arm64: configs: g12a: Move CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR
[GitHub/LineageOS/G12/android_kernel_amlogic_linux-4.9.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <linux/if_packet.h>
41 #include <net/flow.h>
42
43 /* The interface for checksum offload between the stack and networking drivers
44 * is as follows...
45 *
46 * A. IP checksum related features
47 *
48 * Drivers advertise checksum offload capabilities in the features of a device.
49 * From the stack's point of view these are capabilities offered by the driver,
50 * a driver typically only advertises features that it is capable of offloading
51 * to its device.
52 *
53 * The checksum related features are:
54 *
55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
56 * IP (one's complement) checksum for any combination
57 * of protocols or protocol layering. The checksum is
58 * computed and set in a packet per the CHECKSUM_PARTIAL
59 * interface (see below).
60 *
61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
62 * TCP or UDP packets over IPv4. These are specifically
63 * unencapsulated packets of the form IPv4|TCP or
64 * IPv4|UDP where the Protocol field in the IPv4 header
65 * is TCP or UDP. The IPv4 header may contain IP options
66 * This feature cannot be set in features for a device
67 * with NETIF_F_HW_CSUM also set. This feature is being
68 * DEPRECATED (see below).
69 *
70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
71 * TCP or UDP packets over IPv6. These are specifically
72 * unencapsulated packets of the form IPv6|TCP or
73 * IPv4|UDP where the Next Header field in the IPv6
74 * header is either TCP or UDP. IPv6 extension headers
75 * are not supported with this feature. This feature
76 * cannot be set in features for a device with
77 * NETIF_F_HW_CSUM also set. This feature is being
78 * DEPRECATED (see below).
79 *
80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
81 * This flag is used only used to disable the RX checksum
82 * feature for a device. The stack will accept receive
83 * checksum indication in packets received on a device
84 * regardless of whether NETIF_F_RXCSUM is set.
85 *
86 * B. Checksumming of received packets by device. Indication of checksum
87 * verification is in set skb->ip_summed. Possible values are:
88 *
89 * CHECKSUM_NONE:
90 *
91 * Device did not checksum this packet e.g. due to lack of capabilities.
92 * The packet contains full (though not verified) checksum in packet but
93 * not in skb->csum. Thus, skb->csum is undefined in this case.
94 *
95 * CHECKSUM_UNNECESSARY:
96 *
97 * The hardware you're dealing with doesn't calculate the full checksum
98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
100 * if their checksums are okay. skb->csum is still undefined in this case
101 * though. A driver or device must never modify the checksum field in the
102 * packet even if checksum is verified.
103 *
104 * CHECKSUM_UNNECESSARY is applicable to following protocols:
105 * TCP: IPv6 and IPv4.
106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
107 * zero UDP checksum for either IPv4 or IPv6, the networking stack
108 * may perform further validation in this case.
109 * GRE: only if the checksum is present in the header.
110 * SCTP: indicates the CRC in SCTP header has been validated.
111 *
112 * skb->csum_level indicates the number of consecutive checksums found in
113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
115 * and a device is able to verify the checksums for UDP (possibly zero),
116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
117 * two. If the device were only able to verify the UDP checksum and not
118 * GRE, either because it doesn't support GRE checksum of because GRE
119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
120 * not considered in this case).
121 *
122 * CHECKSUM_COMPLETE:
123 *
124 * This is the most generic way. The device supplied checksum of the _whole_
125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
126 * hardware doesn't need to parse L3/L4 headers to implement this.
127 *
128 * Note: Even if device supports only some protocols, but is able to produce
129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
130 *
131 * CHECKSUM_PARTIAL:
132 *
133 * A checksum is set up to be offloaded to a device as described in the
134 * output description for CHECKSUM_PARTIAL. This may occur on a packet
135 * received directly from another Linux OS, e.g., a virtualized Linux kernel
136 * on the same host, or it may be set in the input path in GRO or remote
137 * checksum offload. For the purposes of checksum verification, the checksum
138 * referred to by skb->csum_start + skb->csum_offset and any preceding
139 * checksums in the packet are considered verified. Any checksums in the
140 * packet that are after the checksum being offloaded are not considered to
141 * be verified.
142 *
143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144 * in the skb->ip_summed for a packet. Values are:
145 *
146 * CHECKSUM_PARTIAL:
147 *
148 * The driver is required to checksum the packet as seen by hard_start_xmit()
149 * from skb->csum_start up to the end, and to record/write the checksum at
150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
151 * csum_start and csum_offset values are valid values given the length and
152 * offset of the packet, however they should not attempt to validate that the
153 * checksum refers to a legitimate transport layer checksum-- it is the
154 * purview of the stack to validate that csum_start and csum_offset are set
155 * correctly.
156 *
157 * When the stack requests checksum offload for a packet, the driver MUST
158 * ensure that the checksum is set correctly. A driver can either offload the
159 * checksum calculation to the device, or call skb_checksum_help (in the case
160 * that the device does not support offload for a particular checksum).
161 *
162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164 * checksum offload capability. If a device has limited checksum capabilities
165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
166 * described above) a helper function can be called to resolve
167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
168 * function takes a spec argument that describes the protocol layer that is
169 * supported for checksum offload and can be called for each packet. If a
170 * packet does not match the specification for offload, skb_checksum_help
171 * is called to resolve the checksum.
172 *
173 * CHECKSUM_NONE:
174 *
175 * The skb was already checksummed by the protocol, or a checksum is not
176 * required.
177 *
178 * CHECKSUM_UNNECESSARY:
179 *
180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
181 * output.
182 *
183 * CHECKSUM_COMPLETE:
184 * Not used in checksum output. If a driver observes a packet with this value
185 * set in skbuff, if should treat as CHECKSUM_NONE being set.
186 *
187 * D. Non-IP checksum (CRC) offloads
188 *
189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
190 * offloading the SCTP CRC in a packet. To perform this offload the stack
191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
192 * accordingly. Note the there is no indication in the skbuff that the
193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
194 * both IP checksum offload and SCTP CRC offload must verify which offload
195 * is configured for a packet presumably by inspecting packet headers.
196 *
197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
198 * offloading the FCOE CRC in a packet. To perform this offload the stack
199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
200 * accordingly. Note the there is no indication in the skbuff that the
201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
202 * both IP checksum offload and FCOE CRC offload must verify which offload
203 * is configured for a packet presumably by inspecting packet headers.
204 *
205 * E. Checksumming on output with GSO.
206 *
207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
210 * part of the GSO operation is implied. If a checksum is being offloaded
211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
212 * are set to refer to the outermost checksum being offload (two offloaded
213 * checksums are possible with UDP encapsulation).
214 */
215
216 /* Don't change this without changing skb_csum_unnecessary! */
217 #define CHECKSUM_NONE 0
218 #define CHECKSUM_UNNECESSARY 1
219 #define CHECKSUM_COMPLETE 2
220 #define CHECKSUM_PARTIAL 3
221
222 /* Maximum value in skb->csum_level */
223 #define SKB_MAX_CSUM_LEVEL 3
224
225 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
226 #define SKB_WITH_OVERHEAD(X) \
227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
228 #define SKB_MAX_ORDER(X, ORDER) \
229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
230 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
231 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
232
233 /* return minimum truesize of one skb containing X bytes of data */
234 #define SKB_TRUESIZE(X) ((X) + \
235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
237
238 struct net_device;
239 struct scatterlist;
240 struct pipe_inode_info;
241 struct iov_iter;
242 struct napi_struct;
243
244 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
245 struct nf_conntrack {
246 atomic_t use;
247 };
248 #endif
249
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 atomic_t use;
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277 };
278 #endif
279
280 struct sk_buff_head {
281 /* These two members must be first. */
282 struct sk_buff *next;
283 struct sk_buff *prev;
284
285 __u32 qlen;
286 spinlock_t lock;
287 };
288
289 struct sk_buff;
290
291 /* To allow 64K frame to be packed as single skb without frag_list we
292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
293 * buffers which do not start on a page boundary.
294 *
295 * Since GRO uses frags we allocate at least 16 regardless of page
296 * size.
297 */
298 #if (65536/PAGE_SIZE + 1) < 16
299 #define MAX_SKB_FRAGS 16UL
300 #else
301 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
302 #endif
303 extern int sysctl_max_skb_frags;
304
305 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
306 * segment using its current segmentation instead.
307 */
308 #define GSO_BY_FRAGS 0xFFFF
309
310 typedef struct skb_frag_struct skb_frag_t;
311
312 struct skb_frag_struct {
313 struct {
314 struct page *p;
315 } page;
316 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
317 __u32 page_offset;
318 __u32 size;
319 #else
320 __u16 page_offset;
321 __u16 size;
322 #endif
323 };
324
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 return frag->size;
328 }
329
330 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
331 {
332 frag->size = size;
333 }
334
335 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
336 {
337 frag->size += delta;
338 }
339
340 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
341 {
342 frag->size -= delta;
343 }
344
345 #define HAVE_HW_TIME_STAMP
346
347 /**
348 * struct skb_shared_hwtstamps - hardware time stamps
349 * @hwtstamp: hardware time stamp transformed into duration
350 * since arbitrary point in time
351 *
352 * Software time stamps generated by ktime_get_real() are stored in
353 * skb->tstamp.
354 *
355 * hwtstamps can only be compared against other hwtstamps from
356 * the same device.
357 *
358 * This structure is attached to packets as part of the
359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
360 */
361 struct skb_shared_hwtstamps {
362 ktime_t hwtstamp;
363 };
364
365 /* Definitions for tx_flags in struct skb_shared_info */
366 enum {
367 /* generate hardware time stamp */
368 SKBTX_HW_TSTAMP = 1 << 0,
369
370 /* generate software time stamp when queueing packet to NIC */
371 SKBTX_SW_TSTAMP = 1 << 1,
372
373 /* device driver is going to provide hardware time stamp */
374 SKBTX_IN_PROGRESS = 1 << 2,
375
376 /* device driver supports TX zero-copy buffers */
377 SKBTX_DEV_ZEROCOPY = 1 << 3,
378
379 /* generate wifi status information (where possible) */
380 SKBTX_WIFI_STATUS = 1 << 4,
381
382 /* This indicates at least one fragment might be overwritten
383 * (as in vmsplice(), sendfile() ...)
384 * If we need to compute a TX checksum, we'll need to copy
385 * all frags to avoid possible bad checksum
386 */
387 SKBTX_SHARED_FRAG = 1 << 5,
388
389 /* generate software time stamp when entering packet scheduling */
390 SKBTX_SCHED_TSTAMP = 1 << 6,
391 };
392
393 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
394 SKBTX_SCHED_TSTAMP)
395 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
396
397 /*
398 * The callback notifies userspace to release buffers when skb DMA is done in
399 * lower device, the skb last reference should be 0 when calling this.
400 * The zerocopy_success argument is true if zero copy transmit occurred,
401 * false on data copy or out of memory error caused by data copy attempt.
402 * The ctx field is used to track device context.
403 * The desc field is used to track userspace buffer index.
404 */
405 struct ubuf_info {
406 void (*callback)(struct ubuf_info *, bool zerocopy_success);
407 void *ctx;
408 unsigned long desc;
409 };
410
411 /* This data is invariant across clones and lives at
412 * the end of the header data, ie. at skb->end.
413 */
414 struct skb_shared_info {
415 unsigned char nr_frags;
416 __u8 tx_flags;
417 unsigned short gso_size;
418 /* Warning: this field is not always filled in (UFO)! */
419 unsigned short gso_segs;
420 unsigned short gso_type;
421 struct sk_buff *frag_list;
422 struct skb_shared_hwtstamps hwtstamps;
423 u32 tskey;
424 __be32 ip6_frag_id;
425
426 /*
427 * Warning : all fields before dataref are cleared in __alloc_skb()
428 */
429 atomic_t dataref;
430
431 /* Intermediate layers must ensure that destructor_arg
432 * remains valid until skb destructor */
433 void * destructor_arg;
434
435 /* must be last field, see pskb_expand_head() */
436 skb_frag_t frags[MAX_SKB_FRAGS];
437 };
438
439 /* We divide dataref into two halves. The higher 16 bits hold references
440 * to the payload part of skb->data. The lower 16 bits hold references to
441 * the entire skb->data. A clone of a headerless skb holds the length of
442 * the header in skb->hdr_len.
443 *
444 * All users must obey the rule that the skb->data reference count must be
445 * greater than or equal to the payload reference count.
446 *
447 * Holding a reference to the payload part means that the user does not
448 * care about modifications to the header part of skb->data.
449 */
450 #define SKB_DATAREF_SHIFT 16
451 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
452
453
454 enum {
455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
458 };
459
460 enum {
461 SKB_GSO_TCPV4 = 1 << 0,
462 SKB_GSO_UDP = 1 << 1,
463
464 /* This indicates the skb is from an untrusted source. */
465 SKB_GSO_DODGY = 1 << 2,
466
467 /* This indicates the tcp segment has CWR set. */
468 SKB_GSO_TCP_ECN = 1 << 3,
469
470 SKB_GSO_TCP_FIXEDID = 1 << 4,
471
472 SKB_GSO_TCPV6 = 1 << 5,
473
474 SKB_GSO_FCOE = 1 << 6,
475
476 SKB_GSO_GRE = 1 << 7,
477
478 SKB_GSO_GRE_CSUM = 1 << 8,
479
480 SKB_GSO_IPXIP4 = 1 << 9,
481
482 SKB_GSO_IPXIP6 = 1 << 10,
483
484 SKB_GSO_UDP_TUNNEL = 1 << 11,
485
486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
487
488 SKB_GSO_PARTIAL = 1 << 13,
489
490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
491
492 SKB_GSO_SCTP = 1 << 15,
493 };
494
495 #if BITS_PER_LONG > 32
496 #define NET_SKBUFF_DATA_USES_OFFSET 1
497 #endif
498
499 #ifdef NET_SKBUFF_DATA_USES_OFFSET
500 typedef unsigned int sk_buff_data_t;
501 #else
502 typedef unsigned char *sk_buff_data_t;
503 #endif
504
505 /**
506 * struct skb_mstamp - multi resolution time stamps
507 * @stamp_us: timestamp in us resolution
508 * @stamp_jiffies: timestamp in jiffies
509 */
510 struct skb_mstamp {
511 union {
512 u64 v64;
513 struct {
514 u32 stamp_us;
515 u32 stamp_jiffies;
516 };
517 };
518 };
519
520 /**
521 * skb_mstamp_get - get current timestamp
522 * @cl: place to store timestamps
523 */
524 static inline void skb_mstamp_get(struct skb_mstamp *cl)
525 {
526 u64 val = local_clock();
527
528 do_div(val, NSEC_PER_USEC);
529 cl->stamp_us = (u32)val;
530 cl->stamp_jiffies = (u32)jiffies;
531 }
532
533 /**
534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
535 * @t1: pointer to newest sample
536 * @t0: pointer to oldest sample
537 */
538 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
539 const struct skb_mstamp *t0)
540 {
541 s32 delta_us = t1->stamp_us - t0->stamp_us;
542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
543
544 /* If delta_us is negative, this might be because interval is too big,
545 * or local_clock() drift is too big : fallback using jiffies.
546 */
547 if (delta_us <= 0 ||
548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
549
550 delta_us = jiffies_to_usecs(delta_jiffies);
551
552 return delta_us;
553 }
554
555 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
556 const struct skb_mstamp *t0)
557 {
558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
559
560 if (!diff)
561 diff = t1->stamp_us - t0->stamp_us;
562 return diff > 0;
563 }
564
565 /**
566 * struct sk_buff - socket buffer
567 * @next: Next buffer in list
568 * @prev: Previous buffer in list
569 * @tstamp: Time we arrived/left
570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
571 * @sk: Socket we are owned by
572 * @dev: Device we arrived on/are leaving by
573 * @cb: Control buffer. Free for use by every layer. Put private vars here
574 * @_skb_refdst: destination entry (with norefcount bit)
575 * @sp: the security path, used for xfrm
576 * @len: Length of actual data
577 * @data_len: Data length
578 * @mac_len: Length of link layer header
579 * @hdr_len: writable header length of cloned skb
580 * @csum: Checksum (must include start/offset pair)
581 * @csum_start: Offset from skb->head where checksumming should start
582 * @csum_offset: Offset from csum_start where checksum should be stored
583 * @priority: Packet queueing priority
584 * @ignore_df: allow local fragmentation
585 * @cloned: Head may be cloned (check refcnt to be sure)
586 * @ip_summed: Driver fed us an IP checksum
587 * @nohdr: Payload reference only, must not modify header
588 * @nfctinfo: Relationship of this skb to the connection
589 * @pkt_type: Packet class
590 * @fclone: skbuff clone status
591 * @ipvs_property: skbuff is owned by ipvs
592 * @peeked: this packet has been seen already, so stats have been
593 * done for it, don't do them again
594 * @nf_trace: netfilter packet trace flag
595 * @protocol: Packet protocol from driver
596 * @destructor: Destruct function
597 * @nfct: Associated connection, if any
598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
599 * @skb_iif: ifindex of device we arrived on
600 * @tc_index: Traffic control index
601 * @tc_verd: traffic control verdict
602 * @hash: the packet hash
603 * @queue_mapping: Queue mapping for multiqueue devices
604 * @xmit_more: More SKBs are pending for this queue
605 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
606 * @ndisc_nodetype: router type (from link layer)
607 * @ooo_okay: allow the mapping of a socket to a queue to be changed
608 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
609 * ports.
610 * @sw_hash: indicates hash was computed in software stack
611 * @wifi_acked_valid: wifi_acked was set
612 * @wifi_acked: whether frame was acked on wifi or not
613 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
614 * @napi_id: id of the NAPI struct this skb came from
615 * @secmark: security marking
616 * @mark: Generic packet mark
617 * @vlan_proto: vlan encapsulation protocol
618 * @vlan_tci: vlan tag control information
619 * @inner_protocol: Protocol (encapsulation)
620 * @inner_transport_header: Inner transport layer header (encapsulation)
621 * @inner_network_header: Network layer header (encapsulation)
622 * @inner_mac_header: Link layer header (encapsulation)
623 * @transport_header: Transport layer header
624 * @network_header: Network layer header
625 * @mac_header: Link layer header
626 * @tail: Tail pointer
627 * @end: End pointer
628 * @head: Head of buffer
629 * @data: Data head pointer
630 * @truesize: Buffer size
631 * @users: User count - see {datagram,tcp}.c
632 */
633
634 struct sk_buff {
635 union {
636 struct {
637 /* These two members must be first. */
638 struct sk_buff *next;
639 struct sk_buff *prev;
640
641 union {
642 ktime_t tstamp;
643 struct skb_mstamp skb_mstamp;
644 };
645 };
646 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
647 };
648
649 union {
650 struct sock *sk;
651 int ip_defrag_offset;
652 };
653
654 struct net_device *dev;
655
656 /*
657 * This is the control buffer. It is free to use for every
658 * layer. Please put your private variables there. If you
659 * want to keep them across layers you have to do a skb_clone()
660 * first. This is owned by whoever has the skb queued ATM.
661 */
662 char cb[48] __aligned(8);
663
664 unsigned long _skb_refdst;
665 void (*destructor)(struct sk_buff *skb);
666 #ifdef CONFIG_XFRM
667 struct sec_path *sp;
668 #endif
669 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
670 struct nf_conntrack *nfct;
671 #endif
672 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
673 struct nf_bridge_info *nf_bridge;
674 #endif
675 unsigned int len,
676 data_len;
677 __u16 mac_len,
678 hdr_len;
679
680 /* Following fields are _not_ copied in __copy_skb_header()
681 * Note that queue_mapping is here mostly to fill a hole.
682 */
683 kmemcheck_bitfield_begin(flags1);
684 __u16 queue_mapping;
685
686 /* if you move cloned around you also must adapt those constants */
687 #ifdef __BIG_ENDIAN_BITFIELD
688 #define CLONED_MASK (1 << 7)
689 #else
690 #define CLONED_MASK 1
691 #endif
692 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
693
694 __u8 __cloned_offset[0];
695 __u8 cloned:1,
696 nohdr:1,
697 fclone:2,
698 peeked:1,
699 head_frag:1,
700 xmit_more:1,
701 pfmemalloc:1;
702 kmemcheck_bitfield_end(flags1);
703
704 /* fields enclosed in headers_start/headers_end are copied
705 * using a single memcpy() in __copy_skb_header()
706 */
707 /* private: */
708 __u32 headers_start[0];
709 /* public: */
710
711 /* if you move pkt_type around you also must adapt those constants */
712 #ifdef __BIG_ENDIAN_BITFIELD
713 #define PKT_TYPE_MAX (7 << 5)
714 #else
715 #define PKT_TYPE_MAX 7
716 #endif
717 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
718
719 __u8 __pkt_type_offset[0];
720 __u8 pkt_type:3;
721 __u8 ignore_df:1;
722 __u8 nfctinfo:3;
723 __u8 nf_trace:1;
724
725 __u8 ip_summed:2;
726 __u8 ooo_okay:1;
727 __u8 l4_hash:1;
728 __u8 sw_hash:1;
729 __u8 wifi_acked_valid:1;
730 __u8 wifi_acked:1;
731 __u8 no_fcs:1;
732
733 /* Indicates the inner headers are valid in the skbuff. */
734 __u8 encapsulation:1;
735 __u8 encap_hdr_csum:1;
736 __u8 csum_valid:1;
737 __u8 csum_complete_sw:1;
738 __u8 csum_level:2;
739 __u8 csum_bad:1;
740 #ifdef CONFIG_IPV6_NDISC_NODETYPE
741 __u8 ndisc_nodetype:2;
742 #endif
743 __u8 ipvs_property:1;
744
745 __u8 inner_protocol_type:1;
746 __u8 remcsum_offload:1;
747 #ifdef CONFIG_NET_SWITCHDEV
748 __u8 offload_fwd_mark:1;
749 #endif
750 /* 2, 4 or 5 bit hole */
751
752 #ifdef CONFIG_NET_SCHED
753 __u16 tc_index; /* traffic control index */
754 #ifdef CONFIG_NET_CLS_ACT
755 __u16 tc_verd; /* traffic control verdict */
756 #endif
757 #endif
758
759 union {
760 __wsum csum;
761 struct {
762 __u16 csum_start;
763 __u16 csum_offset;
764 };
765 };
766 __u32 priority;
767 int skb_iif;
768 __u32 hash;
769 __be16 vlan_proto;
770 __u16 vlan_tci;
771 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
772 union {
773 unsigned int napi_id;
774 unsigned int sender_cpu;
775 };
776 #endif
777 #ifdef CONFIG_NETWORK_SECMARK
778 __u32 secmark;
779 #endif
780
781 union {
782 __u32 mark;
783 __u32 reserved_tailroom;
784 };
785
786 union {
787 __be16 inner_protocol;
788 __u8 inner_ipproto;
789 };
790
791 __u16 inner_transport_header;
792 __u16 inner_network_header;
793 __u16 inner_mac_header;
794
795 __be16 protocol;
796 __u16 transport_header;
797 __u16 network_header;
798 __u16 mac_header;
799
800 /* private: */
801 __u32 headers_end[0];
802 /* public: */
803
804 /* These elements must be at the end, see alloc_skb() for details. */
805 sk_buff_data_t tail;
806 sk_buff_data_t end;
807 unsigned char *head,
808 *data;
809 unsigned int truesize;
810 atomic_t users;
811 };
812
813 #ifdef __KERNEL__
814 /*
815 * Handling routines are only of interest to the kernel
816 */
817 #include <linux/slab.h>
818
819
820 #define SKB_ALLOC_FCLONE 0x01
821 #define SKB_ALLOC_RX 0x02
822 #define SKB_ALLOC_NAPI 0x04
823
824 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
825 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
826 {
827 return unlikely(skb->pfmemalloc);
828 }
829
830 /*
831 * skb might have a dst pointer attached, refcounted or not.
832 * _skb_refdst low order bit is set if refcount was _not_ taken
833 */
834 #define SKB_DST_NOREF 1UL
835 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
836
837 /**
838 * skb_dst - returns skb dst_entry
839 * @skb: buffer
840 *
841 * Returns skb dst_entry, regardless of reference taken or not.
842 */
843 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
844 {
845 /* If refdst was not refcounted, check we still are in a
846 * rcu_read_lock section
847 */
848 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
849 !rcu_read_lock_held() &&
850 !rcu_read_lock_bh_held());
851 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
852 }
853
854 /**
855 * skb_dst_set - sets skb dst
856 * @skb: buffer
857 * @dst: dst entry
858 *
859 * Sets skb dst, assuming a reference was taken on dst and should
860 * be released by skb_dst_drop()
861 */
862 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
863 {
864 skb->_skb_refdst = (unsigned long)dst;
865 }
866
867 /**
868 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
869 * @skb: buffer
870 * @dst: dst entry
871 *
872 * Sets skb dst, assuming a reference was not taken on dst.
873 * If dst entry is cached, we do not take reference and dst_release
874 * will be avoided by refdst_drop. If dst entry is not cached, we take
875 * reference, so that last dst_release can destroy the dst immediately.
876 */
877 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
878 {
879 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
880 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
881 }
882
883 /**
884 * skb_dst_is_noref - Test if skb dst isn't refcounted
885 * @skb: buffer
886 */
887 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
888 {
889 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
890 }
891
892 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
893 {
894 return (struct rtable *)skb_dst(skb);
895 }
896
897 /* For mangling skb->pkt_type from user space side from applications
898 * such as nft, tc, etc, we only allow a conservative subset of
899 * possible pkt_types to be set.
900 */
901 static inline bool skb_pkt_type_ok(u32 ptype)
902 {
903 return ptype <= PACKET_OTHERHOST;
904 }
905
906 void kfree_skb(struct sk_buff *skb);
907 void kfree_skb_list(struct sk_buff *segs);
908 void skb_tx_error(struct sk_buff *skb);
909 void consume_skb(struct sk_buff *skb);
910 void __kfree_skb(struct sk_buff *skb);
911 extern struct kmem_cache *skbuff_head_cache;
912
913 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
914 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
915 bool *fragstolen, int *delta_truesize);
916
917 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
918 int node);
919 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
920 struct sk_buff *build_skb(void *data, unsigned int frag_size);
921 static inline struct sk_buff *alloc_skb(unsigned int size,
922 gfp_t priority)
923 {
924 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
925 }
926
927 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
928 unsigned long data_len,
929 int max_page_order,
930 int *errcode,
931 gfp_t gfp_mask);
932
933 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
934 struct sk_buff_fclones {
935 struct sk_buff skb1;
936
937 struct sk_buff skb2;
938
939 atomic_t fclone_ref;
940 };
941
942 /**
943 * skb_fclone_busy - check if fclone is busy
944 * @sk: socket
945 * @skb: buffer
946 *
947 * Returns true if skb is a fast clone, and its clone is not freed.
948 * Some drivers call skb_orphan() in their ndo_start_xmit(),
949 * so we also check that this didnt happen.
950 */
951 static inline bool skb_fclone_busy(const struct sock *sk,
952 const struct sk_buff *skb)
953 {
954 const struct sk_buff_fclones *fclones;
955
956 fclones = container_of(skb, struct sk_buff_fclones, skb1);
957
958 return skb->fclone == SKB_FCLONE_ORIG &&
959 atomic_read(&fclones->fclone_ref) > 1 &&
960 fclones->skb2.sk == sk;
961 }
962
963 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
964 gfp_t priority)
965 {
966 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
967 }
968
969 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
970 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
971 {
972 return __alloc_skb_head(priority, -1);
973 }
974
975 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
976 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
977 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
978 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
979 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
980 gfp_t gfp_mask, bool fclone);
981 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
982 gfp_t gfp_mask)
983 {
984 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
985 }
986
987 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
988 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
989 unsigned int headroom);
990 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
991 int newtailroom, gfp_t priority);
992 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
993 int offset, int len);
994 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
995 int offset, int len);
996 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
997 int skb_pad(struct sk_buff *skb, int pad);
998 #define dev_kfree_skb(a) consume_skb(a)
999
1000 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1001 int getfrag(void *from, char *to, int offset,
1002 int len, int odd, struct sk_buff *skb),
1003 void *from, int length);
1004
1005 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1006 int offset, size_t size);
1007
1008 struct skb_seq_state {
1009 __u32 lower_offset;
1010 __u32 upper_offset;
1011 __u32 frag_idx;
1012 __u32 stepped_offset;
1013 struct sk_buff *root_skb;
1014 struct sk_buff *cur_skb;
1015 __u8 *frag_data;
1016 };
1017
1018 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1019 unsigned int to, struct skb_seq_state *st);
1020 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1021 struct skb_seq_state *st);
1022 void skb_abort_seq_read(struct skb_seq_state *st);
1023
1024 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1025 unsigned int to, struct ts_config *config);
1026
1027 /*
1028 * Packet hash types specify the type of hash in skb_set_hash.
1029 *
1030 * Hash types refer to the protocol layer addresses which are used to
1031 * construct a packet's hash. The hashes are used to differentiate or identify
1032 * flows of the protocol layer for the hash type. Hash types are either
1033 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1034 *
1035 * Properties of hashes:
1036 *
1037 * 1) Two packets in different flows have different hash values
1038 * 2) Two packets in the same flow should have the same hash value
1039 *
1040 * A hash at a higher layer is considered to be more specific. A driver should
1041 * set the most specific hash possible.
1042 *
1043 * A driver cannot indicate a more specific hash than the layer at which a hash
1044 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1045 *
1046 * A driver may indicate a hash level which is less specific than the
1047 * actual layer the hash was computed on. For instance, a hash computed
1048 * at L4 may be considered an L3 hash. This should only be done if the
1049 * driver can't unambiguously determine that the HW computed the hash at
1050 * the higher layer. Note that the "should" in the second property above
1051 * permits this.
1052 */
1053 enum pkt_hash_types {
1054 PKT_HASH_TYPE_NONE, /* Undefined type */
1055 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1056 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1057 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1058 };
1059
1060 static inline void skb_clear_hash(struct sk_buff *skb)
1061 {
1062 skb->hash = 0;
1063 skb->sw_hash = 0;
1064 skb->l4_hash = 0;
1065 }
1066
1067 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1068 {
1069 if (!skb->l4_hash)
1070 skb_clear_hash(skb);
1071 }
1072
1073 static inline void
1074 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1075 {
1076 skb->l4_hash = is_l4;
1077 skb->sw_hash = is_sw;
1078 skb->hash = hash;
1079 }
1080
1081 static inline void
1082 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1083 {
1084 /* Used by drivers to set hash from HW */
1085 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1086 }
1087
1088 static inline void
1089 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1090 {
1091 __skb_set_hash(skb, hash, true, is_l4);
1092 }
1093
1094 void __skb_get_hash(struct sk_buff *skb);
1095 u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1096 u32 skb_get_poff(const struct sk_buff *skb);
1097 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1098 const struct flow_keys *keys, int hlen);
1099 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1100 void *data, int hlen_proto);
1101
1102 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1103 int thoff, u8 ip_proto)
1104 {
1105 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1106 }
1107
1108 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1109 const struct flow_dissector_key *key,
1110 unsigned int key_count);
1111
1112 bool __skb_flow_dissect(const struct sk_buff *skb,
1113 struct flow_dissector *flow_dissector,
1114 void *target_container,
1115 void *data, __be16 proto, int nhoff, int hlen,
1116 unsigned int flags);
1117
1118 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1119 struct flow_dissector *flow_dissector,
1120 void *target_container, unsigned int flags)
1121 {
1122 return __skb_flow_dissect(skb, flow_dissector, target_container,
1123 NULL, 0, 0, 0, flags);
1124 }
1125
1126 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1127 struct flow_keys *flow,
1128 unsigned int flags)
1129 {
1130 memset(flow, 0, sizeof(*flow));
1131 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1132 NULL, 0, 0, 0, flags);
1133 }
1134
1135 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1136 void *data, __be16 proto,
1137 int nhoff, int hlen,
1138 unsigned int flags)
1139 {
1140 memset(flow, 0, sizeof(*flow));
1141 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1142 data, proto, nhoff, hlen, flags);
1143 }
1144
1145 static inline __u32 skb_get_hash(struct sk_buff *skb)
1146 {
1147 if (!skb->l4_hash && !skb->sw_hash)
1148 __skb_get_hash(skb);
1149
1150 return skb->hash;
1151 }
1152
1153 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1154
1155 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1156 {
1157 if (!skb->l4_hash && !skb->sw_hash) {
1158 struct flow_keys keys;
1159 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1160
1161 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1162 }
1163
1164 return skb->hash;
1165 }
1166
1167 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1168
1169 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1170 {
1171 if (!skb->l4_hash && !skb->sw_hash) {
1172 struct flow_keys keys;
1173 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1174
1175 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1176 }
1177
1178 return skb->hash;
1179 }
1180
1181 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1182
1183 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1184 {
1185 return skb->hash;
1186 }
1187
1188 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1189 {
1190 to->hash = from->hash;
1191 to->sw_hash = from->sw_hash;
1192 to->l4_hash = from->l4_hash;
1193 };
1194
1195 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1196 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1197 {
1198 return skb->head + skb->end;
1199 }
1200
1201 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1202 {
1203 return skb->end;
1204 }
1205 #else
1206 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1207 {
1208 return skb->end;
1209 }
1210
1211 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1212 {
1213 return skb->end - skb->head;
1214 }
1215 #endif
1216
1217 /* Internal */
1218 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1219
1220 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1221 {
1222 return &skb_shinfo(skb)->hwtstamps;
1223 }
1224
1225 /**
1226 * skb_queue_empty - check if a queue is empty
1227 * @list: queue head
1228 *
1229 * Returns true if the queue is empty, false otherwise.
1230 */
1231 static inline int skb_queue_empty(const struct sk_buff_head *list)
1232 {
1233 return list->next == (const struct sk_buff *) list;
1234 }
1235
1236 /**
1237 * skb_queue_is_last - check if skb is the last entry in the queue
1238 * @list: queue head
1239 * @skb: buffer
1240 *
1241 * Returns true if @skb is the last buffer on the list.
1242 */
1243 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1244 const struct sk_buff *skb)
1245 {
1246 return skb->next == (const struct sk_buff *) list;
1247 }
1248
1249 /**
1250 * skb_queue_is_first - check if skb is the first entry in the queue
1251 * @list: queue head
1252 * @skb: buffer
1253 *
1254 * Returns true if @skb is the first buffer on the list.
1255 */
1256 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1257 const struct sk_buff *skb)
1258 {
1259 return skb->prev == (const struct sk_buff *) list;
1260 }
1261
1262 /**
1263 * skb_queue_next - return the next packet in the queue
1264 * @list: queue head
1265 * @skb: current buffer
1266 *
1267 * Return the next packet in @list after @skb. It is only valid to
1268 * call this if skb_queue_is_last() evaluates to false.
1269 */
1270 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1271 const struct sk_buff *skb)
1272 {
1273 /* This BUG_ON may seem severe, but if we just return then we
1274 * are going to dereference garbage.
1275 */
1276 BUG_ON(skb_queue_is_last(list, skb));
1277 return skb->next;
1278 }
1279
1280 /**
1281 * skb_queue_prev - return the prev packet in the queue
1282 * @list: queue head
1283 * @skb: current buffer
1284 *
1285 * Return the prev packet in @list before @skb. It is only valid to
1286 * call this if skb_queue_is_first() evaluates to false.
1287 */
1288 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1289 const struct sk_buff *skb)
1290 {
1291 /* This BUG_ON may seem severe, but if we just return then we
1292 * are going to dereference garbage.
1293 */
1294 BUG_ON(skb_queue_is_first(list, skb));
1295 return skb->prev;
1296 }
1297
1298 /**
1299 * skb_get - reference buffer
1300 * @skb: buffer to reference
1301 *
1302 * Makes another reference to a socket buffer and returns a pointer
1303 * to the buffer.
1304 */
1305 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1306 {
1307 atomic_inc(&skb->users);
1308 return skb;
1309 }
1310
1311 /*
1312 * If users == 1, we are the only owner and are can avoid redundant
1313 * atomic change.
1314 */
1315
1316 /**
1317 * skb_cloned - is the buffer a clone
1318 * @skb: buffer to check
1319 *
1320 * Returns true if the buffer was generated with skb_clone() and is
1321 * one of multiple shared copies of the buffer. Cloned buffers are
1322 * shared data so must not be written to under normal circumstances.
1323 */
1324 static inline int skb_cloned(const struct sk_buff *skb)
1325 {
1326 return skb->cloned &&
1327 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1328 }
1329
1330 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1331 {
1332 might_sleep_if(gfpflags_allow_blocking(pri));
1333
1334 if (skb_cloned(skb))
1335 return pskb_expand_head(skb, 0, 0, pri);
1336
1337 return 0;
1338 }
1339
1340 /**
1341 * skb_header_cloned - is the header a clone
1342 * @skb: buffer to check
1343 *
1344 * Returns true if modifying the header part of the buffer requires
1345 * the data to be copied.
1346 */
1347 static inline int skb_header_cloned(const struct sk_buff *skb)
1348 {
1349 int dataref;
1350
1351 if (!skb->cloned)
1352 return 0;
1353
1354 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1355 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1356 return dataref != 1;
1357 }
1358
1359 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1360 {
1361 might_sleep_if(gfpflags_allow_blocking(pri));
1362
1363 if (skb_header_cloned(skb))
1364 return pskb_expand_head(skb, 0, 0, pri);
1365
1366 return 0;
1367 }
1368
1369 /**
1370 * skb_header_release - release reference to header
1371 * @skb: buffer to operate on
1372 *
1373 * Drop a reference to the header part of the buffer. This is done
1374 * by acquiring a payload reference. You must not read from the header
1375 * part of skb->data after this.
1376 * Note : Check if you can use __skb_header_release() instead.
1377 */
1378 static inline void skb_header_release(struct sk_buff *skb)
1379 {
1380 BUG_ON(skb->nohdr);
1381 skb->nohdr = 1;
1382 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1383 }
1384
1385 /**
1386 * __skb_header_release - release reference to header
1387 * @skb: buffer to operate on
1388 *
1389 * Variant of skb_header_release() assuming skb is private to caller.
1390 * We can avoid one atomic operation.
1391 */
1392 static inline void __skb_header_release(struct sk_buff *skb)
1393 {
1394 skb->nohdr = 1;
1395 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1396 }
1397
1398
1399 /**
1400 * skb_shared - is the buffer shared
1401 * @skb: buffer to check
1402 *
1403 * Returns true if more than one person has a reference to this
1404 * buffer.
1405 */
1406 static inline int skb_shared(const struct sk_buff *skb)
1407 {
1408 return atomic_read(&skb->users) != 1;
1409 }
1410
1411 /**
1412 * skb_share_check - check if buffer is shared and if so clone it
1413 * @skb: buffer to check
1414 * @pri: priority for memory allocation
1415 *
1416 * If the buffer is shared the buffer is cloned and the old copy
1417 * drops a reference. A new clone with a single reference is returned.
1418 * If the buffer is not shared the original buffer is returned. When
1419 * being called from interrupt status or with spinlocks held pri must
1420 * be GFP_ATOMIC.
1421 *
1422 * NULL is returned on a memory allocation failure.
1423 */
1424 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1425 {
1426 might_sleep_if(gfpflags_allow_blocking(pri));
1427 if (skb_shared(skb)) {
1428 struct sk_buff *nskb = skb_clone(skb, pri);
1429
1430 if (likely(nskb))
1431 consume_skb(skb);
1432 else
1433 kfree_skb(skb);
1434 skb = nskb;
1435 }
1436 return skb;
1437 }
1438
1439 /*
1440 * Copy shared buffers into a new sk_buff. We effectively do COW on
1441 * packets to handle cases where we have a local reader and forward
1442 * and a couple of other messy ones. The normal one is tcpdumping
1443 * a packet thats being forwarded.
1444 */
1445
1446 /**
1447 * skb_unshare - make a copy of a shared buffer
1448 * @skb: buffer to check
1449 * @pri: priority for memory allocation
1450 *
1451 * If the socket buffer is a clone then this function creates a new
1452 * copy of the data, drops a reference count on the old copy and returns
1453 * the new copy with the reference count at 1. If the buffer is not a clone
1454 * the original buffer is returned. When called with a spinlock held or
1455 * from interrupt state @pri must be %GFP_ATOMIC
1456 *
1457 * %NULL is returned on a memory allocation failure.
1458 */
1459 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1460 gfp_t pri)
1461 {
1462 might_sleep_if(gfpflags_allow_blocking(pri));
1463 if (skb_cloned(skb)) {
1464 struct sk_buff *nskb = skb_copy(skb, pri);
1465
1466 /* Free our shared copy */
1467 if (likely(nskb))
1468 consume_skb(skb);
1469 else
1470 kfree_skb(skb);
1471 skb = nskb;
1472 }
1473 return skb;
1474 }
1475
1476 /**
1477 * skb_peek - peek at the head of an &sk_buff_head
1478 * @list_: list to peek at
1479 *
1480 * Peek an &sk_buff. Unlike most other operations you _MUST_
1481 * be careful with this one. A peek leaves the buffer on the
1482 * list and someone else may run off with it. You must hold
1483 * the appropriate locks or have a private queue to do this.
1484 *
1485 * Returns %NULL for an empty list or a pointer to the head element.
1486 * The reference count is not incremented and the reference is therefore
1487 * volatile. Use with caution.
1488 */
1489 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1490 {
1491 struct sk_buff *skb = list_->next;
1492
1493 if (skb == (struct sk_buff *)list_)
1494 skb = NULL;
1495 return skb;
1496 }
1497
1498 /**
1499 * skb_peek_next - peek skb following the given one from a queue
1500 * @skb: skb to start from
1501 * @list_: list to peek at
1502 *
1503 * Returns %NULL when the end of the list is met or a pointer to the
1504 * next element. The reference count is not incremented and the
1505 * reference is therefore volatile. Use with caution.
1506 */
1507 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1508 const struct sk_buff_head *list_)
1509 {
1510 struct sk_buff *next = skb->next;
1511
1512 if (next == (struct sk_buff *)list_)
1513 next = NULL;
1514 return next;
1515 }
1516
1517 /**
1518 * skb_peek_tail - peek at the tail of an &sk_buff_head
1519 * @list_: list to peek at
1520 *
1521 * Peek an &sk_buff. Unlike most other operations you _MUST_
1522 * be careful with this one. A peek leaves the buffer on the
1523 * list and someone else may run off with it. You must hold
1524 * the appropriate locks or have a private queue to do this.
1525 *
1526 * Returns %NULL for an empty list or a pointer to the tail element.
1527 * The reference count is not incremented and the reference is therefore
1528 * volatile. Use with caution.
1529 */
1530 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1531 {
1532 struct sk_buff *skb = list_->prev;
1533
1534 if (skb == (struct sk_buff *)list_)
1535 skb = NULL;
1536 return skb;
1537
1538 }
1539
1540 /**
1541 * skb_queue_len - get queue length
1542 * @list_: list to measure
1543 *
1544 * Return the length of an &sk_buff queue.
1545 */
1546 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1547 {
1548 return list_->qlen;
1549 }
1550
1551 /**
1552 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1553 * @list: queue to initialize
1554 *
1555 * This initializes only the list and queue length aspects of
1556 * an sk_buff_head object. This allows to initialize the list
1557 * aspects of an sk_buff_head without reinitializing things like
1558 * the spinlock. It can also be used for on-stack sk_buff_head
1559 * objects where the spinlock is known to not be used.
1560 */
1561 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1562 {
1563 list->prev = list->next = (struct sk_buff *)list;
1564 list->qlen = 0;
1565 }
1566
1567 /*
1568 * This function creates a split out lock class for each invocation;
1569 * this is needed for now since a whole lot of users of the skb-queue
1570 * infrastructure in drivers have different locking usage (in hardirq)
1571 * than the networking core (in softirq only). In the long run either the
1572 * network layer or drivers should need annotation to consolidate the
1573 * main types of usage into 3 classes.
1574 */
1575 static inline void skb_queue_head_init(struct sk_buff_head *list)
1576 {
1577 spin_lock_init(&list->lock);
1578 __skb_queue_head_init(list);
1579 }
1580
1581 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1582 struct lock_class_key *class)
1583 {
1584 skb_queue_head_init(list);
1585 lockdep_set_class(&list->lock, class);
1586 }
1587
1588 /*
1589 * Insert an sk_buff on a list.
1590 *
1591 * The "__skb_xxxx()" functions are the non-atomic ones that
1592 * can only be called with interrupts disabled.
1593 */
1594 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1595 struct sk_buff_head *list);
1596 static inline void __skb_insert(struct sk_buff *newsk,
1597 struct sk_buff *prev, struct sk_buff *next,
1598 struct sk_buff_head *list)
1599 {
1600 newsk->next = next;
1601 newsk->prev = prev;
1602 next->prev = prev->next = newsk;
1603 list->qlen++;
1604 }
1605
1606 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1607 struct sk_buff *prev,
1608 struct sk_buff *next)
1609 {
1610 struct sk_buff *first = list->next;
1611 struct sk_buff *last = list->prev;
1612
1613 first->prev = prev;
1614 prev->next = first;
1615
1616 last->next = next;
1617 next->prev = last;
1618 }
1619
1620 /**
1621 * skb_queue_splice - join two skb lists, this is designed for stacks
1622 * @list: the new list to add
1623 * @head: the place to add it in the first list
1624 */
1625 static inline void skb_queue_splice(const struct sk_buff_head *list,
1626 struct sk_buff_head *head)
1627 {
1628 if (!skb_queue_empty(list)) {
1629 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1630 head->qlen += list->qlen;
1631 }
1632 }
1633
1634 /**
1635 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1636 * @list: the new list to add
1637 * @head: the place to add it in the first list
1638 *
1639 * The list at @list is reinitialised
1640 */
1641 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1642 struct sk_buff_head *head)
1643 {
1644 if (!skb_queue_empty(list)) {
1645 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1646 head->qlen += list->qlen;
1647 __skb_queue_head_init(list);
1648 }
1649 }
1650
1651 /**
1652 * skb_queue_splice_tail - join two skb lists, each list being a queue
1653 * @list: the new list to add
1654 * @head: the place to add it in the first list
1655 */
1656 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1657 struct sk_buff_head *head)
1658 {
1659 if (!skb_queue_empty(list)) {
1660 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1661 head->qlen += list->qlen;
1662 }
1663 }
1664
1665 /**
1666 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1667 * @list: the new list to add
1668 * @head: the place to add it in the first list
1669 *
1670 * Each of the lists is a queue.
1671 * The list at @list is reinitialised
1672 */
1673 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1674 struct sk_buff_head *head)
1675 {
1676 if (!skb_queue_empty(list)) {
1677 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1678 head->qlen += list->qlen;
1679 __skb_queue_head_init(list);
1680 }
1681 }
1682
1683 /**
1684 * __skb_queue_after - queue a buffer at the list head
1685 * @list: list to use
1686 * @prev: place after this buffer
1687 * @newsk: buffer to queue
1688 *
1689 * Queue a buffer int the middle of a list. This function takes no locks
1690 * and you must therefore hold required locks before calling it.
1691 *
1692 * A buffer cannot be placed on two lists at the same time.
1693 */
1694 static inline void __skb_queue_after(struct sk_buff_head *list,
1695 struct sk_buff *prev,
1696 struct sk_buff *newsk)
1697 {
1698 __skb_insert(newsk, prev, prev->next, list);
1699 }
1700
1701 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1702 struct sk_buff_head *list);
1703
1704 static inline void __skb_queue_before(struct sk_buff_head *list,
1705 struct sk_buff *next,
1706 struct sk_buff *newsk)
1707 {
1708 __skb_insert(newsk, next->prev, next, list);
1709 }
1710
1711 /**
1712 * __skb_queue_head - queue a buffer at the list head
1713 * @list: list to use
1714 * @newsk: buffer to queue
1715 *
1716 * Queue a buffer at the start of a list. This function takes no locks
1717 * and you must therefore hold required locks before calling it.
1718 *
1719 * A buffer cannot be placed on two lists at the same time.
1720 */
1721 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1722 static inline void __skb_queue_head(struct sk_buff_head *list,
1723 struct sk_buff *newsk)
1724 {
1725 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1726 }
1727
1728 /**
1729 * __skb_queue_tail - queue a buffer at the list tail
1730 * @list: list to use
1731 * @newsk: buffer to queue
1732 *
1733 * Queue a buffer at the end of a list. This function takes no locks
1734 * and you must therefore hold required locks before calling it.
1735 *
1736 * A buffer cannot be placed on two lists at the same time.
1737 */
1738 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1739 static inline void __skb_queue_tail(struct sk_buff_head *list,
1740 struct sk_buff *newsk)
1741 {
1742 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1743 }
1744
1745 /*
1746 * remove sk_buff from list. _Must_ be called atomically, and with
1747 * the list known..
1748 */
1749 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1750 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1751 {
1752 struct sk_buff *next, *prev;
1753
1754 list->qlen--;
1755 next = skb->next;
1756 prev = skb->prev;
1757 skb->next = skb->prev = NULL;
1758 next->prev = prev;
1759 prev->next = next;
1760 }
1761
1762 /**
1763 * __skb_dequeue - remove from the head of the queue
1764 * @list: list to dequeue from
1765 *
1766 * Remove the head of the list. This function does not take any locks
1767 * so must be used with appropriate locks held only. The head item is
1768 * returned or %NULL if the list is empty.
1769 */
1770 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1771 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1772 {
1773 struct sk_buff *skb = skb_peek(list);
1774 if (skb)
1775 __skb_unlink(skb, list);
1776 return skb;
1777 }
1778
1779 /**
1780 * __skb_dequeue_tail - remove from the tail of the queue
1781 * @list: list to dequeue from
1782 *
1783 * Remove the tail of the list. This function does not take any locks
1784 * so must be used with appropriate locks held only. The tail item is
1785 * returned or %NULL if the list is empty.
1786 */
1787 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1788 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1789 {
1790 struct sk_buff *skb = skb_peek_tail(list);
1791 if (skb)
1792 __skb_unlink(skb, list);
1793 return skb;
1794 }
1795
1796
1797 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1798 {
1799 return skb->data_len;
1800 }
1801
1802 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1803 {
1804 return skb->len - skb->data_len;
1805 }
1806
1807 static inline int skb_pagelen(const struct sk_buff *skb)
1808 {
1809 int i, len = 0;
1810
1811 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1812 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1813 return len + skb_headlen(skb);
1814 }
1815
1816 /**
1817 * __skb_fill_page_desc - initialise a paged fragment in an skb
1818 * @skb: buffer containing fragment to be initialised
1819 * @i: paged fragment index to initialise
1820 * @page: the page to use for this fragment
1821 * @off: the offset to the data with @page
1822 * @size: the length of the data
1823 *
1824 * Initialises the @i'th fragment of @skb to point to &size bytes at
1825 * offset @off within @page.
1826 *
1827 * Does not take any additional reference on the fragment.
1828 */
1829 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1830 struct page *page, int off, int size)
1831 {
1832 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1833
1834 /*
1835 * Propagate page pfmemalloc to the skb if we can. The problem is
1836 * that not all callers have unique ownership of the page but rely
1837 * on page_is_pfmemalloc doing the right thing(tm).
1838 */
1839 frag->page.p = page;
1840 frag->page_offset = off;
1841 skb_frag_size_set(frag, size);
1842
1843 page = compound_head(page);
1844 if (page_is_pfmemalloc(page))
1845 skb->pfmemalloc = true;
1846 }
1847
1848 /**
1849 * skb_fill_page_desc - initialise a paged fragment in an skb
1850 * @skb: buffer containing fragment to be initialised
1851 * @i: paged fragment index to initialise
1852 * @page: the page to use for this fragment
1853 * @off: the offset to the data with @page
1854 * @size: the length of the data
1855 *
1856 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1857 * @skb to point to @size bytes at offset @off within @page. In
1858 * addition updates @skb such that @i is the last fragment.
1859 *
1860 * Does not take any additional reference on the fragment.
1861 */
1862 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1863 struct page *page, int off, int size)
1864 {
1865 __skb_fill_page_desc(skb, i, page, off, size);
1866 skb_shinfo(skb)->nr_frags = i + 1;
1867 }
1868
1869 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1870 int size, unsigned int truesize);
1871
1872 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1873 unsigned int truesize);
1874
1875 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1876 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1877 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1878
1879 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1880 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1881 {
1882 return skb->head + skb->tail;
1883 }
1884
1885 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1886 {
1887 skb->tail = skb->data - skb->head;
1888 }
1889
1890 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1891 {
1892 skb_reset_tail_pointer(skb);
1893 skb->tail += offset;
1894 }
1895
1896 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1897 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1898 {
1899 return skb->tail;
1900 }
1901
1902 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1903 {
1904 skb->tail = skb->data;
1905 }
1906
1907 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1908 {
1909 skb->tail = skb->data + offset;
1910 }
1911
1912 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1913
1914 /*
1915 * Add data to an sk_buff
1916 */
1917 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1918 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1919 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1920 {
1921 unsigned char *tmp = skb_tail_pointer(skb);
1922 SKB_LINEAR_ASSERT(skb);
1923 skb->tail += len;
1924 skb->len += len;
1925 return tmp;
1926 }
1927
1928 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1929 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1930 {
1931 skb->data -= len;
1932 skb->len += len;
1933 return skb->data;
1934 }
1935
1936 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1937 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1938 {
1939 skb->len -= len;
1940 BUG_ON(skb->len < skb->data_len);
1941 return skb->data += len;
1942 }
1943
1944 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1945 {
1946 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1947 }
1948
1949 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1950
1951 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1952 {
1953 if (len > skb_headlen(skb) &&
1954 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1955 return NULL;
1956 skb->len -= len;
1957 return skb->data += len;
1958 }
1959
1960 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1961 {
1962 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1963 }
1964
1965 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1966 {
1967 if (likely(len <= skb_headlen(skb)))
1968 return 1;
1969 if (unlikely(len > skb->len))
1970 return 0;
1971 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1972 }
1973
1974 /**
1975 * skb_headroom - bytes at buffer head
1976 * @skb: buffer to check
1977 *
1978 * Return the number of bytes of free space at the head of an &sk_buff.
1979 */
1980 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1981 {
1982 return skb->data - skb->head;
1983 }
1984
1985 /**
1986 * skb_tailroom - bytes at buffer end
1987 * @skb: buffer to check
1988 *
1989 * Return the number of bytes of free space at the tail of an sk_buff
1990 */
1991 static inline int skb_tailroom(const struct sk_buff *skb)
1992 {
1993 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1994 }
1995
1996 /**
1997 * skb_availroom - bytes at buffer end
1998 * @skb: buffer to check
1999 *
2000 * Return the number of bytes of free space at the tail of an sk_buff
2001 * allocated by sk_stream_alloc()
2002 */
2003 static inline int skb_availroom(const struct sk_buff *skb)
2004 {
2005 if (skb_is_nonlinear(skb))
2006 return 0;
2007
2008 return skb->end - skb->tail - skb->reserved_tailroom;
2009 }
2010
2011 /**
2012 * skb_reserve - adjust headroom
2013 * @skb: buffer to alter
2014 * @len: bytes to move
2015 *
2016 * Increase the headroom of an empty &sk_buff by reducing the tail
2017 * room. This is only allowed for an empty buffer.
2018 */
2019 static inline void skb_reserve(struct sk_buff *skb, int len)
2020 {
2021 skb->data += len;
2022 skb->tail += len;
2023 }
2024
2025 /**
2026 * skb_tailroom_reserve - adjust reserved_tailroom
2027 * @skb: buffer to alter
2028 * @mtu: maximum amount of headlen permitted
2029 * @needed_tailroom: minimum amount of reserved_tailroom
2030 *
2031 * Set reserved_tailroom so that headlen can be as large as possible but
2032 * not larger than mtu and tailroom cannot be smaller than
2033 * needed_tailroom.
2034 * The required headroom should already have been reserved before using
2035 * this function.
2036 */
2037 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2038 unsigned int needed_tailroom)
2039 {
2040 SKB_LINEAR_ASSERT(skb);
2041 if (mtu < skb_tailroom(skb) - needed_tailroom)
2042 /* use at most mtu */
2043 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2044 else
2045 /* use up to all available space */
2046 skb->reserved_tailroom = needed_tailroom;
2047 }
2048
2049 #define ENCAP_TYPE_ETHER 0
2050 #define ENCAP_TYPE_IPPROTO 1
2051
2052 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2053 __be16 protocol)
2054 {
2055 skb->inner_protocol = protocol;
2056 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2057 }
2058
2059 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2060 __u8 ipproto)
2061 {
2062 skb->inner_ipproto = ipproto;
2063 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2064 }
2065
2066 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2067 {
2068 skb->inner_mac_header = skb->mac_header;
2069 skb->inner_network_header = skb->network_header;
2070 skb->inner_transport_header = skb->transport_header;
2071 }
2072
2073 static inline void skb_reset_mac_len(struct sk_buff *skb)
2074 {
2075 skb->mac_len = skb->network_header - skb->mac_header;
2076 }
2077
2078 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2079 *skb)
2080 {
2081 return skb->head + skb->inner_transport_header;
2082 }
2083
2084 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2085 {
2086 return skb_inner_transport_header(skb) - skb->data;
2087 }
2088
2089 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2090 {
2091 skb->inner_transport_header = skb->data - skb->head;
2092 }
2093
2094 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2095 const int offset)
2096 {
2097 skb_reset_inner_transport_header(skb);
2098 skb->inner_transport_header += offset;
2099 }
2100
2101 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2102 {
2103 return skb->head + skb->inner_network_header;
2104 }
2105
2106 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2107 {
2108 skb->inner_network_header = skb->data - skb->head;
2109 }
2110
2111 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2112 const int offset)
2113 {
2114 skb_reset_inner_network_header(skb);
2115 skb->inner_network_header += offset;
2116 }
2117
2118 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2119 {
2120 return skb->head + skb->inner_mac_header;
2121 }
2122
2123 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2124 {
2125 skb->inner_mac_header = skb->data - skb->head;
2126 }
2127
2128 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2129 const int offset)
2130 {
2131 skb_reset_inner_mac_header(skb);
2132 skb->inner_mac_header += offset;
2133 }
2134 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2135 {
2136 return skb->transport_header != (typeof(skb->transport_header))~0U;
2137 }
2138
2139 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2140 {
2141 return skb->head + skb->transport_header;
2142 }
2143
2144 static inline void skb_reset_transport_header(struct sk_buff *skb)
2145 {
2146 skb->transport_header = skb->data - skb->head;
2147 }
2148
2149 static inline void skb_set_transport_header(struct sk_buff *skb,
2150 const int offset)
2151 {
2152 skb_reset_transport_header(skb);
2153 skb->transport_header += offset;
2154 }
2155
2156 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2157 {
2158 return skb->head + skb->network_header;
2159 }
2160
2161 static inline void skb_reset_network_header(struct sk_buff *skb)
2162 {
2163 skb->network_header = skb->data - skb->head;
2164 }
2165
2166 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2167 {
2168 skb_reset_network_header(skb);
2169 skb->network_header += offset;
2170 }
2171
2172 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2173 {
2174 return skb->head + skb->mac_header;
2175 }
2176
2177 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2178 {
2179 return skb->mac_header != (typeof(skb->mac_header))~0U;
2180 }
2181
2182 static inline void skb_reset_mac_header(struct sk_buff *skb)
2183 {
2184 skb->mac_header = skb->data - skb->head;
2185 }
2186
2187 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2188 {
2189 skb_reset_mac_header(skb);
2190 skb->mac_header += offset;
2191 }
2192
2193 static inline void skb_pop_mac_header(struct sk_buff *skb)
2194 {
2195 skb->mac_header = skb->network_header;
2196 }
2197
2198 static inline void skb_probe_transport_header(struct sk_buff *skb,
2199 const int offset_hint)
2200 {
2201 struct flow_keys keys;
2202
2203 if (skb_transport_header_was_set(skb))
2204 return;
2205 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2206 skb_set_transport_header(skb, keys.control.thoff);
2207 else
2208 skb_set_transport_header(skb, offset_hint);
2209 }
2210
2211 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2212 {
2213 if (skb_mac_header_was_set(skb)) {
2214 const unsigned char *old_mac = skb_mac_header(skb);
2215
2216 skb_set_mac_header(skb, -skb->mac_len);
2217 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2218 }
2219 }
2220
2221 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2222 {
2223 return skb->csum_start - skb_headroom(skb);
2224 }
2225
2226 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2227 {
2228 return skb->head + skb->csum_start;
2229 }
2230
2231 static inline int skb_transport_offset(const struct sk_buff *skb)
2232 {
2233 return skb_transport_header(skb) - skb->data;
2234 }
2235
2236 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2237 {
2238 return skb->transport_header - skb->network_header;
2239 }
2240
2241 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2242 {
2243 return skb->inner_transport_header - skb->inner_network_header;
2244 }
2245
2246 static inline int skb_network_offset(const struct sk_buff *skb)
2247 {
2248 return skb_network_header(skb) - skb->data;
2249 }
2250
2251 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2252 {
2253 return skb_inner_network_header(skb) - skb->data;
2254 }
2255
2256 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2257 {
2258 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2259 }
2260
2261 /*
2262 * CPUs often take a performance hit when accessing unaligned memory
2263 * locations. The actual performance hit varies, it can be small if the
2264 * hardware handles it or large if we have to take an exception and fix it
2265 * in software.
2266 *
2267 * Since an ethernet header is 14 bytes network drivers often end up with
2268 * the IP header at an unaligned offset. The IP header can be aligned by
2269 * shifting the start of the packet by 2 bytes. Drivers should do this
2270 * with:
2271 *
2272 * skb_reserve(skb, NET_IP_ALIGN);
2273 *
2274 * The downside to this alignment of the IP header is that the DMA is now
2275 * unaligned. On some architectures the cost of an unaligned DMA is high
2276 * and this cost outweighs the gains made by aligning the IP header.
2277 *
2278 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2279 * to be overridden.
2280 */
2281 #ifndef NET_IP_ALIGN
2282 #define NET_IP_ALIGN 2
2283 #endif
2284
2285 /*
2286 * The networking layer reserves some headroom in skb data (via
2287 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2288 * the header has to grow. In the default case, if the header has to grow
2289 * 32 bytes or less we avoid the reallocation.
2290 *
2291 * Unfortunately this headroom changes the DMA alignment of the resulting
2292 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2293 * on some architectures. An architecture can override this value,
2294 * perhaps setting it to a cacheline in size (since that will maintain
2295 * cacheline alignment of the DMA). It must be a power of 2.
2296 *
2297 * Various parts of the networking layer expect at least 32 bytes of
2298 * headroom, you should not reduce this.
2299 *
2300 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2301 * to reduce average number of cache lines per packet.
2302 * get_rps_cpus() for example only access one 64 bytes aligned block :
2303 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2304 */
2305 #ifndef NET_SKB_PAD
2306 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2307 #endif
2308
2309 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2310
2311 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2312 {
2313 if (unlikely(skb_is_nonlinear(skb))) {
2314 WARN_ON(1);
2315 return;
2316 }
2317 skb->len = len;
2318 skb_set_tail_pointer(skb, len);
2319 }
2320
2321 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2322 {
2323 __skb_set_length(skb, len);
2324 }
2325
2326 void skb_trim(struct sk_buff *skb, unsigned int len);
2327
2328 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2329 {
2330 if (skb->data_len)
2331 return ___pskb_trim(skb, len);
2332 __skb_trim(skb, len);
2333 return 0;
2334 }
2335
2336 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2337 {
2338 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2339 }
2340
2341 /**
2342 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2343 * @skb: buffer to alter
2344 * @len: new length
2345 *
2346 * This is identical to pskb_trim except that the caller knows that
2347 * the skb is not cloned so we should never get an error due to out-
2348 * of-memory.
2349 */
2350 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2351 {
2352 int err = pskb_trim(skb, len);
2353 BUG_ON(err);
2354 }
2355
2356 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2357 {
2358 unsigned int diff = len - skb->len;
2359
2360 if (skb_tailroom(skb) < diff) {
2361 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2362 GFP_ATOMIC);
2363 if (ret)
2364 return ret;
2365 }
2366 __skb_set_length(skb, len);
2367 return 0;
2368 }
2369
2370 /**
2371 * skb_orphan - orphan a buffer
2372 * @skb: buffer to orphan
2373 *
2374 * If a buffer currently has an owner then we call the owner's
2375 * destructor function and make the @skb unowned. The buffer continues
2376 * to exist but is no longer charged to its former owner.
2377 */
2378 static inline void skb_orphan(struct sk_buff *skb)
2379 {
2380 if (skb->destructor) {
2381 skb->destructor(skb);
2382 skb->destructor = NULL;
2383 skb->sk = NULL;
2384 } else {
2385 BUG_ON(skb->sk);
2386 }
2387 }
2388
2389 /**
2390 * skb_orphan_frags - orphan the frags contained in a buffer
2391 * @skb: buffer to orphan frags from
2392 * @gfp_mask: allocation mask for replacement pages
2393 *
2394 * For each frag in the SKB which needs a destructor (i.e. has an
2395 * owner) create a copy of that frag and release the original
2396 * page by calling the destructor.
2397 */
2398 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2399 {
2400 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2401 return 0;
2402 return skb_copy_ubufs(skb, gfp_mask);
2403 }
2404
2405 /**
2406 * __skb_queue_purge - empty a list
2407 * @list: list to empty
2408 *
2409 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2410 * the list and one reference dropped. This function does not take the
2411 * list lock and the caller must hold the relevant locks to use it.
2412 */
2413 void skb_queue_purge(struct sk_buff_head *list);
2414 static inline void __skb_queue_purge(struct sk_buff_head *list)
2415 {
2416 struct sk_buff *skb;
2417 while ((skb = __skb_dequeue(list)) != NULL)
2418 kfree_skb(skb);
2419 }
2420
2421 unsigned int skb_rbtree_purge(struct rb_root *root);
2422
2423 void *netdev_alloc_frag(unsigned int fragsz);
2424
2425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2426 gfp_t gfp_mask);
2427
2428 /**
2429 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2430 * @dev: network device to receive on
2431 * @length: length to allocate
2432 *
2433 * Allocate a new &sk_buff and assign it a usage count of one. The
2434 * buffer has unspecified headroom built in. Users should allocate
2435 * the headroom they think they need without accounting for the
2436 * built in space. The built in space is used for optimisations.
2437 *
2438 * %NULL is returned if there is no free memory. Although this function
2439 * allocates memory it can be called from an interrupt.
2440 */
2441 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2442 unsigned int length)
2443 {
2444 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2445 }
2446
2447 /* legacy helper around __netdev_alloc_skb() */
2448 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2449 gfp_t gfp_mask)
2450 {
2451 return __netdev_alloc_skb(NULL, length, gfp_mask);
2452 }
2453
2454 /* legacy helper around netdev_alloc_skb() */
2455 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2456 {
2457 return netdev_alloc_skb(NULL, length);
2458 }
2459
2460
2461 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2462 unsigned int length, gfp_t gfp)
2463 {
2464 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2465
2466 if (NET_IP_ALIGN && skb)
2467 skb_reserve(skb, NET_IP_ALIGN);
2468 return skb;
2469 }
2470
2471 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2472 unsigned int length)
2473 {
2474 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2475 }
2476
2477 static inline void skb_free_frag(void *addr)
2478 {
2479 __free_page_frag(addr);
2480 }
2481
2482 void *napi_alloc_frag(unsigned int fragsz);
2483 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2484 unsigned int length, gfp_t gfp_mask);
2485 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2486 unsigned int length)
2487 {
2488 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2489 }
2490 void napi_consume_skb(struct sk_buff *skb, int budget);
2491
2492 void __kfree_skb_flush(void);
2493 void __kfree_skb_defer(struct sk_buff *skb);
2494
2495 /**
2496 * __dev_alloc_pages - allocate page for network Rx
2497 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2498 * @order: size of the allocation
2499 *
2500 * Allocate a new page.
2501 *
2502 * %NULL is returned if there is no free memory.
2503 */
2504 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2505 unsigned int order)
2506 {
2507 /* This piece of code contains several assumptions.
2508 * 1. This is for device Rx, therefor a cold page is preferred.
2509 * 2. The expectation is the user wants a compound page.
2510 * 3. If requesting a order 0 page it will not be compound
2511 * due to the check to see if order has a value in prep_new_page
2512 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2513 * code in gfp_to_alloc_flags that should be enforcing this.
2514 */
2515 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2516
2517 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2518 }
2519
2520 static inline struct page *dev_alloc_pages(unsigned int order)
2521 {
2522 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2523 }
2524
2525 /**
2526 * __dev_alloc_page - allocate a page for network Rx
2527 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2528 *
2529 * Allocate a new page.
2530 *
2531 * %NULL is returned if there is no free memory.
2532 */
2533 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2534 {
2535 return __dev_alloc_pages(gfp_mask, 0);
2536 }
2537
2538 static inline struct page *dev_alloc_page(void)
2539 {
2540 return dev_alloc_pages(0);
2541 }
2542
2543 /**
2544 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2545 * @page: The page that was allocated from skb_alloc_page
2546 * @skb: The skb that may need pfmemalloc set
2547 */
2548 static inline void skb_propagate_pfmemalloc(struct page *page,
2549 struct sk_buff *skb)
2550 {
2551 if (page_is_pfmemalloc(page))
2552 skb->pfmemalloc = true;
2553 }
2554
2555 /**
2556 * skb_frag_page - retrieve the page referred to by a paged fragment
2557 * @frag: the paged fragment
2558 *
2559 * Returns the &struct page associated with @frag.
2560 */
2561 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2562 {
2563 return frag->page.p;
2564 }
2565
2566 /**
2567 * __skb_frag_ref - take an addition reference on a paged fragment.
2568 * @frag: the paged fragment
2569 *
2570 * Takes an additional reference on the paged fragment @frag.
2571 */
2572 static inline void __skb_frag_ref(skb_frag_t *frag)
2573 {
2574 get_page(skb_frag_page(frag));
2575 }
2576
2577 /**
2578 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2579 * @skb: the buffer
2580 * @f: the fragment offset.
2581 *
2582 * Takes an additional reference on the @f'th paged fragment of @skb.
2583 */
2584 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2585 {
2586 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2587 }
2588
2589 /**
2590 * __skb_frag_unref - release a reference on a paged fragment.
2591 * @frag: the paged fragment
2592 *
2593 * Releases a reference on the paged fragment @frag.
2594 */
2595 static inline void __skb_frag_unref(skb_frag_t *frag)
2596 {
2597 put_page(skb_frag_page(frag));
2598 }
2599
2600 /**
2601 * skb_frag_unref - release a reference on a paged fragment of an skb.
2602 * @skb: the buffer
2603 * @f: the fragment offset
2604 *
2605 * Releases a reference on the @f'th paged fragment of @skb.
2606 */
2607 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2608 {
2609 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2610 }
2611
2612 /**
2613 * skb_frag_address - gets the address of the data contained in a paged fragment
2614 * @frag: the paged fragment buffer
2615 *
2616 * Returns the address of the data within @frag. The page must already
2617 * be mapped.
2618 */
2619 static inline void *skb_frag_address(const skb_frag_t *frag)
2620 {
2621 return page_address(skb_frag_page(frag)) + frag->page_offset;
2622 }
2623
2624 /**
2625 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2626 * @frag: the paged fragment buffer
2627 *
2628 * Returns the address of the data within @frag. Checks that the page
2629 * is mapped and returns %NULL otherwise.
2630 */
2631 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2632 {
2633 void *ptr = page_address(skb_frag_page(frag));
2634 if (unlikely(!ptr))
2635 return NULL;
2636
2637 return ptr + frag->page_offset;
2638 }
2639
2640 /**
2641 * __skb_frag_set_page - sets the page contained in a paged fragment
2642 * @frag: the paged fragment
2643 * @page: the page to set
2644 *
2645 * Sets the fragment @frag to contain @page.
2646 */
2647 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2648 {
2649 frag->page.p = page;
2650 }
2651
2652 /**
2653 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2654 * @skb: the buffer
2655 * @f: the fragment offset
2656 * @page: the page to set
2657 *
2658 * Sets the @f'th fragment of @skb to contain @page.
2659 */
2660 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2661 struct page *page)
2662 {
2663 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2664 }
2665
2666 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2667
2668 /**
2669 * skb_frag_dma_map - maps a paged fragment via the DMA API
2670 * @dev: the device to map the fragment to
2671 * @frag: the paged fragment to map
2672 * @offset: the offset within the fragment (starting at the
2673 * fragment's own offset)
2674 * @size: the number of bytes to map
2675 * @dir: the direction of the mapping (%PCI_DMA_*)
2676 *
2677 * Maps the page associated with @frag to @device.
2678 */
2679 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2680 const skb_frag_t *frag,
2681 size_t offset, size_t size,
2682 enum dma_data_direction dir)
2683 {
2684 return dma_map_page(dev, skb_frag_page(frag),
2685 frag->page_offset + offset, size, dir);
2686 }
2687
2688 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2689 gfp_t gfp_mask)
2690 {
2691 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2692 }
2693
2694
2695 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2696 gfp_t gfp_mask)
2697 {
2698 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2699 }
2700
2701
2702 /**
2703 * skb_clone_writable - is the header of a clone writable
2704 * @skb: buffer to check
2705 * @len: length up to which to write
2706 *
2707 * Returns true if modifying the header part of the cloned buffer
2708 * does not requires the data to be copied.
2709 */
2710 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2711 {
2712 return !skb_header_cloned(skb) &&
2713 skb_headroom(skb) + len <= skb->hdr_len;
2714 }
2715
2716 static inline int skb_try_make_writable(struct sk_buff *skb,
2717 unsigned int write_len)
2718 {
2719 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2720 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2721 }
2722
2723 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2724 int cloned)
2725 {
2726 int delta = 0;
2727
2728 if (headroom > skb_headroom(skb))
2729 delta = headroom - skb_headroom(skb);
2730
2731 if (delta || cloned)
2732 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2733 GFP_ATOMIC);
2734 return 0;
2735 }
2736
2737 /**
2738 * skb_cow - copy header of skb when it is required
2739 * @skb: buffer to cow
2740 * @headroom: needed headroom
2741 *
2742 * If the skb passed lacks sufficient headroom or its data part
2743 * is shared, data is reallocated. If reallocation fails, an error
2744 * is returned and original skb is not changed.
2745 *
2746 * The result is skb with writable area skb->head...skb->tail
2747 * and at least @headroom of space at head.
2748 */
2749 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2750 {
2751 return __skb_cow(skb, headroom, skb_cloned(skb));
2752 }
2753
2754 /**
2755 * skb_cow_head - skb_cow but only making the head writable
2756 * @skb: buffer to cow
2757 * @headroom: needed headroom
2758 *
2759 * This function is identical to skb_cow except that we replace the
2760 * skb_cloned check by skb_header_cloned. It should be used when
2761 * you only need to push on some header and do not need to modify
2762 * the data.
2763 */
2764 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2765 {
2766 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2767 }
2768
2769 /**
2770 * skb_padto - pad an skbuff up to a minimal size
2771 * @skb: buffer to pad
2772 * @len: minimal length
2773 *
2774 * Pads up a buffer to ensure the trailing bytes exist and are
2775 * blanked. If the buffer already contains sufficient data it
2776 * is untouched. Otherwise it is extended. Returns zero on
2777 * success. The skb is freed on error.
2778 */
2779 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2780 {
2781 unsigned int size = skb->len;
2782 if (likely(size >= len))
2783 return 0;
2784 return skb_pad(skb, len - size);
2785 }
2786
2787 /**
2788 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2789 * @skb: buffer to pad
2790 * @len: minimal length
2791 *
2792 * Pads up a buffer to ensure the trailing bytes exist and are
2793 * blanked. If the buffer already contains sufficient data it
2794 * is untouched. Otherwise it is extended. Returns zero on
2795 * success. The skb is freed on error.
2796 */
2797 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2798 {
2799 unsigned int size = skb->len;
2800
2801 if (unlikely(size < len)) {
2802 len -= size;
2803 if (skb_pad(skb, len))
2804 return -ENOMEM;
2805 __skb_put(skb, len);
2806 }
2807 return 0;
2808 }
2809
2810 static inline int skb_add_data(struct sk_buff *skb,
2811 struct iov_iter *from, int copy)
2812 {
2813 const int off = skb->len;
2814
2815 if (skb->ip_summed == CHECKSUM_NONE) {
2816 __wsum csum = 0;
2817 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2818 &csum, from) == copy) {
2819 skb->csum = csum_block_add(skb->csum, csum, off);
2820 return 0;
2821 }
2822 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2823 return 0;
2824
2825 __skb_trim(skb, off);
2826 return -EFAULT;
2827 }
2828
2829 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2830 const struct page *page, int off)
2831 {
2832 if (i) {
2833 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2834
2835 return page == skb_frag_page(frag) &&
2836 off == frag->page_offset + skb_frag_size(frag);
2837 }
2838 return false;
2839 }
2840
2841 static inline int __skb_linearize(struct sk_buff *skb)
2842 {
2843 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2844 }
2845
2846 /**
2847 * skb_linearize - convert paged skb to linear one
2848 * @skb: buffer to linarize
2849 *
2850 * If there is no free memory -ENOMEM is returned, otherwise zero
2851 * is returned and the old skb data released.
2852 */
2853 static inline int skb_linearize(struct sk_buff *skb)
2854 {
2855 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2856 }
2857
2858 /**
2859 * skb_has_shared_frag - can any frag be overwritten
2860 * @skb: buffer to test
2861 *
2862 * Return true if the skb has at least one frag that might be modified
2863 * by an external entity (as in vmsplice()/sendfile())
2864 */
2865 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2866 {
2867 return skb_is_nonlinear(skb) &&
2868 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2869 }
2870
2871 /**
2872 * skb_linearize_cow - make sure skb is linear and writable
2873 * @skb: buffer to process
2874 *
2875 * If there is no free memory -ENOMEM is returned, otherwise zero
2876 * is returned and the old skb data released.
2877 */
2878 static inline int skb_linearize_cow(struct sk_buff *skb)
2879 {
2880 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2881 __skb_linearize(skb) : 0;
2882 }
2883
2884 static __always_inline void
2885 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2886 unsigned int off)
2887 {
2888 if (skb->ip_summed == CHECKSUM_COMPLETE)
2889 skb->csum = csum_block_sub(skb->csum,
2890 csum_partial(start, len, 0), off);
2891 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2892 skb_checksum_start_offset(skb) < 0)
2893 skb->ip_summed = CHECKSUM_NONE;
2894 }
2895
2896 /**
2897 * skb_postpull_rcsum - update checksum for received skb after pull
2898 * @skb: buffer to update
2899 * @start: start of data before pull
2900 * @len: length of data pulled
2901 *
2902 * After doing a pull on a received packet, you need to call this to
2903 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2904 * CHECKSUM_NONE so that it can be recomputed from scratch.
2905 */
2906 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2907 const void *start, unsigned int len)
2908 {
2909 __skb_postpull_rcsum(skb, start, len, 0);
2910 }
2911
2912 static __always_inline void
2913 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2914 unsigned int off)
2915 {
2916 if (skb->ip_summed == CHECKSUM_COMPLETE)
2917 skb->csum = csum_block_add(skb->csum,
2918 csum_partial(start, len, 0), off);
2919 }
2920
2921 /**
2922 * skb_postpush_rcsum - update checksum for received skb after push
2923 * @skb: buffer to update
2924 * @start: start of data after push
2925 * @len: length of data pushed
2926 *
2927 * After doing a push on a received packet, you need to call this to
2928 * update the CHECKSUM_COMPLETE checksum.
2929 */
2930 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2931 const void *start, unsigned int len)
2932 {
2933 __skb_postpush_rcsum(skb, start, len, 0);
2934 }
2935
2936 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2937
2938 /**
2939 * skb_push_rcsum - push skb and update receive checksum
2940 * @skb: buffer to update
2941 * @len: length of data pulled
2942 *
2943 * This function performs an skb_push on the packet and updates
2944 * the CHECKSUM_COMPLETE checksum. It should be used on
2945 * receive path processing instead of skb_push unless you know
2946 * that the checksum difference is zero (e.g., a valid IP header)
2947 * or you are setting ip_summed to CHECKSUM_NONE.
2948 */
2949 static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2950 unsigned int len)
2951 {
2952 skb_push(skb, len);
2953 skb_postpush_rcsum(skb, skb->data, len);
2954 return skb->data;
2955 }
2956
2957 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
2958 /**
2959 * pskb_trim_rcsum - trim received skb and update checksum
2960 * @skb: buffer to trim
2961 * @len: new length
2962 *
2963 * This is exactly the same as pskb_trim except that it ensures the
2964 * checksum of received packets are still valid after the operation.
2965 * It can change skb pointers.
2966 */
2967
2968 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2969 {
2970 if (likely(len >= skb->len))
2971 return 0;
2972 return pskb_trim_rcsum_slow(skb, len);
2973 }
2974
2975 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2976 {
2977 if (skb->ip_summed == CHECKSUM_COMPLETE)
2978 skb->ip_summed = CHECKSUM_NONE;
2979 __skb_trim(skb, len);
2980 return 0;
2981 }
2982
2983 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
2984 {
2985 if (skb->ip_summed == CHECKSUM_COMPLETE)
2986 skb->ip_summed = CHECKSUM_NONE;
2987 return __skb_grow(skb, len);
2988 }
2989
2990 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
2991
2992 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
2993 #define skb_rb_first(root) rb_to_skb(rb_first(root))
2994 #define skb_rb_last(root) rb_to_skb(rb_last(root))
2995 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
2996 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
2997
2998 #define skb_queue_walk(queue, skb) \
2999 for (skb = (queue)->next; \
3000 skb != (struct sk_buff *)(queue); \
3001 skb = skb->next)
3002
3003 #define skb_queue_walk_safe(queue, skb, tmp) \
3004 for (skb = (queue)->next, tmp = skb->next; \
3005 skb != (struct sk_buff *)(queue); \
3006 skb = tmp, tmp = skb->next)
3007
3008 #define skb_queue_walk_from(queue, skb) \
3009 for (; skb != (struct sk_buff *)(queue); \
3010 skb = skb->next)
3011
3012 #define skb_rbtree_walk(skb, root) \
3013 for (skb = skb_rb_first(root); skb != NULL; \
3014 skb = skb_rb_next(skb))
3015
3016 #define skb_rbtree_walk_from(skb) \
3017 for (; skb != NULL; \
3018 skb = skb_rb_next(skb))
3019
3020 #define skb_rbtree_walk_from_safe(skb, tmp) \
3021 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3022 skb = tmp)
3023
3024 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3025 for (tmp = skb->next; \
3026 skb != (struct sk_buff *)(queue); \
3027 skb = tmp, tmp = skb->next)
3028
3029 #define skb_queue_reverse_walk(queue, skb) \
3030 for (skb = (queue)->prev; \
3031 skb != (struct sk_buff *)(queue); \
3032 skb = skb->prev)
3033
3034 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3035 for (skb = (queue)->prev, tmp = skb->prev; \
3036 skb != (struct sk_buff *)(queue); \
3037 skb = tmp, tmp = skb->prev)
3038
3039 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3040 for (tmp = skb->prev; \
3041 skb != (struct sk_buff *)(queue); \
3042 skb = tmp, tmp = skb->prev)
3043
3044 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3045 {
3046 return skb_shinfo(skb)->frag_list != NULL;
3047 }
3048
3049 static inline void skb_frag_list_init(struct sk_buff *skb)
3050 {
3051 skb_shinfo(skb)->frag_list = NULL;
3052 }
3053
3054 #define skb_walk_frags(skb, iter) \
3055 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3056
3057
3058 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3059 const struct sk_buff *skb);
3060 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3061 int *peeked, int *off, int *err,
3062 struct sk_buff **last);
3063 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3064 int *peeked, int *off, int *err);
3065 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3066 int *err);
3067 unsigned int datagram_poll(struct file *file, struct socket *sock,
3068 struct poll_table_struct *wait);
3069 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3070 struct iov_iter *to, int size);
3071 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3072 struct msghdr *msg, int size)
3073 {
3074 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3075 }
3076 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3077 struct msghdr *msg);
3078 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3079 struct iov_iter *from, int len);
3080 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3081 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3082 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3083 static inline void skb_free_datagram_locked(struct sock *sk,
3084 struct sk_buff *skb)
3085 {
3086 __skb_free_datagram_locked(sk, skb, 0);
3087 }
3088 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3089 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3090 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3091 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3092 int len, __wsum csum);
3093 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3094 struct pipe_inode_info *pipe, unsigned int len,
3095 unsigned int flags);
3096 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3097 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3098 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3099 int len, int hlen);
3100 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3101 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3102 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3103 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3104 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3105 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3106 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3107 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3108 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3109 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3110 int skb_vlan_pop(struct sk_buff *skb);
3111 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3112 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3113 gfp_t gfp);
3114
3115 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3116 {
3117 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3118 }
3119
3120 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3121 {
3122 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3123 }
3124
3125 struct skb_checksum_ops {
3126 __wsum (*update)(const void *mem, int len, __wsum wsum);
3127 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3128 };
3129
3130 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3131 __wsum csum, const struct skb_checksum_ops *ops);
3132 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3133 __wsum csum);
3134
3135 static inline void * __must_check
3136 __skb_header_pointer(const struct sk_buff *skb, int offset,
3137 int len, void *data, int hlen, void *buffer)
3138 {
3139 if (hlen - offset >= len)
3140 return data + offset;
3141
3142 if (!skb ||
3143 skb_copy_bits(skb, offset, buffer, len) < 0)
3144 return NULL;
3145
3146 return buffer;
3147 }
3148
3149 static inline void * __must_check
3150 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3151 {
3152 return __skb_header_pointer(skb, offset, len, skb->data,
3153 skb_headlen(skb), buffer);
3154 }
3155
3156 /**
3157 * skb_needs_linearize - check if we need to linearize a given skb
3158 * depending on the given device features.
3159 * @skb: socket buffer to check
3160 * @features: net device features
3161 *
3162 * Returns true if either:
3163 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3164 * 2. skb is fragmented and the device does not support SG.
3165 */
3166 static inline bool skb_needs_linearize(struct sk_buff *skb,
3167 netdev_features_t features)
3168 {
3169 return skb_is_nonlinear(skb) &&
3170 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3171 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3172 }
3173
3174 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3175 void *to,
3176 const unsigned int len)
3177 {
3178 memcpy(to, skb->data, len);
3179 }
3180
3181 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3182 const int offset, void *to,
3183 const unsigned int len)
3184 {
3185 memcpy(to, skb->data + offset, len);
3186 }
3187
3188 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3189 const void *from,
3190 const unsigned int len)
3191 {
3192 memcpy(skb->data, from, len);
3193 }
3194
3195 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3196 const int offset,
3197 const void *from,
3198 const unsigned int len)
3199 {
3200 memcpy(skb->data + offset, from, len);
3201 }
3202
3203 void skb_init(void);
3204
3205 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3206 {
3207 return skb->tstamp;
3208 }
3209
3210 /**
3211 * skb_get_timestamp - get timestamp from a skb
3212 * @skb: skb to get stamp from
3213 * @stamp: pointer to struct timeval to store stamp in
3214 *
3215 * Timestamps are stored in the skb as offsets to a base timestamp.
3216 * This function converts the offset back to a struct timeval and stores
3217 * it in stamp.
3218 */
3219 static inline void skb_get_timestamp(const struct sk_buff *skb,
3220 struct timeval *stamp)
3221 {
3222 *stamp = ktime_to_timeval(skb->tstamp);
3223 }
3224
3225 static inline void skb_get_timestampns(const struct sk_buff *skb,
3226 struct timespec *stamp)
3227 {
3228 *stamp = ktime_to_timespec(skb->tstamp);
3229 }
3230
3231 static inline void __net_timestamp(struct sk_buff *skb)
3232 {
3233 skb->tstamp = ktime_get_real();
3234 }
3235
3236 static inline ktime_t net_timedelta(ktime_t t)
3237 {
3238 return ktime_sub(ktime_get_real(), t);
3239 }
3240
3241 static inline ktime_t net_invalid_timestamp(void)
3242 {
3243 return ktime_set(0, 0);
3244 }
3245
3246 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3247
3248 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3249
3250 void skb_clone_tx_timestamp(struct sk_buff *skb);
3251 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3252
3253 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3254
3255 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3256 {
3257 }
3258
3259 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3260 {
3261 return false;
3262 }
3263
3264 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3265
3266 /**
3267 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3268 *
3269 * PHY drivers may accept clones of transmitted packets for
3270 * timestamping via their phy_driver.txtstamp method. These drivers
3271 * must call this function to return the skb back to the stack with a
3272 * timestamp.
3273 *
3274 * @skb: clone of the the original outgoing packet
3275 * @hwtstamps: hardware time stamps
3276 *
3277 */
3278 void skb_complete_tx_timestamp(struct sk_buff *skb,
3279 struct skb_shared_hwtstamps *hwtstamps);
3280
3281 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3282 struct skb_shared_hwtstamps *hwtstamps,
3283 struct sock *sk, int tstype);
3284
3285 /**
3286 * skb_tstamp_tx - queue clone of skb with send time stamps
3287 * @orig_skb: the original outgoing packet
3288 * @hwtstamps: hardware time stamps, may be NULL if not available
3289 *
3290 * If the skb has a socket associated, then this function clones the
3291 * skb (thus sharing the actual data and optional structures), stores
3292 * the optional hardware time stamping information (if non NULL) or
3293 * generates a software time stamp (otherwise), then queues the clone
3294 * to the error queue of the socket. Errors are silently ignored.
3295 */
3296 void skb_tstamp_tx(struct sk_buff *orig_skb,
3297 struct skb_shared_hwtstamps *hwtstamps);
3298
3299 static inline void sw_tx_timestamp(struct sk_buff *skb)
3300 {
3301 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3302 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3303 skb_tstamp_tx(skb, NULL);
3304 }
3305
3306 /**
3307 * skb_tx_timestamp() - Driver hook for transmit timestamping
3308 *
3309 * Ethernet MAC Drivers should call this function in their hard_xmit()
3310 * function immediately before giving the sk_buff to the MAC hardware.
3311 *
3312 * Specifically, one should make absolutely sure that this function is
3313 * called before TX completion of this packet can trigger. Otherwise
3314 * the packet could potentially already be freed.
3315 *
3316 * @skb: A socket buffer.
3317 */
3318 static inline void skb_tx_timestamp(struct sk_buff *skb)
3319 {
3320 skb_clone_tx_timestamp(skb);
3321 sw_tx_timestamp(skb);
3322 }
3323
3324 /**
3325 * skb_complete_wifi_ack - deliver skb with wifi status
3326 *
3327 * @skb: the original outgoing packet
3328 * @acked: ack status
3329 *
3330 */
3331 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3332
3333 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3334 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3335
3336 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3337 {
3338 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3339 skb->csum_valid ||
3340 (skb->ip_summed == CHECKSUM_PARTIAL &&
3341 skb_checksum_start_offset(skb) >= 0));
3342 }
3343
3344 /**
3345 * skb_checksum_complete - Calculate checksum of an entire packet
3346 * @skb: packet to process
3347 *
3348 * This function calculates the checksum over the entire packet plus
3349 * the value of skb->csum. The latter can be used to supply the
3350 * checksum of a pseudo header as used by TCP/UDP. It returns the
3351 * checksum.
3352 *
3353 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3354 * this function can be used to verify that checksum on received
3355 * packets. In that case the function should return zero if the
3356 * checksum is correct. In particular, this function will return zero
3357 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3358 * hardware has already verified the correctness of the checksum.
3359 */
3360 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3361 {
3362 return skb_csum_unnecessary(skb) ?
3363 0 : __skb_checksum_complete(skb);
3364 }
3365
3366 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3367 {
3368 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3369 if (skb->csum_level == 0)
3370 skb->ip_summed = CHECKSUM_NONE;
3371 else
3372 skb->csum_level--;
3373 }
3374 }
3375
3376 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3377 {
3378 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3379 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3380 skb->csum_level++;
3381 } else if (skb->ip_summed == CHECKSUM_NONE) {
3382 skb->ip_summed = CHECKSUM_UNNECESSARY;
3383 skb->csum_level = 0;
3384 }
3385 }
3386
3387 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3388 {
3389 /* Mark current checksum as bad (typically called from GRO
3390 * path). In the case that ip_summed is CHECKSUM_NONE
3391 * this must be the first checksum encountered in the packet.
3392 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3393 * checksum after the last one validated. For UDP, a zero
3394 * checksum can not be marked as bad.
3395 */
3396
3397 if (skb->ip_summed == CHECKSUM_NONE ||
3398 skb->ip_summed == CHECKSUM_UNNECESSARY)
3399 skb->csum_bad = 1;
3400 }
3401
3402 /* Check if we need to perform checksum complete validation.
3403 *
3404 * Returns true if checksum complete is needed, false otherwise
3405 * (either checksum is unnecessary or zero checksum is allowed).
3406 */
3407 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3408 bool zero_okay,
3409 __sum16 check)
3410 {
3411 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3412 skb->csum_valid = 1;
3413 __skb_decr_checksum_unnecessary(skb);
3414 return false;
3415 }
3416
3417 return true;
3418 }
3419
3420 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3421 * in checksum_init.
3422 */
3423 #define CHECKSUM_BREAK 76
3424
3425 /* Unset checksum-complete
3426 *
3427 * Unset checksum complete can be done when packet is being modified
3428 * (uncompressed for instance) and checksum-complete value is
3429 * invalidated.
3430 */
3431 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3432 {
3433 if (skb->ip_summed == CHECKSUM_COMPLETE)
3434 skb->ip_summed = CHECKSUM_NONE;
3435 }
3436
3437 /* Validate (init) checksum based on checksum complete.
3438 *
3439 * Return values:
3440 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3441 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3442 * checksum is stored in skb->csum for use in __skb_checksum_complete
3443 * non-zero: value of invalid checksum
3444 *
3445 */
3446 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3447 bool complete,
3448 __wsum psum)
3449 {
3450 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3451 if (!csum_fold(csum_add(psum, skb->csum))) {
3452 skb->csum_valid = 1;
3453 return 0;
3454 }
3455 } else if (skb->csum_bad) {
3456 /* ip_summed == CHECKSUM_NONE in this case */
3457 return (__force __sum16)1;
3458 }
3459
3460 skb->csum = psum;
3461
3462 if (complete || skb->len <= CHECKSUM_BREAK) {
3463 __sum16 csum;
3464
3465 csum = __skb_checksum_complete(skb);
3466 skb->csum_valid = !csum;
3467 return csum;
3468 }
3469
3470 return 0;
3471 }
3472
3473 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3474 {
3475 return 0;
3476 }
3477
3478 /* Perform checksum validate (init). Note that this is a macro since we only
3479 * want to calculate the pseudo header which is an input function if necessary.
3480 * First we try to validate without any computation (checksum unnecessary) and
3481 * then calculate based on checksum complete calling the function to compute
3482 * pseudo header.
3483 *
3484 * Return values:
3485 * 0: checksum is validated or try to in skb_checksum_complete
3486 * non-zero: value of invalid checksum
3487 */
3488 #define __skb_checksum_validate(skb, proto, complete, \
3489 zero_okay, check, compute_pseudo) \
3490 ({ \
3491 __sum16 __ret = 0; \
3492 skb->csum_valid = 0; \
3493 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3494 __ret = __skb_checksum_validate_complete(skb, \
3495 complete, compute_pseudo(skb, proto)); \
3496 __ret; \
3497 })
3498
3499 #define skb_checksum_init(skb, proto, compute_pseudo) \
3500 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3501
3502 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3503 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3504
3505 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3506 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3507
3508 #define skb_checksum_validate_zero_check(skb, proto, check, \
3509 compute_pseudo) \
3510 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3511
3512 #define skb_checksum_simple_validate(skb) \
3513 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3514
3515 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3516 {
3517 return (skb->ip_summed == CHECKSUM_NONE &&
3518 skb->csum_valid && !skb->csum_bad);
3519 }
3520
3521 static inline void __skb_checksum_convert(struct sk_buff *skb,
3522 __sum16 check, __wsum pseudo)
3523 {
3524 skb->csum = ~pseudo;
3525 skb->ip_summed = CHECKSUM_COMPLETE;
3526 }
3527
3528 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3529 do { \
3530 if (__skb_checksum_convert_check(skb)) \
3531 __skb_checksum_convert(skb, check, \
3532 compute_pseudo(skb, proto)); \
3533 } while (0)
3534
3535 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3536 u16 start, u16 offset)
3537 {
3538 skb->ip_summed = CHECKSUM_PARTIAL;
3539 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3540 skb->csum_offset = offset - start;
3541 }
3542
3543 /* Update skbuf and packet to reflect the remote checksum offload operation.
3544 * When called, ptr indicates the starting point for skb->csum when
3545 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3546 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3547 */
3548 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3549 int start, int offset, bool nopartial)
3550 {
3551 __wsum delta;
3552
3553 if (!nopartial) {
3554 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3555 return;
3556 }
3557
3558 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3559 __skb_checksum_complete(skb);
3560 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3561 }
3562
3563 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3564
3565 /* Adjust skb->csum since we changed the packet */
3566 skb->csum = csum_add(skb->csum, delta);
3567 }
3568
3569 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3570 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3571 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3572 {
3573 if (nfct && atomic_dec_and_test(&nfct->use))
3574 nf_conntrack_destroy(nfct);
3575 }
3576 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3577 {
3578 if (nfct)
3579 atomic_inc(&nfct->use);
3580 }
3581 #endif
3582 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3583 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3584 {
3585 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3586 kfree(nf_bridge);
3587 }
3588 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3589 {
3590 if (nf_bridge)
3591 atomic_inc(&nf_bridge->use);
3592 }
3593 #endif /* CONFIG_BRIDGE_NETFILTER */
3594 static inline void nf_reset(struct sk_buff *skb)
3595 {
3596 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3597 nf_conntrack_put(skb->nfct);
3598 skb->nfct = NULL;
3599 #endif
3600 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3601 nf_bridge_put(skb->nf_bridge);
3602 skb->nf_bridge = NULL;
3603 #endif
3604 }
3605
3606 static inline void nf_reset_trace(struct sk_buff *skb)
3607 {
3608 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3609 skb->nf_trace = 0;
3610 #endif
3611 }
3612
3613 static inline void ipvs_reset(struct sk_buff *skb)
3614 {
3615 #if IS_ENABLED(CONFIG_IP_VS)
3616 skb->ipvs_property = 0;
3617 #endif
3618 }
3619
3620 /* Note: This doesn't put any conntrack and bridge info in dst. */
3621 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3622 bool copy)
3623 {
3624 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3625 dst->nfct = src->nfct;
3626 nf_conntrack_get(src->nfct);
3627 if (copy)
3628 dst->nfctinfo = src->nfctinfo;
3629 #endif
3630 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3631 dst->nf_bridge = src->nf_bridge;
3632 nf_bridge_get(src->nf_bridge);
3633 #endif
3634 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3635 if (copy)
3636 dst->nf_trace = src->nf_trace;
3637 #endif
3638 }
3639
3640 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3641 {
3642 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3643 nf_conntrack_put(dst->nfct);
3644 #endif
3645 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3646 nf_bridge_put(dst->nf_bridge);
3647 #endif
3648 __nf_copy(dst, src, true);
3649 }
3650
3651 #ifdef CONFIG_NETWORK_SECMARK
3652 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3653 {
3654 to->secmark = from->secmark;
3655 }
3656
3657 static inline void skb_init_secmark(struct sk_buff *skb)
3658 {
3659 skb->secmark = 0;
3660 }
3661 #else
3662 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3663 { }
3664
3665 static inline void skb_init_secmark(struct sk_buff *skb)
3666 { }
3667 #endif
3668
3669 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3670 {
3671 return !skb->destructor &&
3672 #if IS_ENABLED(CONFIG_XFRM)
3673 !skb->sp &&
3674 #endif
3675 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3676 !skb->nfct &&
3677 #endif
3678 !skb->_skb_refdst &&
3679 !skb_has_frag_list(skb);
3680 }
3681
3682 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3683 {
3684 skb->queue_mapping = queue_mapping;
3685 }
3686
3687 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3688 {
3689 return skb->queue_mapping;
3690 }
3691
3692 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3693 {
3694 to->queue_mapping = from->queue_mapping;
3695 }
3696
3697 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3698 {
3699 skb->queue_mapping = rx_queue + 1;
3700 }
3701
3702 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3703 {
3704 return skb->queue_mapping - 1;
3705 }
3706
3707 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3708 {
3709 return skb->queue_mapping != 0;
3710 }
3711
3712 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3713 {
3714 #ifdef CONFIG_XFRM
3715 return skb->sp;
3716 #else
3717 return NULL;
3718 #endif
3719 }
3720
3721 /* Keeps track of mac header offset relative to skb->head.
3722 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3723 * For non-tunnel skb it points to skb_mac_header() and for
3724 * tunnel skb it points to outer mac header.
3725 * Keeps track of level of encapsulation of network headers.
3726 */
3727 struct skb_gso_cb {
3728 union {
3729 int mac_offset;
3730 int data_offset;
3731 };
3732 int encap_level;
3733 __wsum csum;
3734 __u16 csum_start;
3735 };
3736 #define SKB_SGO_CB_OFFSET 32
3737 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3738
3739 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3740 {
3741 return (skb_mac_header(inner_skb) - inner_skb->head) -
3742 SKB_GSO_CB(inner_skb)->mac_offset;
3743 }
3744
3745 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3746 {
3747 int new_headroom, headroom;
3748 int ret;
3749
3750 headroom = skb_headroom(skb);
3751 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3752 if (ret)
3753 return ret;
3754
3755 new_headroom = skb_headroom(skb);
3756 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3757 return 0;
3758 }
3759
3760 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3761 {
3762 /* Do not update partial checksums if remote checksum is enabled. */
3763 if (skb->remcsum_offload)
3764 return;
3765
3766 SKB_GSO_CB(skb)->csum = res;
3767 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3768 }
3769
3770 /* Compute the checksum for a gso segment. First compute the checksum value
3771 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3772 * then add in skb->csum (checksum from csum_start to end of packet).
3773 * skb->csum and csum_start are then updated to reflect the checksum of the
3774 * resultant packet starting from the transport header-- the resultant checksum
3775 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3776 * header.
3777 */
3778 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3779 {
3780 unsigned char *csum_start = skb_transport_header(skb);
3781 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3782 __wsum partial = SKB_GSO_CB(skb)->csum;
3783
3784 SKB_GSO_CB(skb)->csum = res;
3785 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3786
3787 return csum_fold(csum_partial(csum_start, plen, partial));
3788 }
3789
3790 static inline bool skb_is_gso(const struct sk_buff *skb)
3791 {
3792 return skb_shinfo(skb)->gso_size;
3793 }
3794
3795 /* Note: Should be called only if skb_is_gso(skb) is true */
3796 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3797 {
3798 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3799 }
3800
3801 static inline void skb_gso_reset(struct sk_buff *skb)
3802 {
3803 skb_shinfo(skb)->gso_size = 0;
3804 skb_shinfo(skb)->gso_segs = 0;
3805 skb_shinfo(skb)->gso_type = 0;
3806 }
3807
3808 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3809
3810 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3811 {
3812 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3813 * wanted then gso_type will be set. */
3814 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3815
3816 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3817 unlikely(shinfo->gso_type == 0)) {
3818 __skb_warn_lro_forwarding(skb);
3819 return true;
3820 }
3821 return false;
3822 }
3823
3824 static inline void skb_forward_csum(struct sk_buff *skb)
3825 {
3826 /* Unfortunately we don't support this one. Any brave souls? */
3827 if (skb->ip_summed == CHECKSUM_COMPLETE)
3828 skb->ip_summed = CHECKSUM_NONE;
3829 }
3830
3831 /**
3832 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3833 * @skb: skb to check
3834 *
3835 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3836 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3837 * use this helper, to document places where we make this assertion.
3838 */
3839 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3840 {
3841 #ifdef DEBUG
3842 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3843 #endif
3844 }
3845
3846 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3847
3848 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3849 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3850 unsigned int transport_len,
3851 __sum16(*skb_chkf)(struct sk_buff *skb));
3852
3853 /**
3854 * skb_head_is_locked - Determine if the skb->head is locked down
3855 * @skb: skb to check
3856 *
3857 * The head on skbs build around a head frag can be removed if they are
3858 * not cloned. This function returns true if the skb head is locked down
3859 * due to either being allocated via kmalloc, or by being a clone with
3860 * multiple references to the head.
3861 */
3862 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3863 {
3864 return !skb->head_frag || skb_cloned(skb);
3865 }
3866
3867 /**
3868 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3869 *
3870 * @skb: GSO skb
3871 *
3872 * skb_gso_network_seglen is used to determine the real size of the
3873 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3874 *
3875 * The MAC/L2 header is not accounted for.
3876 */
3877 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3878 {
3879 unsigned int hdr_len = skb_transport_header(skb) -
3880 skb_network_header(skb);
3881 return hdr_len + skb_gso_transport_seglen(skb);
3882 }
3883
3884 /**
3885 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
3886 *
3887 * @skb: GSO skb
3888 *
3889 * skb_gso_mac_seglen is used to determine the real size of the
3890 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
3891 * headers (TCP/UDP).
3892 */
3893 static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
3894 {
3895 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3896 return hdr_len + skb_gso_transport_seglen(skb);
3897 }
3898
3899 /* Local Checksum Offload.
3900 * Compute outer checksum based on the assumption that the
3901 * inner checksum will be offloaded later.
3902 * See Documentation/networking/checksum-offloads.txt for
3903 * explanation of how this works.
3904 * Fill in outer checksum adjustment (e.g. with sum of outer
3905 * pseudo-header) before calling.
3906 * Also ensure that inner checksum is in linear data area.
3907 */
3908 static inline __wsum lco_csum(struct sk_buff *skb)
3909 {
3910 unsigned char *csum_start = skb_checksum_start(skb);
3911 unsigned char *l4_hdr = skb_transport_header(skb);
3912 __wsum partial;
3913
3914 /* Start with complement of inner checksum adjustment */
3915 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3916 skb->csum_offset));
3917
3918 /* Add in checksum of our headers (incl. outer checksum
3919 * adjustment filled in by caller) and return result.
3920 */
3921 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3922 }
3923
3924 #endif /* __KERNEL__ */
3925 #endif /* _LINUX_SKBUFF_H */