Disable DMA functionality */
143 #define SLUB_DMA (__force gfp_t)0
144 #define KMALLOC_CACHES SLUB_PAGE_SHIFT
145 #endif
146
147 /*
148 * We keep the general caches in an array of slab caches that are used for
149 * 2^x bytes of allocations.
150 */
151 extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
152
153 /*
154 * Sorry that the following has to be that ugly but some versions of GCC
155 * have trouble with constant propagation and loops.
156 */
157 static __always_inline int kmalloc_index(size_t size)
158 {
159 if (!size)
160 return 0;
161
162 if (size <= KMALLOC_MIN_SIZE)
163 return KMALLOC_SHIFT_LOW;
164
165 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
166 return 1;
167 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
168 return 2;
169 if (size <= 8) return 3;
170 if (size <= 16) return 4;
171 if (size <= 32) return 5;
172 if (size <= 64) return 6;
173 if (size <= 128) return 7;
174 if (size <= 256) return 8;
175 if (size <= 512) return 9;
176 if (size <= 1024) return 10;
177 if (size <= 2 * 1024) return 11;
178 if (size <= 4 * 1024) return 12;
179 /*
180 * The following is only needed to support architectures with a larger page
181 * size than 4k.
182 */
183 if (size <= 8 * 1024) return 13;
184 if (size <= 16 * 1024) return 14;
185 if (size <= 32 * 1024) return 15;
186 if (size <= 64 * 1024) return 16;
187 if (size <= 128 * 1024) return 17;
188 if (size <= 256 * 1024) return 18;
189 if (size <= 512 * 1024) return 19;
190 if (size <= 1024 * 1024) return 20;
191 if (size <= 2 * 1024 * 1024) return 21;
192 return -1;
193
194 /*
195 * What we really wanted to do and cannot do because of compiler issues is:
196 * int i;
197 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
198 * if (size <= (1 << i))
199 * return i;
200 */
201 }
202
203 /*
204 * Find the slab cache for a given combination of allocation flags and size.
205 *
206 * This ought to end up with a global pointer to the right cache
207 * in kmalloc_caches.
208 */
209 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
210 {
211 int index = kmalloc_index(size);
212
213 if (index == 0)
214 return NULL;
215
216 return &kmalloc_caches[index];
217 }
218
219 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
220 void *__kmalloc(size_t size, gfp_t flags);
221
222 #ifdef CONFIG_TRACING
223 extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
224 #else
225 static __always_inline void *
226 kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
227 {
228 return kmem_cache_alloc(s, gfpflags);
229 }
230 #endif
231
232 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
233 {
234 unsigned int order = get_order(size);
235 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
236
237 kmemleak_alloc(ret, size, 1, flags);
238 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
239
240 return ret;
241 }
242
243 static __always_inline void *kmalloc(size_t size, gfp_t flags)
244 {
245 void *ret;
246
247 if (__builtin_constant_p(size)) {
248 if (size > SLUB_MAX_SIZE)
249 return kmalloc_large(size, flags);
250
251 if (!(flags & SLUB_DMA)) {
252 struct kmem_cache *s = kmalloc_slab(size);
253
254 if (!s)
255 return ZERO_SIZE_PTR;
256
257 ret = kmem_cache_alloc_notrace(s, flags);
258
259 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
260
261 return ret;
262 }
263 }
264 return __kmalloc(size, flags);
265 }
266
267 #ifdef CONFIG_NUMA
268 void *__kmalloc_node(size_t size, gfp_t flags, int node);
269 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
270
271 #ifdef CONFIG_TRACING
272 extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
273 gfp_t gfpflags,
274 int node);
275 #else
276 static __always_inline void *
277 kmem_cache_alloc_node_notrace(struct kmem_cache *s,
278 gfp_t gfpflags,
279 int node)
280 {
281 return kmem_cache_alloc_node(s, gfpflags, node);
282 }
283 #endif
284
285 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
286 {
287 void *ret;
288
289 if (__builtin_constant_p(size) &&
290 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
291 struct kmem_cache *s = kmalloc_slab(size);
292
293 if (!s)
294 return ZERO_SIZE_PTR;
295
296 ret = kmem_cache_alloc_node_notrace(s, flags, node);
297
298 trace_kmalloc_node(_THIS_IP_, ret,
299 size, s->size, flags, node);
300
301 return ret;
302 }
303 return __kmalloc_node(size, flags, node);
304 }
305 #endif
306
307 #endif /* _LINUX_SLUB_DEF_H */