Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <net/flow_keys.h>
36
37 /* Don't change this without changing skb_csum_unnecessary! */
38 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 1
40 #define CHECKSUM_COMPLETE 2
41 #define CHECKSUM_PARTIAL 3
42
43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_WITH_OVERHEAD(X) \
46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47 #define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
52 /* return minimum truesize of one skb containing X bytes of data */
53 #define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
57 /* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
68 * COMPLETE: the most generic way. Device supplied checksum of _all_
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
71 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * not UNNECESSARY.
73 *
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 *
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109 struct net_device;
110 struct scatterlist;
111 struct pipe_inode_info;
112
113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114 struct nf_conntrack {
115 atomic_t use;
116 };
117 #endif
118
119 #ifdef CONFIG_BRIDGE_NETFILTER
120 struct nf_bridge_info {
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
126 };
127 #endif
128
129 struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136 };
137
138 struct sk_buff;
139
140 /* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
146 */
147 #if (65536/PAGE_SIZE + 1) < 16
148 #define MAX_SKB_FRAGS 16UL
149 #else
150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151 #endif
152
153 typedef struct skb_frag_struct skb_frag_t;
154
155 struct skb_frag_struct {
156 struct {
157 struct page *p;
158 } page;
159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 __u32 page_offset;
161 __u32 size;
162 #else
163 __u16 page_offset;
164 __u16 size;
165 #endif
166 };
167
168 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 {
170 return frag->size;
171 }
172
173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 {
175 frag->size = size;
176 }
177
178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 {
180 frag->size += delta;
181 }
182
183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 {
185 frag->size -= delta;
186 }
187
188 #define HAVE_HW_TIME_STAMP
189
190 /**
191 * struct skb_shared_hwtstamps - hardware time stamps
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213 struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216 };
217
218 /* Definitions for tx_flags in struct skb_shared_info */
219 enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
229 /* device driver supports TX zero-copy buffers */
230 SKBTX_DEV_ZEROCOPY = 1 << 3,
231
232 /* generate wifi status information (where possible) */
233 SKBTX_WIFI_STATUS = 1 << 4,
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
241 };
242
243 /*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
250 */
251 struct ubuf_info {
252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 void *ctx;
254 unsigned long desc;
255 };
256
257 /* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260 struct skb_shared_info {
261 unsigned char nr_frags;
262 __u8 tx_flags;
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
267 struct sk_buff *frag_list;
268 struct skb_shared_hwtstamps hwtstamps;
269 __be32 ip6_frag_id;
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
279
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
282 };
283
284 /* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295 #define SKB_DATAREF_SHIFT 16
296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
298
299 enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303 };
304
305 enum {
306 SKB_GSO_TCPV4 = 1 << 0,
307 SKB_GSO_UDP = 1 << 1,
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
311
312 /* This indicates the tcp segment has CWR set. */
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
316
317 SKB_GSO_FCOE = 1 << 5,
318
319 SKB_GSO_GRE = 1 << 6,
320
321 SKB_GSO_UDP_TUNNEL = 1 << 7,
322 };
323
324 #if BITS_PER_LONG > 32
325 #define NET_SKBUFF_DATA_USES_OFFSET 1
326 #endif
327
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 typedef unsigned int sk_buff_data_t;
330 #else
331 typedef unsigned char *sk_buff_data_t;
332 #endif
333
334 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
335 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
336 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
337 #endif
338
339 /**
340 * struct sk_buff - socket buffer
341 * @next: Next buffer in list
342 * @prev: Previous buffer in list
343 * @tstamp: Time we arrived
344 * @sk: Socket we are owned by
345 * @dev: Device we arrived on/are leaving by
346 * @cb: Control buffer. Free for use by every layer. Put private vars here
347 * @_skb_refdst: destination entry (with norefcount bit)
348 * @sp: the security path, used for xfrm
349 * @len: Length of actual data
350 * @data_len: Data length
351 * @mac_len: Length of link layer header
352 * @hdr_len: writable header length of cloned skb
353 * @csum: Checksum (must include start/offset pair)
354 * @csum_start: Offset from skb->head where checksumming should start
355 * @csum_offset: Offset from csum_start where checksum should be stored
356 * @priority: Packet queueing priority
357 * @local_df: allow local fragmentation
358 * @cloned: Head may be cloned (check refcnt to be sure)
359 * @ip_summed: Driver fed us an IP checksum
360 * @nohdr: Payload reference only, must not modify header
361 * @nfctinfo: Relationship of this skb to the connection
362 * @pkt_type: Packet class
363 * @fclone: skbuff clone status
364 * @ipvs_property: skbuff is owned by ipvs
365 * @peeked: this packet has been seen already, so stats have been
366 * done for it, don't do them again
367 * @nf_trace: netfilter packet trace flag
368 * @protocol: Packet protocol from driver
369 * @destructor: Destruct function
370 * @nfct: Associated connection, if any
371 * @nfct_reasm: netfilter conntrack re-assembly pointer
372 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
373 * @skb_iif: ifindex of device we arrived on
374 * @tc_index: Traffic control index
375 * @tc_verd: traffic control verdict
376 * @rxhash: the packet hash computed on receive
377 * @queue_mapping: Queue mapping for multiqueue devices
378 * @ndisc_nodetype: router type (from link layer)
379 * @ooo_okay: allow the mapping of a socket to a queue to be changed
380 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
381 * ports.
382 * @wifi_acked_valid: wifi_acked was set
383 * @wifi_acked: whether frame was acked on wifi or not
384 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
385 * @dma_cookie: a cookie to one of several possible DMA operations
386 * done by skb DMA functions
387 * @secmark: security marking
388 * @mark: Generic packet mark
389 * @dropcount: total number of sk_receive_queue overflows
390 * @vlan_proto: vlan encapsulation protocol
391 * @vlan_tci: vlan tag control information
392 * @inner_transport_header: Inner transport layer header (encapsulation)
393 * @inner_network_header: Network layer header (encapsulation)
394 * @inner_mac_header: Link layer header (encapsulation)
395 * @transport_header: Transport layer header
396 * @network_header: Network layer header
397 * @mac_header: Link layer header
398 * @tail: Tail pointer
399 * @end: End pointer
400 * @head: Head of buffer
401 * @data: Data head pointer
402 * @truesize: Buffer size
403 * @users: User count - see {datagram,tcp}.c
404 */
405
406 struct sk_buff {
407 /* These two members must be first. */
408 struct sk_buff *next;
409 struct sk_buff *prev;
410
411 ktime_t tstamp;
412
413 struct sock *sk;
414 struct net_device *dev;
415
416 /*
417 * This is the control buffer. It is free to use for every
418 * layer. Please put your private variables there. If you
419 * want to keep them across layers you have to do a skb_clone()
420 * first. This is owned by whoever has the skb queued ATM.
421 */
422 char cb[48] __aligned(8);
423
424 unsigned long _skb_refdst;
425 #ifdef CONFIG_XFRM
426 struct sec_path *sp;
427 #endif
428 unsigned int len,
429 data_len;
430 __u16 mac_len,
431 hdr_len;
432 union {
433 __wsum csum;
434 struct {
435 __u16 csum_start;
436 __u16 csum_offset;
437 };
438 };
439 __u32 priority;
440 kmemcheck_bitfield_begin(flags1);
441 __u8 local_df:1,
442 cloned:1,
443 ip_summed:2,
444 nohdr:1,
445 nfctinfo:3;
446 __u8 pkt_type:3,
447 fclone:2,
448 ipvs_property:1,
449 peeked:1,
450 nf_trace:1;
451 kmemcheck_bitfield_end(flags1);
452 __be16 protocol;
453
454 void (*destructor)(struct sk_buff *skb);
455 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
456 struct nf_conntrack *nfct;
457 #endif
458 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
459 struct sk_buff *nfct_reasm;
460 #endif
461 #ifdef CONFIG_BRIDGE_NETFILTER
462 struct nf_bridge_info *nf_bridge;
463 #endif
464
465 int skb_iif;
466
467 __u32 rxhash;
468
469 __be16 vlan_proto;
470 __u16 vlan_tci;
471
472 #ifdef CONFIG_NET_SCHED
473 __u16 tc_index; /* traffic control index */
474 #ifdef CONFIG_NET_CLS_ACT
475 __u16 tc_verd; /* traffic control verdict */
476 #endif
477 #endif
478
479 __u16 queue_mapping;
480 kmemcheck_bitfield_begin(flags2);
481 #ifdef CONFIG_IPV6_NDISC_NODETYPE
482 __u8 ndisc_nodetype:2;
483 #endif
484 __u8 pfmemalloc:1;
485 __u8 ooo_okay:1;
486 __u8 l4_rxhash:1;
487 __u8 wifi_acked_valid:1;
488 __u8 wifi_acked:1;
489 __u8 no_fcs:1;
490 __u8 head_frag:1;
491 /* Encapsulation protocol and NIC drivers should use
492 * this flag to indicate to each other if the skb contains
493 * encapsulated packet or not and maybe use the inner packet
494 * headers if needed
495 */
496 __u8 encapsulation:1;
497 /* 7/9 bit hole (depending on ndisc_nodetype presence) */
498 kmemcheck_bitfield_end(flags2);
499
500 #ifdef CONFIG_NET_DMA
501 dma_cookie_t dma_cookie;
502 #endif
503 #ifdef CONFIG_NETWORK_SECMARK
504 __u32 secmark;
505 #endif
506 union {
507 __u32 mark;
508 __u32 dropcount;
509 __u32 reserved_tailroom;
510 };
511
512 sk_buff_data_t inner_transport_header;
513 sk_buff_data_t inner_network_header;
514 sk_buff_data_t inner_mac_header;
515 sk_buff_data_t transport_header;
516 sk_buff_data_t network_header;
517 sk_buff_data_t mac_header;
518 /* These elements must be at the end, see alloc_skb() for details. */
519 sk_buff_data_t tail;
520 sk_buff_data_t end;
521 unsigned char *head,
522 *data;
523 unsigned int truesize;
524 atomic_t users;
525 };
526
527 #ifdef __KERNEL__
528 /*
529 * Handling routines are only of interest to the kernel
530 */
531 #include <linux/slab.h>
532
533
534 #define SKB_ALLOC_FCLONE 0x01
535 #define SKB_ALLOC_RX 0x02
536
537 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
538 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
539 {
540 return unlikely(skb->pfmemalloc);
541 }
542
543 /*
544 * skb might have a dst pointer attached, refcounted or not.
545 * _skb_refdst low order bit is set if refcount was _not_ taken
546 */
547 #define SKB_DST_NOREF 1UL
548 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
549
550 /**
551 * skb_dst - returns skb dst_entry
552 * @skb: buffer
553 *
554 * Returns skb dst_entry, regardless of reference taken or not.
555 */
556 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
557 {
558 /* If refdst was not refcounted, check we still are in a
559 * rcu_read_lock section
560 */
561 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
562 !rcu_read_lock_held() &&
563 !rcu_read_lock_bh_held());
564 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
565 }
566
567 /**
568 * skb_dst_set - sets skb dst
569 * @skb: buffer
570 * @dst: dst entry
571 *
572 * Sets skb dst, assuming a reference was taken on dst and should
573 * be released by skb_dst_drop()
574 */
575 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
576 {
577 skb->_skb_refdst = (unsigned long)dst;
578 }
579
580 extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
581 bool force);
582
583 /**
584 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
585 * @skb: buffer
586 * @dst: dst entry
587 *
588 * Sets skb dst, assuming a reference was not taken on dst.
589 * If dst entry is cached, we do not take reference and dst_release
590 * will be avoided by refdst_drop. If dst entry is not cached, we take
591 * reference, so that last dst_release can destroy the dst immediately.
592 */
593 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
594 {
595 __skb_dst_set_noref(skb, dst, false);
596 }
597
598 /**
599 * skb_dst_set_noref_force - sets skb dst, without taking reference
600 * @skb: buffer
601 * @dst: dst entry
602 *
603 * Sets skb dst, assuming a reference was not taken on dst.
604 * No reference is taken and no dst_release will be called. While for
605 * cached dsts deferred reclaim is a basic feature, for entries that are
606 * not cached it is caller's job to guarantee that last dst_release for
607 * provided dst happens when nobody uses it, eg. after a RCU grace period.
608 */
609 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
610 struct dst_entry *dst)
611 {
612 __skb_dst_set_noref(skb, dst, true);
613 }
614
615 /**
616 * skb_dst_is_noref - Test if skb dst isn't refcounted
617 * @skb: buffer
618 */
619 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
620 {
621 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
622 }
623
624 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
625 {
626 return (struct rtable *)skb_dst(skb);
627 }
628
629 extern void kfree_skb(struct sk_buff *skb);
630 extern void kfree_skb_list(struct sk_buff *segs);
631 extern void skb_tx_error(struct sk_buff *skb);
632 extern void consume_skb(struct sk_buff *skb);
633 extern void __kfree_skb(struct sk_buff *skb);
634 extern struct kmem_cache *skbuff_head_cache;
635
636 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
637 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
638 bool *fragstolen, int *delta_truesize);
639
640 extern struct sk_buff *__alloc_skb(unsigned int size,
641 gfp_t priority, int flags, int node);
642 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
643 static inline struct sk_buff *alloc_skb(unsigned int size,
644 gfp_t priority)
645 {
646 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
647 }
648
649 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
650 gfp_t priority)
651 {
652 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
653 }
654
655 extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
656 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
657 {
658 return __alloc_skb_head(priority, -1);
659 }
660
661 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
662 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
663 extern struct sk_buff *skb_clone(struct sk_buff *skb,
664 gfp_t priority);
665 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
666 gfp_t priority);
667 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
668 int headroom, gfp_t gfp_mask);
669
670 extern int pskb_expand_head(struct sk_buff *skb,
671 int nhead, int ntail,
672 gfp_t gfp_mask);
673 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
674 unsigned int headroom);
675 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
676 int newheadroom, int newtailroom,
677 gfp_t priority);
678 extern int skb_to_sgvec(struct sk_buff *skb,
679 struct scatterlist *sg, int offset,
680 int len);
681 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
682 struct sk_buff **trailer);
683 extern int skb_pad(struct sk_buff *skb, int pad);
684 #define dev_kfree_skb(a) consume_skb(a)
685
686 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
687 int getfrag(void *from, char *to, int offset,
688 int len,int odd, struct sk_buff *skb),
689 void *from, int length);
690
691 struct skb_seq_state {
692 __u32 lower_offset;
693 __u32 upper_offset;
694 __u32 frag_idx;
695 __u32 stepped_offset;
696 struct sk_buff *root_skb;
697 struct sk_buff *cur_skb;
698 __u8 *frag_data;
699 };
700
701 extern void skb_prepare_seq_read(struct sk_buff *skb,
702 unsigned int from, unsigned int to,
703 struct skb_seq_state *st);
704 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
705 struct skb_seq_state *st);
706 extern void skb_abort_seq_read(struct skb_seq_state *st);
707
708 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
709 unsigned int to, struct ts_config *config,
710 struct ts_state *state);
711
712 extern void __skb_get_rxhash(struct sk_buff *skb);
713 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
714 {
715 if (!skb->l4_rxhash)
716 __skb_get_rxhash(skb);
717
718 return skb->rxhash;
719 }
720
721 #ifdef NET_SKBUFF_DATA_USES_OFFSET
722 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
723 {
724 return skb->head + skb->end;
725 }
726
727 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
728 {
729 return skb->end;
730 }
731 #else
732 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
733 {
734 return skb->end;
735 }
736
737 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
738 {
739 return skb->end - skb->head;
740 }
741 #endif
742
743 /* Internal */
744 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
745
746 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
747 {
748 return &skb_shinfo(skb)->hwtstamps;
749 }
750
751 /**
752 * skb_queue_empty - check if a queue is empty
753 * @list: queue head
754 *
755 * Returns true if the queue is empty, false otherwise.
756 */
757 static inline int skb_queue_empty(const struct sk_buff_head *list)
758 {
759 return list->next == (struct sk_buff *)list;
760 }
761
762 /**
763 * skb_queue_is_last - check if skb is the last entry in the queue
764 * @list: queue head
765 * @skb: buffer
766 *
767 * Returns true if @skb is the last buffer on the list.
768 */
769 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
770 const struct sk_buff *skb)
771 {
772 return skb->next == (struct sk_buff *)list;
773 }
774
775 /**
776 * skb_queue_is_first - check if skb is the first entry in the queue
777 * @list: queue head
778 * @skb: buffer
779 *
780 * Returns true if @skb is the first buffer on the list.
781 */
782 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
783 const struct sk_buff *skb)
784 {
785 return skb->prev == (struct sk_buff *)list;
786 }
787
788 /**
789 * skb_queue_next - return the next packet in the queue
790 * @list: queue head
791 * @skb: current buffer
792 *
793 * Return the next packet in @list after @skb. It is only valid to
794 * call this if skb_queue_is_last() evaluates to false.
795 */
796 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
797 const struct sk_buff *skb)
798 {
799 /* This BUG_ON may seem severe, but if we just return then we
800 * are going to dereference garbage.
801 */
802 BUG_ON(skb_queue_is_last(list, skb));
803 return skb->next;
804 }
805
806 /**
807 * skb_queue_prev - return the prev packet in the queue
808 * @list: queue head
809 * @skb: current buffer
810 *
811 * Return the prev packet in @list before @skb. It is only valid to
812 * call this if skb_queue_is_first() evaluates to false.
813 */
814 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
815 const struct sk_buff *skb)
816 {
817 /* This BUG_ON may seem severe, but if we just return then we
818 * are going to dereference garbage.
819 */
820 BUG_ON(skb_queue_is_first(list, skb));
821 return skb->prev;
822 }
823
824 /**
825 * skb_get - reference buffer
826 * @skb: buffer to reference
827 *
828 * Makes another reference to a socket buffer and returns a pointer
829 * to the buffer.
830 */
831 static inline struct sk_buff *skb_get(struct sk_buff *skb)
832 {
833 atomic_inc(&skb->users);
834 return skb;
835 }
836
837 /*
838 * If users == 1, we are the only owner and are can avoid redundant
839 * atomic change.
840 */
841
842 /**
843 * skb_cloned - is the buffer a clone
844 * @skb: buffer to check
845 *
846 * Returns true if the buffer was generated with skb_clone() and is
847 * one of multiple shared copies of the buffer. Cloned buffers are
848 * shared data so must not be written to under normal circumstances.
849 */
850 static inline int skb_cloned(const struct sk_buff *skb)
851 {
852 return skb->cloned &&
853 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
854 }
855
856 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
857 {
858 might_sleep_if(pri & __GFP_WAIT);
859
860 if (skb_cloned(skb))
861 return pskb_expand_head(skb, 0, 0, pri);
862
863 return 0;
864 }
865
866 /**
867 * skb_header_cloned - is the header a clone
868 * @skb: buffer to check
869 *
870 * Returns true if modifying the header part of the buffer requires
871 * the data to be copied.
872 */
873 static inline int skb_header_cloned(const struct sk_buff *skb)
874 {
875 int dataref;
876
877 if (!skb->cloned)
878 return 0;
879
880 dataref = atomic_read(&skb_shinfo(skb)->dataref);
881 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
882 return dataref != 1;
883 }
884
885 /**
886 * skb_header_release - release reference to header
887 * @skb: buffer to operate on
888 *
889 * Drop a reference to the header part of the buffer. This is done
890 * by acquiring a payload reference. You must not read from the header
891 * part of skb->data after this.
892 */
893 static inline void skb_header_release(struct sk_buff *skb)
894 {
895 BUG_ON(skb->nohdr);
896 skb->nohdr = 1;
897 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
898 }
899
900 /**
901 * skb_shared - is the buffer shared
902 * @skb: buffer to check
903 *
904 * Returns true if more than one person has a reference to this
905 * buffer.
906 */
907 static inline int skb_shared(const struct sk_buff *skb)
908 {
909 return atomic_read(&skb->users) != 1;
910 }
911
912 /**
913 * skb_share_check - check if buffer is shared and if so clone it
914 * @skb: buffer to check
915 * @pri: priority for memory allocation
916 *
917 * If the buffer is shared the buffer is cloned and the old copy
918 * drops a reference. A new clone with a single reference is returned.
919 * If the buffer is not shared the original buffer is returned. When
920 * being called from interrupt status or with spinlocks held pri must
921 * be GFP_ATOMIC.
922 *
923 * NULL is returned on a memory allocation failure.
924 */
925 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
926 {
927 might_sleep_if(pri & __GFP_WAIT);
928 if (skb_shared(skb)) {
929 struct sk_buff *nskb = skb_clone(skb, pri);
930
931 if (likely(nskb))
932 consume_skb(skb);
933 else
934 kfree_skb(skb);
935 skb = nskb;
936 }
937 return skb;
938 }
939
940 /*
941 * Copy shared buffers into a new sk_buff. We effectively do COW on
942 * packets to handle cases where we have a local reader and forward
943 * and a couple of other messy ones. The normal one is tcpdumping
944 * a packet thats being forwarded.
945 */
946
947 /**
948 * skb_unshare - make a copy of a shared buffer
949 * @skb: buffer to check
950 * @pri: priority for memory allocation
951 *
952 * If the socket buffer is a clone then this function creates a new
953 * copy of the data, drops a reference count on the old copy and returns
954 * the new copy with the reference count at 1. If the buffer is not a clone
955 * the original buffer is returned. When called with a spinlock held or
956 * from interrupt state @pri must be %GFP_ATOMIC
957 *
958 * %NULL is returned on a memory allocation failure.
959 */
960 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
961 gfp_t pri)
962 {
963 might_sleep_if(pri & __GFP_WAIT);
964 if (skb_cloned(skb)) {
965 struct sk_buff *nskb = skb_copy(skb, pri);
966 kfree_skb(skb); /* Free our shared copy */
967 skb = nskb;
968 }
969 return skb;
970 }
971
972 /**
973 * skb_peek - peek at the head of an &sk_buff_head
974 * @list_: list to peek at
975 *
976 * Peek an &sk_buff. Unlike most other operations you _MUST_
977 * be careful with this one. A peek leaves the buffer on the
978 * list and someone else may run off with it. You must hold
979 * the appropriate locks or have a private queue to do this.
980 *
981 * Returns %NULL for an empty list or a pointer to the head element.
982 * The reference count is not incremented and the reference is therefore
983 * volatile. Use with caution.
984 */
985 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
986 {
987 struct sk_buff *skb = list_->next;
988
989 if (skb == (struct sk_buff *)list_)
990 skb = NULL;
991 return skb;
992 }
993
994 /**
995 * skb_peek_next - peek skb following the given one from a queue
996 * @skb: skb to start from
997 * @list_: list to peek at
998 *
999 * Returns %NULL when the end of the list is met or a pointer to the
1000 * next element. The reference count is not incremented and the
1001 * reference is therefore volatile. Use with caution.
1002 */
1003 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1004 const struct sk_buff_head *list_)
1005 {
1006 struct sk_buff *next = skb->next;
1007
1008 if (next == (struct sk_buff *)list_)
1009 next = NULL;
1010 return next;
1011 }
1012
1013 /**
1014 * skb_peek_tail - peek at the tail of an &sk_buff_head
1015 * @list_: list to peek at
1016 *
1017 * Peek an &sk_buff. Unlike most other operations you _MUST_
1018 * be careful with this one. A peek leaves the buffer on the
1019 * list and someone else may run off with it. You must hold
1020 * the appropriate locks or have a private queue to do this.
1021 *
1022 * Returns %NULL for an empty list or a pointer to the tail element.
1023 * The reference count is not incremented and the reference is therefore
1024 * volatile. Use with caution.
1025 */
1026 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1027 {
1028 struct sk_buff *skb = list_->prev;
1029
1030 if (skb == (struct sk_buff *)list_)
1031 skb = NULL;
1032 return skb;
1033
1034 }
1035
1036 /**
1037 * skb_queue_len - get queue length
1038 * @list_: list to measure
1039 *
1040 * Return the length of an &sk_buff queue.
1041 */
1042 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1043 {
1044 return list_->qlen;
1045 }
1046
1047 /**
1048 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1049 * @list: queue to initialize
1050 *
1051 * This initializes only the list and queue length aspects of
1052 * an sk_buff_head object. This allows to initialize the list
1053 * aspects of an sk_buff_head without reinitializing things like
1054 * the spinlock. It can also be used for on-stack sk_buff_head
1055 * objects where the spinlock is known to not be used.
1056 */
1057 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1058 {
1059 list->prev = list->next = (struct sk_buff *)list;
1060 list->qlen = 0;
1061 }
1062
1063 /*
1064 * This function creates a split out lock class for each invocation;
1065 * this is needed for now since a whole lot of users of the skb-queue
1066 * infrastructure in drivers have different locking usage (in hardirq)
1067 * than the networking core (in softirq only). In the long run either the
1068 * network layer or drivers should need annotation to consolidate the
1069 * main types of usage into 3 classes.
1070 */
1071 static inline void skb_queue_head_init(struct sk_buff_head *list)
1072 {
1073 spin_lock_init(&list->lock);
1074 __skb_queue_head_init(list);
1075 }
1076
1077 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1078 struct lock_class_key *class)
1079 {
1080 skb_queue_head_init(list);
1081 lockdep_set_class(&list->lock, class);
1082 }
1083
1084 /*
1085 * Insert an sk_buff on a list.
1086 *
1087 * The "__skb_xxxx()" functions are the non-atomic ones that
1088 * can only be called with interrupts disabled.
1089 */
1090 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1091 static inline void __skb_insert(struct sk_buff *newsk,
1092 struct sk_buff *prev, struct sk_buff *next,
1093 struct sk_buff_head *list)
1094 {
1095 newsk->next = next;
1096 newsk->prev = prev;
1097 next->prev = prev->next = newsk;
1098 list->qlen++;
1099 }
1100
1101 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1102 struct sk_buff *prev,
1103 struct sk_buff *next)
1104 {
1105 struct sk_buff *first = list->next;
1106 struct sk_buff *last = list->prev;
1107
1108 first->prev = prev;
1109 prev->next = first;
1110
1111 last->next = next;
1112 next->prev = last;
1113 }
1114
1115 /**
1116 * skb_queue_splice - join two skb lists, this is designed for stacks
1117 * @list: the new list to add
1118 * @head: the place to add it in the first list
1119 */
1120 static inline void skb_queue_splice(const struct sk_buff_head *list,
1121 struct sk_buff_head *head)
1122 {
1123 if (!skb_queue_empty(list)) {
1124 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1125 head->qlen += list->qlen;
1126 }
1127 }
1128
1129 /**
1130 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1131 * @list: the new list to add
1132 * @head: the place to add it in the first list
1133 *
1134 * The list at @list is reinitialised
1135 */
1136 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1137 struct sk_buff_head *head)
1138 {
1139 if (!skb_queue_empty(list)) {
1140 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1141 head->qlen += list->qlen;
1142 __skb_queue_head_init(list);
1143 }
1144 }
1145
1146 /**
1147 * skb_queue_splice_tail - join two skb lists, each list being a queue
1148 * @list: the new list to add
1149 * @head: the place to add it in the first list
1150 */
1151 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1152 struct sk_buff_head *head)
1153 {
1154 if (!skb_queue_empty(list)) {
1155 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1156 head->qlen += list->qlen;
1157 }
1158 }
1159
1160 /**
1161 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1162 * @list: the new list to add
1163 * @head: the place to add it in the first list
1164 *
1165 * Each of the lists is a queue.
1166 * The list at @list is reinitialised
1167 */
1168 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1169 struct sk_buff_head *head)
1170 {
1171 if (!skb_queue_empty(list)) {
1172 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1173 head->qlen += list->qlen;
1174 __skb_queue_head_init(list);
1175 }
1176 }
1177
1178 /**
1179 * __skb_queue_after - queue a buffer at the list head
1180 * @list: list to use
1181 * @prev: place after this buffer
1182 * @newsk: buffer to queue
1183 *
1184 * Queue a buffer int the middle of a list. This function takes no locks
1185 * and you must therefore hold required locks before calling it.
1186 *
1187 * A buffer cannot be placed on two lists at the same time.
1188 */
1189 static inline void __skb_queue_after(struct sk_buff_head *list,
1190 struct sk_buff *prev,
1191 struct sk_buff *newsk)
1192 {
1193 __skb_insert(newsk, prev, prev->next, list);
1194 }
1195
1196 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1197 struct sk_buff_head *list);
1198
1199 static inline void __skb_queue_before(struct sk_buff_head *list,
1200 struct sk_buff *next,
1201 struct sk_buff *newsk)
1202 {
1203 __skb_insert(newsk, next->prev, next, list);
1204 }
1205
1206 /**
1207 * __skb_queue_head - queue a buffer at the list head
1208 * @list: list to use
1209 * @newsk: buffer to queue
1210 *
1211 * Queue a buffer at the start of a list. This function takes no locks
1212 * and you must therefore hold required locks before calling it.
1213 *
1214 * A buffer cannot be placed on two lists at the same time.
1215 */
1216 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1217 static inline void __skb_queue_head(struct sk_buff_head *list,
1218 struct sk_buff *newsk)
1219 {
1220 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1221 }
1222
1223 /**
1224 * __skb_queue_tail - queue a buffer at the list tail
1225 * @list: list to use
1226 * @newsk: buffer to queue
1227 *
1228 * Queue a buffer at the end of a list. This function takes no locks
1229 * and you must therefore hold required locks before calling it.
1230 *
1231 * A buffer cannot be placed on two lists at the same time.
1232 */
1233 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1234 static inline void __skb_queue_tail(struct sk_buff_head *list,
1235 struct sk_buff *newsk)
1236 {
1237 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1238 }
1239
1240 /*
1241 * remove sk_buff from list. _Must_ be called atomically, and with
1242 * the list known..
1243 */
1244 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1245 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1246 {
1247 struct sk_buff *next, *prev;
1248
1249 list->qlen--;
1250 next = skb->next;
1251 prev = skb->prev;
1252 skb->next = skb->prev = NULL;
1253 next->prev = prev;
1254 prev->next = next;
1255 }
1256
1257 /**
1258 * __skb_dequeue - remove from the head of the queue
1259 * @list: list to dequeue from
1260 *
1261 * Remove the head of the list. This function does not take any locks
1262 * so must be used with appropriate locks held only. The head item is
1263 * returned or %NULL if the list is empty.
1264 */
1265 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1266 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1267 {
1268 struct sk_buff *skb = skb_peek(list);
1269 if (skb)
1270 __skb_unlink(skb, list);
1271 return skb;
1272 }
1273
1274 /**
1275 * __skb_dequeue_tail - remove from the tail of the queue
1276 * @list: list to dequeue from
1277 *
1278 * Remove the tail of the list. This function does not take any locks
1279 * so must be used with appropriate locks held only. The tail item is
1280 * returned or %NULL if the list is empty.
1281 */
1282 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1283 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1284 {
1285 struct sk_buff *skb = skb_peek_tail(list);
1286 if (skb)
1287 __skb_unlink(skb, list);
1288 return skb;
1289 }
1290
1291
1292 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1293 {
1294 return skb->data_len;
1295 }
1296
1297 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1298 {
1299 return skb->len - skb->data_len;
1300 }
1301
1302 static inline int skb_pagelen(const struct sk_buff *skb)
1303 {
1304 int i, len = 0;
1305
1306 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1307 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1308 return len + skb_headlen(skb);
1309 }
1310
1311 /**
1312 * __skb_fill_page_desc - initialise a paged fragment in an skb
1313 * @skb: buffer containing fragment to be initialised
1314 * @i: paged fragment index to initialise
1315 * @page: the page to use for this fragment
1316 * @off: the offset to the data with @page
1317 * @size: the length of the data
1318 *
1319 * Initialises the @i'th fragment of @skb to point to &size bytes at
1320 * offset @off within @page.
1321 *
1322 * Does not take any additional reference on the fragment.
1323 */
1324 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1325 struct page *page, int off, int size)
1326 {
1327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1328
1329 /*
1330 * Propagate page->pfmemalloc to the skb if we can. The problem is
1331 * that not all callers have unique ownership of the page. If
1332 * pfmemalloc is set, we check the mapping as a mapping implies
1333 * page->index is set (index and pfmemalloc share space).
1334 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1335 * do not lose pfmemalloc information as the pages would not be
1336 * allocated using __GFP_MEMALLOC.
1337 */
1338 frag->page.p = page;
1339 frag->page_offset = off;
1340 skb_frag_size_set(frag, size);
1341
1342 page = compound_head(page);
1343 if (page->pfmemalloc && !page->mapping)
1344 skb->pfmemalloc = true;
1345 }
1346
1347 /**
1348 * skb_fill_page_desc - initialise a paged fragment in an skb
1349 * @skb: buffer containing fragment to be initialised
1350 * @i: paged fragment index to initialise
1351 * @page: the page to use for this fragment
1352 * @off: the offset to the data with @page
1353 * @size: the length of the data
1354 *
1355 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1356 * @skb to point to &size bytes at offset @off within @page. In
1357 * addition updates @skb such that @i is the last fragment.
1358 *
1359 * Does not take any additional reference on the fragment.
1360 */
1361 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1362 struct page *page, int off, int size)
1363 {
1364 __skb_fill_page_desc(skb, i, page, off, size);
1365 skb_shinfo(skb)->nr_frags = i + 1;
1366 }
1367
1368 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1369 int off, int size, unsigned int truesize);
1370
1371 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1372 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1373 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1374
1375 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1376 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1377 {
1378 return skb->head + skb->tail;
1379 }
1380
1381 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1382 {
1383 skb->tail = skb->data - skb->head;
1384 }
1385
1386 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1387 {
1388 skb_reset_tail_pointer(skb);
1389 skb->tail += offset;
1390 }
1391 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1392 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1393 {
1394 return skb->tail;
1395 }
1396
1397 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1398 {
1399 skb->tail = skb->data;
1400 }
1401
1402 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1403 {
1404 skb->tail = skb->data + offset;
1405 }
1406
1407 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1408
1409 /*
1410 * Add data to an sk_buff
1411 */
1412 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1413 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1414 {
1415 unsigned char *tmp = skb_tail_pointer(skb);
1416 SKB_LINEAR_ASSERT(skb);
1417 skb->tail += len;
1418 skb->len += len;
1419 return tmp;
1420 }
1421
1422 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1423 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1424 {
1425 skb->data -= len;
1426 skb->len += len;
1427 return skb->data;
1428 }
1429
1430 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1431 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1432 {
1433 skb->len -= len;
1434 BUG_ON(skb->len < skb->data_len);
1435 return skb->data += len;
1436 }
1437
1438 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1439 {
1440 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1441 }
1442
1443 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1444
1445 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1446 {
1447 if (len > skb_headlen(skb) &&
1448 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1449 return NULL;
1450 skb->len -= len;
1451 return skb->data += len;
1452 }
1453
1454 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1455 {
1456 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1457 }
1458
1459 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1460 {
1461 if (likely(len <= skb_headlen(skb)))
1462 return 1;
1463 if (unlikely(len > skb->len))
1464 return 0;
1465 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1466 }
1467
1468 /**
1469 * skb_headroom - bytes at buffer head
1470 * @skb: buffer to check
1471 *
1472 * Return the number of bytes of free space at the head of an &sk_buff.
1473 */
1474 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1475 {
1476 return skb->data - skb->head;
1477 }
1478
1479 /**
1480 * skb_tailroom - bytes at buffer end
1481 * @skb: buffer to check
1482 *
1483 * Return the number of bytes of free space at the tail of an sk_buff
1484 */
1485 static inline int skb_tailroom(const struct sk_buff *skb)
1486 {
1487 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1488 }
1489
1490 /**
1491 * skb_availroom - bytes at buffer end
1492 * @skb: buffer to check
1493 *
1494 * Return the number of bytes of free space at the tail of an sk_buff
1495 * allocated by sk_stream_alloc()
1496 */
1497 static inline int skb_availroom(const struct sk_buff *skb)
1498 {
1499 if (skb_is_nonlinear(skb))
1500 return 0;
1501
1502 return skb->end - skb->tail - skb->reserved_tailroom;
1503 }
1504
1505 /**
1506 * skb_reserve - adjust headroom
1507 * @skb: buffer to alter
1508 * @len: bytes to move
1509 *
1510 * Increase the headroom of an empty &sk_buff by reducing the tail
1511 * room. This is only allowed for an empty buffer.
1512 */
1513 static inline void skb_reserve(struct sk_buff *skb, int len)
1514 {
1515 skb->data += len;
1516 skb->tail += len;
1517 }
1518
1519 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1520 {
1521 skb->inner_mac_header = skb->mac_header;
1522 skb->inner_network_header = skb->network_header;
1523 skb->inner_transport_header = skb->transport_header;
1524 }
1525
1526 static inline void skb_reset_mac_len(struct sk_buff *skb)
1527 {
1528 skb->mac_len = skb->network_header - skb->mac_header;
1529 }
1530
1531 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1532 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1533 *skb)
1534 {
1535 return skb->head + skb->inner_transport_header;
1536 }
1537
1538 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1539 {
1540 skb->inner_transport_header = skb->data - skb->head;
1541 }
1542
1543 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1544 const int offset)
1545 {
1546 skb_reset_inner_transport_header(skb);
1547 skb->inner_transport_header += offset;
1548 }
1549
1550 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1551 {
1552 return skb->head + skb->inner_network_header;
1553 }
1554
1555 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1556 {
1557 skb->inner_network_header = skb->data - skb->head;
1558 }
1559
1560 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1561 const int offset)
1562 {
1563 skb_reset_inner_network_header(skb);
1564 skb->inner_network_header += offset;
1565 }
1566
1567 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1568 {
1569 return skb->head + skb->inner_mac_header;
1570 }
1571
1572 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1573 {
1574 skb->inner_mac_header = skb->data - skb->head;
1575 }
1576
1577 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1578 const int offset)
1579 {
1580 skb_reset_inner_mac_header(skb);
1581 skb->inner_mac_header += offset;
1582 }
1583 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1584 {
1585 return skb->transport_header != ~0U;
1586 }
1587
1588 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1589 {
1590 return skb->head + skb->transport_header;
1591 }
1592
1593 static inline void skb_reset_transport_header(struct sk_buff *skb)
1594 {
1595 skb->transport_header = skb->data - skb->head;
1596 }
1597
1598 static inline void skb_set_transport_header(struct sk_buff *skb,
1599 const int offset)
1600 {
1601 skb_reset_transport_header(skb);
1602 skb->transport_header += offset;
1603 }
1604
1605 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1606 {
1607 return skb->head + skb->network_header;
1608 }
1609
1610 static inline void skb_reset_network_header(struct sk_buff *skb)
1611 {
1612 skb->network_header = skb->data - skb->head;
1613 }
1614
1615 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1616 {
1617 skb_reset_network_header(skb);
1618 skb->network_header += offset;
1619 }
1620
1621 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1622 {
1623 return skb->head + skb->mac_header;
1624 }
1625
1626 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1627 {
1628 return skb->mac_header != ~0U;
1629 }
1630
1631 static inline void skb_reset_mac_header(struct sk_buff *skb)
1632 {
1633 skb->mac_header = skb->data - skb->head;
1634 }
1635
1636 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1637 {
1638 skb_reset_mac_header(skb);
1639 skb->mac_header += offset;
1640 }
1641
1642 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1643 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1644 *skb)
1645 {
1646 return skb->inner_transport_header;
1647 }
1648
1649 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1650 {
1651 skb->inner_transport_header = skb->data;
1652 }
1653
1654 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1655 const int offset)
1656 {
1657 skb->inner_transport_header = skb->data + offset;
1658 }
1659
1660 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1661 {
1662 return skb->inner_network_header;
1663 }
1664
1665 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1666 {
1667 skb->inner_network_header = skb->data;
1668 }
1669
1670 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1671 const int offset)
1672 {
1673 skb->inner_network_header = skb->data + offset;
1674 }
1675
1676 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1677 {
1678 return skb->inner_mac_header;
1679 }
1680
1681 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1682 {
1683 skb->inner_mac_header = skb->data;
1684 }
1685
1686 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1687 const int offset)
1688 {
1689 skb->inner_mac_header = skb->data + offset;
1690 }
1691 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1692 {
1693 return skb->transport_header != NULL;
1694 }
1695
1696 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1697 {
1698 return skb->transport_header;
1699 }
1700
1701 static inline void skb_reset_transport_header(struct sk_buff *skb)
1702 {
1703 skb->transport_header = skb->data;
1704 }
1705
1706 static inline void skb_set_transport_header(struct sk_buff *skb,
1707 const int offset)
1708 {
1709 skb->transport_header = skb->data + offset;
1710 }
1711
1712 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1713 {
1714 return skb->network_header;
1715 }
1716
1717 static inline void skb_reset_network_header(struct sk_buff *skb)
1718 {
1719 skb->network_header = skb->data;
1720 }
1721
1722 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1723 {
1724 skb->network_header = skb->data + offset;
1725 }
1726
1727 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1728 {
1729 return skb->mac_header;
1730 }
1731
1732 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1733 {
1734 return skb->mac_header != NULL;
1735 }
1736
1737 static inline void skb_reset_mac_header(struct sk_buff *skb)
1738 {
1739 skb->mac_header = skb->data;
1740 }
1741
1742 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1743 {
1744 skb->mac_header = skb->data + offset;
1745 }
1746 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1747
1748 static inline void skb_probe_transport_header(struct sk_buff *skb,
1749 const int offset_hint)
1750 {
1751 struct flow_keys keys;
1752
1753 if (skb_transport_header_was_set(skb))
1754 return;
1755 else if (skb_flow_dissect(skb, &keys))
1756 skb_set_transport_header(skb, keys.thoff);
1757 else
1758 skb_set_transport_header(skb, offset_hint);
1759 }
1760
1761 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1762 {
1763 if (skb_mac_header_was_set(skb)) {
1764 const unsigned char *old_mac = skb_mac_header(skb);
1765
1766 skb_set_mac_header(skb, -skb->mac_len);
1767 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1768 }
1769 }
1770
1771 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1772 {
1773 return skb->csum_start - skb_headroom(skb);
1774 }
1775
1776 static inline int skb_transport_offset(const struct sk_buff *skb)
1777 {
1778 return skb_transport_header(skb) - skb->data;
1779 }
1780
1781 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1782 {
1783 return skb->transport_header - skb->network_header;
1784 }
1785
1786 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1787 {
1788 return skb->inner_transport_header - skb->inner_network_header;
1789 }
1790
1791 static inline int skb_network_offset(const struct sk_buff *skb)
1792 {
1793 return skb_network_header(skb) - skb->data;
1794 }
1795
1796 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1797 {
1798 return skb_inner_network_header(skb) - skb->data;
1799 }
1800
1801 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1802 {
1803 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1804 }
1805
1806 /*
1807 * CPUs often take a performance hit when accessing unaligned memory
1808 * locations. The actual performance hit varies, it can be small if the
1809 * hardware handles it or large if we have to take an exception and fix it
1810 * in software.
1811 *
1812 * Since an ethernet header is 14 bytes network drivers often end up with
1813 * the IP header at an unaligned offset. The IP header can be aligned by
1814 * shifting the start of the packet by 2 bytes. Drivers should do this
1815 * with:
1816 *
1817 * skb_reserve(skb, NET_IP_ALIGN);
1818 *
1819 * The downside to this alignment of the IP header is that the DMA is now
1820 * unaligned. On some architectures the cost of an unaligned DMA is high
1821 * and this cost outweighs the gains made by aligning the IP header.
1822 *
1823 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1824 * to be overridden.
1825 */
1826 #ifndef NET_IP_ALIGN
1827 #define NET_IP_ALIGN 2
1828 #endif
1829
1830 /*
1831 * The networking layer reserves some headroom in skb data (via
1832 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1833 * the header has to grow. In the default case, if the header has to grow
1834 * 32 bytes or less we avoid the reallocation.
1835 *
1836 * Unfortunately this headroom changes the DMA alignment of the resulting
1837 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1838 * on some architectures. An architecture can override this value,
1839 * perhaps setting it to a cacheline in size (since that will maintain
1840 * cacheline alignment of the DMA). It must be a power of 2.
1841 *
1842 * Various parts of the networking layer expect at least 32 bytes of
1843 * headroom, you should not reduce this.
1844 *
1845 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1846 * to reduce average number of cache lines per packet.
1847 * get_rps_cpus() for example only access one 64 bytes aligned block :
1848 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1849 */
1850 #ifndef NET_SKB_PAD
1851 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1852 #endif
1853
1854 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1855
1856 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1857 {
1858 if (unlikely(skb_is_nonlinear(skb))) {
1859 WARN_ON(1);
1860 return;
1861 }
1862 skb->len = len;
1863 skb_set_tail_pointer(skb, len);
1864 }
1865
1866 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1867
1868 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1869 {
1870 if (skb->data_len)
1871 return ___pskb_trim(skb, len);
1872 __skb_trim(skb, len);
1873 return 0;
1874 }
1875
1876 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1877 {
1878 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1879 }
1880
1881 /**
1882 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1883 * @skb: buffer to alter
1884 * @len: new length
1885 *
1886 * This is identical to pskb_trim except that the caller knows that
1887 * the skb is not cloned so we should never get an error due to out-
1888 * of-memory.
1889 */
1890 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1891 {
1892 int err = pskb_trim(skb, len);
1893 BUG_ON(err);
1894 }
1895
1896 /**
1897 * skb_orphan - orphan a buffer
1898 * @skb: buffer to orphan
1899 *
1900 * If a buffer currently has an owner then we call the owner's
1901 * destructor function and make the @skb unowned. The buffer continues
1902 * to exist but is no longer charged to its former owner.
1903 */
1904 static inline void skb_orphan(struct sk_buff *skb)
1905 {
1906 if (skb->destructor)
1907 skb->destructor(skb);
1908 skb->destructor = NULL;
1909 skb->sk = NULL;
1910 }
1911
1912 /**
1913 * skb_orphan_frags - orphan the frags contained in a buffer
1914 * @skb: buffer to orphan frags from
1915 * @gfp_mask: allocation mask for replacement pages
1916 *
1917 * For each frag in the SKB which needs a destructor (i.e. has an
1918 * owner) create a copy of that frag and release the original
1919 * page by calling the destructor.
1920 */
1921 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1922 {
1923 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1924 return 0;
1925 return skb_copy_ubufs(skb, gfp_mask);
1926 }
1927
1928 /**
1929 * __skb_queue_purge - empty a list
1930 * @list: list to empty
1931 *
1932 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1933 * the list and one reference dropped. This function does not take the
1934 * list lock and the caller must hold the relevant locks to use it.
1935 */
1936 extern void skb_queue_purge(struct sk_buff_head *list);
1937 static inline void __skb_queue_purge(struct sk_buff_head *list)
1938 {
1939 struct sk_buff *skb;
1940 while ((skb = __skb_dequeue(list)) != NULL)
1941 kfree_skb(skb);
1942 }
1943
1944 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1945 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1946 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1947
1948 extern void *netdev_alloc_frag(unsigned int fragsz);
1949
1950 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1951 unsigned int length,
1952 gfp_t gfp_mask);
1953
1954 /**
1955 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1956 * @dev: network device to receive on
1957 * @length: length to allocate
1958 *
1959 * Allocate a new &sk_buff and assign it a usage count of one. The
1960 * buffer has unspecified headroom built in. Users should allocate
1961 * the headroom they think they need without accounting for the
1962 * built in space. The built in space is used for optimisations.
1963 *
1964 * %NULL is returned if there is no free memory. Although this function
1965 * allocates memory it can be called from an interrupt.
1966 */
1967 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1968 unsigned int length)
1969 {
1970 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1971 }
1972
1973 /* legacy helper around __netdev_alloc_skb() */
1974 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1975 gfp_t gfp_mask)
1976 {
1977 return __netdev_alloc_skb(NULL, length, gfp_mask);
1978 }
1979
1980 /* legacy helper around netdev_alloc_skb() */
1981 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1982 {
1983 return netdev_alloc_skb(NULL, length);
1984 }
1985
1986
1987 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1988 unsigned int length, gfp_t gfp)
1989 {
1990 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1991
1992 if (NET_IP_ALIGN && skb)
1993 skb_reserve(skb, NET_IP_ALIGN);
1994 return skb;
1995 }
1996
1997 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1998 unsigned int length)
1999 {
2000 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2001 }
2002
2003 /*
2004 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2005 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2006 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2007 * @order: size of the allocation
2008 *
2009 * Allocate a new page.
2010 *
2011 * %NULL is returned if there is no free memory.
2012 */
2013 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2014 struct sk_buff *skb,
2015 unsigned int order)
2016 {
2017 struct page *page;
2018
2019 gfp_mask |= __GFP_COLD;
2020
2021 if (!(gfp_mask & __GFP_NOMEMALLOC))
2022 gfp_mask |= __GFP_MEMALLOC;
2023
2024 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2025 if (skb && page && page->pfmemalloc)
2026 skb->pfmemalloc = true;
2027
2028 return page;
2029 }
2030
2031 /**
2032 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2033 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2034 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2035 *
2036 * Allocate a new page.
2037 *
2038 * %NULL is returned if there is no free memory.
2039 */
2040 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2041 struct sk_buff *skb)
2042 {
2043 return __skb_alloc_pages(gfp_mask, skb, 0);
2044 }
2045
2046 /**
2047 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2048 * @page: The page that was allocated from skb_alloc_page
2049 * @skb: The skb that may need pfmemalloc set
2050 */
2051 static inline void skb_propagate_pfmemalloc(struct page *page,
2052 struct sk_buff *skb)
2053 {
2054 if (page && page->pfmemalloc)
2055 skb->pfmemalloc = true;
2056 }
2057
2058 /**
2059 * skb_frag_page - retrieve the page refered to by a paged fragment
2060 * @frag: the paged fragment
2061 *
2062 * Returns the &struct page associated with @frag.
2063 */
2064 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2065 {
2066 return frag->page.p;
2067 }
2068
2069 /**
2070 * __skb_frag_ref - take an addition reference on a paged fragment.
2071 * @frag: the paged fragment
2072 *
2073 * Takes an additional reference on the paged fragment @frag.
2074 */
2075 static inline void __skb_frag_ref(skb_frag_t *frag)
2076 {
2077 get_page(skb_frag_page(frag));
2078 }
2079
2080 /**
2081 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2082 * @skb: the buffer
2083 * @f: the fragment offset.
2084 *
2085 * Takes an additional reference on the @f'th paged fragment of @skb.
2086 */
2087 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2088 {
2089 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2090 }
2091
2092 /**
2093 * __skb_frag_unref - release a reference on a paged fragment.
2094 * @frag: the paged fragment
2095 *
2096 * Releases a reference on the paged fragment @frag.
2097 */
2098 static inline void __skb_frag_unref(skb_frag_t *frag)
2099 {
2100 put_page(skb_frag_page(frag));
2101 }
2102
2103 /**
2104 * skb_frag_unref - release a reference on a paged fragment of an skb.
2105 * @skb: the buffer
2106 * @f: the fragment offset
2107 *
2108 * Releases a reference on the @f'th paged fragment of @skb.
2109 */
2110 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2111 {
2112 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2113 }
2114
2115 /**
2116 * skb_frag_address - gets the address of the data contained in a paged fragment
2117 * @frag: the paged fragment buffer
2118 *
2119 * Returns the address of the data within @frag. The page must already
2120 * be mapped.
2121 */
2122 static inline void *skb_frag_address(const skb_frag_t *frag)
2123 {
2124 return page_address(skb_frag_page(frag)) + frag->page_offset;
2125 }
2126
2127 /**
2128 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2129 * @frag: the paged fragment buffer
2130 *
2131 * Returns the address of the data within @frag. Checks that the page
2132 * is mapped and returns %NULL otherwise.
2133 */
2134 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2135 {
2136 void *ptr = page_address(skb_frag_page(frag));
2137 if (unlikely(!ptr))
2138 return NULL;
2139
2140 return ptr + frag->page_offset;
2141 }
2142
2143 /**
2144 * __skb_frag_set_page - sets the page contained in a paged fragment
2145 * @frag: the paged fragment
2146 * @page: the page to set
2147 *
2148 * Sets the fragment @frag to contain @page.
2149 */
2150 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2151 {
2152 frag->page.p = page;
2153 }
2154
2155 /**
2156 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2157 * @skb: the buffer
2158 * @f: the fragment offset
2159 * @page: the page to set
2160 *
2161 * Sets the @f'th fragment of @skb to contain @page.
2162 */
2163 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2164 struct page *page)
2165 {
2166 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2167 }
2168
2169 /**
2170 * skb_frag_dma_map - maps a paged fragment via the DMA API
2171 * @dev: the device to map the fragment to
2172 * @frag: the paged fragment to map
2173 * @offset: the offset within the fragment (starting at the
2174 * fragment's own offset)
2175 * @size: the number of bytes to map
2176 * @dir: the direction of the mapping (%PCI_DMA_*)
2177 *
2178 * Maps the page associated with @frag to @device.
2179 */
2180 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2181 const skb_frag_t *frag,
2182 size_t offset, size_t size,
2183 enum dma_data_direction dir)
2184 {
2185 return dma_map_page(dev, skb_frag_page(frag),
2186 frag->page_offset + offset, size, dir);
2187 }
2188
2189 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2190 gfp_t gfp_mask)
2191 {
2192 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2193 }
2194
2195 /**
2196 * skb_clone_writable - is the header of a clone writable
2197 * @skb: buffer to check
2198 * @len: length up to which to write
2199 *
2200 * Returns true if modifying the header part of the cloned buffer
2201 * does not requires the data to be copied.
2202 */
2203 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2204 {
2205 return !skb_header_cloned(skb) &&
2206 skb_headroom(skb) + len <= skb->hdr_len;
2207 }
2208
2209 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2210 int cloned)
2211 {
2212 int delta = 0;
2213
2214 if (headroom > skb_headroom(skb))
2215 delta = headroom - skb_headroom(skb);
2216
2217 if (delta || cloned)
2218 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2219 GFP_ATOMIC);
2220 return 0;
2221 }
2222
2223 /**
2224 * skb_cow - copy header of skb when it is required
2225 * @skb: buffer to cow
2226 * @headroom: needed headroom
2227 *
2228 * If the skb passed lacks sufficient headroom or its data part
2229 * is shared, data is reallocated. If reallocation fails, an error
2230 * is returned and original skb is not changed.
2231 *
2232 * The result is skb with writable area skb->head...skb->tail
2233 * and at least @headroom of space at head.
2234 */
2235 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2236 {
2237 return __skb_cow(skb, headroom, skb_cloned(skb));
2238 }
2239
2240 /**
2241 * skb_cow_head - skb_cow but only making the head writable
2242 * @skb: buffer to cow
2243 * @headroom: needed headroom
2244 *
2245 * This function is identical to skb_cow except that we replace the
2246 * skb_cloned check by skb_header_cloned. It should be used when
2247 * you only need to push on some header and do not need to modify
2248 * the data.
2249 */
2250 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2251 {
2252 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2253 }
2254
2255 /**
2256 * skb_padto - pad an skbuff up to a minimal size
2257 * @skb: buffer to pad
2258 * @len: minimal length
2259 *
2260 * Pads up a buffer to ensure the trailing bytes exist and are
2261 * blanked. If the buffer already contains sufficient data it
2262 * is untouched. Otherwise it is extended. Returns zero on
2263 * success. The skb is freed on error.
2264 */
2265
2266 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2267 {
2268 unsigned int size = skb->len;
2269 if (likely(size >= len))
2270 return 0;
2271 return skb_pad(skb, len - size);
2272 }
2273
2274 static inline int skb_add_data(struct sk_buff *skb,
2275 char __user *from, int copy)
2276 {
2277 const int off = skb->len;
2278
2279 if (skb->ip_summed == CHECKSUM_NONE) {
2280 int err = 0;
2281 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2282 copy, 0, &err);
2283 if (!err) {
2284 skb->csum = csum_block_add(skb->csum, csum, off);
2285 return 0;
2286 }
2287 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2288 return 0;
2289
2290 __skb_trim(skb, off);
2291 return -EFAULT;
2292 }
2293
2294 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2295 const struct page *page, int off)
2296 {
2297 if (i) {
2298 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2299
2300 return page == skb_frag_page(frag) &&
2301 off == frag->page_offset + skb_frag_size(frag);
2302 }
2303 return false;
2304 }
2305
2306 static inline int __skb_linearize(struct sk_buff *skb)
2307 {
2308 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2309 }
2310
2311 /**
2312 * skb_linearize - convert paged skb to linear one
2313 * @skb: buffer to linarize
2314 *
2315 * If there is no free memory -ENOMEM is returned, otherwise zero
2316 * is returned and the old skb data released.
2317 */
2318 static inline int skb_linearize(struct sk_buff *skb)
2319 {
2320 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2321 }
2322
2323 /**
2324 * skb_has_shared_frag - can any frag be overwritten
2325 * @skb: buffer to test
2326 *
2327 * Return true if the skb has at least one frag that might be modified
2328 * by an external entity (as in vmsplice()/sendfile())
2329 */
2330 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2331 {
2332 return skb_is_nonlinear(skb) &&
2333 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2334 }
2335
2336 /**
2337 * skb_linearize_cow - make sure skb is linear and writable
2338 * @skb: buffer to process
2339 *
2340 * If there is no free memory -ENOMEM is returned, otherwise zero
2341 * is returned and the old skb data released.
2342 */
2343 static inline int skb_linearize_cow(struct sk_buff *skb)
2344 {
2345 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2346 __skb_linearize(skb) : 0;
2347 }
2348
2349 /**
2350 * skb_postpull_rcsum - update checksum for received skb after pull
2351 * @skb: buffer to update
2352 * @start: start of data before pull
2353 * @len: length of data pulled
2354 *
2355 * After doing a pull on a received packet, you need to call this to
2356 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2357 * CHECKSUM_NONE so that it can be recomputed from scratch.
2358 */
2359
2360 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2361 const void *start, unsigned int len)
2362 {
2363 if (skb->ip_summed == CHECKSUM_COMPLETE)
2364 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2365 }
2366
2367 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2368
2369 /**
2370 * pskb_trim_rcsum - trim received skb and update checksum
2371 * @skb: buffer to trim
2372 * @len: new length
2373 *
2374 * This is exactly the same as pskb_trim except that it ensures the
2375 * checksum of received packets are still valid after the operation.
2376 */
2377
2378 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2379 {
2380 if (likely(len >= skb->len))
2381 return 0;
2382 if (skb->ip_summed == CHECKSUM_COMPLETE)
2383 skb->ip_summed = CHECKSUM_NONE;
2384 return __pskb_trim(skb, len);
2385 }
2386
2387 #define skb_queue_walk(queue, skb) \
2388 for (skb = (queue)->next; \
2389 skb != (struct sk_buff *)(queue); \
2390 skb = skb->next)
2391
2392 #define skb_queue_walk_safe(queue, skb, tmp) \
2393 for (skb = (queue)->next, tmp = skb->next; \
2394 skb != (struct sk_buff *)(queue); \
2395 skb = tmp, tmp = skb->next)
2396
2397 #define skb_queue_walk_from(queue, skb) \
2398 for (; skb != (struct sk_buff *)(queue); \
2399 skb = skb->next)
2400
2401 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2402 for (tmp = skb->next; \
2403 skb != (struct sk_buff *)(queue); \
2404 skb = tmp, tmp = skb->next)
2405
2406 #define skb_queue_reverse_walk(queue, skb) \
2407 for (skb = (queue)->prev; \
2408 skb != (struct sk_buff *)(queue); \
2409 skb = skb->prev)
2410
2411 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2412 for (skb = (queue)->prev, tmp = skb->prev; \
2413 skb != (struct sk_buff *)(queue); \
2414 skb = tmp, tmp = skb->prev)
2415
2416 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2417 for (tmp = skb->prev; \
2418 skb != (struct sk_buff *)(queue); \
2419 skb = tmp, tmp = skb->prev)
2420
2421 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2422 {
2423 return skb_shinfo(skb)->frag_list != NULL;
2424 }
2425
2426 static inline void skb_frag_list_init(struct sk_buff *skb)
2427 {
2428 skb_shinfo(skb)->frag_list = NULL;
2429 }
2430
2431 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2432 {
2433 frag->next = skb_shinfo(skb)->frag_list;
2434 skb_shinfo(skb)->frag_list = frag;
2435 }
2436
2437 #define skb_walk_frags(skb, iter) \
2438 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2439
2440 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2441 int *peeked, int *off, int *err);
2442 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2443 int noblock, int *err);
2444 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2445 struct poll_table_struct *wait);
2446 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2447 int offset, struct iovec *to,
2448 int size);
2449 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2450 int hlen,
2451 struct iovec *iov);
2452 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2453 int offset,
2454 const struct iovec *from,
2455 int from_offset,
2456 int len);
2457 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2458 int offset,
2459 const struct iovec *to,
2460 int to_offset,
2461 int size);
2462 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2463 extern void skb_free_datagram_locked(struct sock *sk,
2464 struct sk_buff *skb);
2465 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2466 unsigned int flags);
2467 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2468 int len, __wsum csum);
2469 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2470 void *to, int len);
2471 extern int skb_store_bits(struct sk_buff *skb, int offset,
2472 const void *from, int len);
2473 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2474 int offset, u8 *to, int len,
2475 __wsum csum);
2476 extern int skb_splice_bits(struct sk_buff *skb,
2477 unsigned int offset,
2478 struct pipe_inode_info *pipe,
2479 unsigned int len,
2480 unsigned int flags);
2481 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2482 extern void skb_split(struct sk_buff *skb,
2483 struct sk_buff *skb1, const u32 len);
2484 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2485 int shiftlen);
2486
2487 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2488 netdev_features_t features);
2489
2490 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2491 int len, void *buffer)
2492 {
2493 int hlen = skb_headlen(skb);
2494
2495 if (hlen - offset >= len)
2496 return skb->data + offset;
2497
2498 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2499 return NULL;
2500
2501 return buffer;
2502 }
2503
2504 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2505 void *to,
2506 const unsigned int len)
2507 {
2508 memcpy(to, skb->data, len);
2509 }
2510
2511 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2512 const int offset, void *to,
2513 const unsigned int len)
2514 {
2515 memcpy(to, skb->data + offset, len);
2516 }
2517
2518 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2519 const void *from,
2520 const unsigned int len)
2521 {
2522 memcpy(skb->data, from, len);
2523 }
2524
2525 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2526 const int offset,
2527 const void *from,
2528 const unsigned int len)
2529 {
2530 memcpy(skb->data + offset, from, len);
2531 }
2532
2533 extern void skb_init(void);
2534
2535 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2536 {
2537 return skb->tstamp;
2538 }
2539
2540 /**
2541 * skb_get_timestamp - get timestamp from a skb
2542 * @skb: skb to get stamp from
2543 * @stamp: pointer to struct timeval to store stamp in
2544 *
2545 * Timestamps are stored in the skb as offsets to a base timestamp.
2546 * This function converts the offset back to a struct timeval and stores
2547 * it in stamp.
2548 */
2549 static inline void skb_get_timestamp(const struct sk_buff *skb,
2550 struct timeval *stamp)
2551 {
2552 *stamp = ktime_to_timeval(skb->tstamp);
2553 }
2554
2555 static inline void skb_get_timestampns(const struct sk_buff *skb,
2556 struct timespec *stamp)
2557 {
2558 *stamp = ktime_to_timespec(skb->tstamp);
2559 }
2560
2561 static inline void __net_timestamp(struct sk_buff *skb)
2562 {
2563 skb->tstamp = ktime_get_real();
2564 }
2565
2566 static inline ktime_t net_timedelta(ktime_t t)
2567 {
2568 return ktime_sub(ktime_get_real(), t);
2569 }
2570
2571 static inline ktime_t net_invalid_timestamp(void)
2572 {
2573 return ktime_set(0, 0);
2574 }
2575
2576 extern void skb_timestamping_init(void);
2577
2578 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2579
2580 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2581 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2582
2583 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2584
2585 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2586 {
2587 }
2588
2589 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2590 {
2591 return false;
2592 }
2593
2594 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2595
2596 /**
2597 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2598 *
2599 * PHY drivers may accept clones of transmitted packets for
2600 * timestamping via their phy_driver.txtstamp method. These drivers
2601 * must call this function to return the skb back to the stack, with
2602 * or without a timestamp.
2603 *
2604 * @skb: clone of the the original outgoing packet
2605 * @hwtstamps: hardware time stamps, may be NULL if not available
2606 *
2607 */
2608 void skb_complete_tx_timestamp(struct sk_buff *skb,
2609 struct skb_shared_hwtstamps *hwtstamps);
2610
2611 /**
2612 * skb_tstamp_tx - queue clone of skb with send time stamps
2613 * @orig_skb: the original outgoing packet
2614 * @hwtstamps: hardware time stamps, may be NULL if not available
2615 *
2616 * If the skb has a socket associated, then this function clones the
2617 * skb (thus sharing the actual data and optional structures), stores
2618 * the optional hardware time stamping information (if non NULL) or
2619 * generates a software time stamp (otherwise), then queues the clone
2620 * to the error queue of the socket. Errors are silently ignored.
2621 */
2622 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2623 struct skb_shared_hwtstamps *hwtstamps);
2624
2625 static inline void sw_tx_timestamp(struct sk_buff *skb)
2626 {
2627 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2628 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2629 skb_tstamp_tx(skb, NULL);
2630 }
2631
2632 /**
2633 * skb_tx_timestamp() - Driver hook for transmit timestamping
2634 *
2635 * Ethernet MAC Drivers should call this function in their hard_xmit()
2636 * function immediately before giving the sk_buff to the MAC hardware.
2637 *
2638 * @skb: A socket buffer.
2639 */
2640 static inline void skb_tx_timestamp(struct sk_buff *skb)
2641 {
2642 skb_clone_tx_timestamp(skb);
2643 sw_tx_timestamp(skb);
2644 }
2645
2646 /**
2647 * skb_complete_wifi_ack - deliver skb with wifi status
2648 *
2649 * @skb: the original outgoing packet
2650 * @acked: ack status
2651 *
2652 */
2653 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2654
2655 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2656 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2657
2658 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2659 {
2660 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2661 }
2662
2663 /**
2664 * skb_checksum_complete - Calculate checksum of an entire packet
2665 * @skb: packet to process
2666 *
2667 * This function calculates the checksum over the entire packet plus
2668 * the value of skb->csum. The latter can be used to supply the
2669 * checksum of a pseudo header as used by TCP/UDP. It returns the
2670 * checksum.
2671 *
2672 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2673 * this function can be used to verify that checksum on received
2674 * packets. In that case the function should return zero if the
2675 * checksum is correct. In particular, this function will return zero
2676 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2677 * hardware has already verified the correctness of the checksum.
2678 */
2679 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2680 {
2681 return skb_csum_unnecessary(skb) ?
2682 0 : __skb_checksum_complete(skb);
2683 }
2684
2685 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2686 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2687 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2688 {
2689 if (nfct && atomic_dec_and_test(&nfct->use))
2690 nf_conntrack_destroy(nfct);
2691 }
2692 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2693 {
2694 if (nfct)
2695 atomic_inc(&nfct->use);
2696 }
2697 #endif
2698 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2699 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2700 {
2701 if (skb)
2702 atomic_inc(&skb->users);
2703 }
2704 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2705 {
2706 if (skb)
2707 kfree_skb(skb);
2708 }
2709 #endif
2710 #ifdef CONFIG_BRIDGE_NETFILTER
2711 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2712 {
2713 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2714 kfree(nf_bridge);
2715 }
2716 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2717 {
2718 if (nf_bridge)
2719 atomic_inc(&nf_bridge->use);
2720 }
2721 #endif /* CONFIG_BRIDGE_NETFILTER */
2722 static inline void nf_reset(struct sk_buff *skb)
2723 {
2724 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2725 nf_conntrack_put(skb->nfct);
2726 skb->nfct = NULL;
2727 #endif
2728 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2729 nf_conntrack_put_reasm(skb->nfct_reasm);
2730 skb->nfct_reasm = NULL;
2731 #endif
2732 #ifdef CONFIG_BRIDGE_NETFILTER
2733 nf_bridge_put(skb->nf_bridge);
2734 skb->nf_bridge = NULL;
2735 #endif
2736 }
2737
2738 static inline void nf_reset_trace(struct sk_buff *skb)
2739 {
2740 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2741 skb->nf_trace = 0;
2742 #endif
2743 }
2744
2745 /* Note: This doesn't put any conntrack and bridge info in dst. */
2746 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2747 {
2748 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2749 dst->nfct = src->nfct;
2750 nf_conntrack_get(src->nfct);
2751 dst->nfctinfo = src->nfctinfo;
2752 #endif
2753 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2754 dst->nfct_reasm = src->nfct_reasm;
2755 nf_conntrack_get_reasm(src->nfct_reasm);
2756 #endif
2757 #ifdef CONFIG_BRIDGE_NETFILTER
2758 dst->nf_bridge = src->nf_bridge;
2759 nf_bridge_get(src->nf_bridge);
2760 #endif
2761 }
2762
2763 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2764 {
2765 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2766 nf_conntrack_put(dst->nfct);
2767 #endif
2768 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2769 nf_conntrack_put_reasm(dst->nfct_reasm);
2770 #endif
2771 #ifdef CONFIG_BRIDGE_NETFILTER
2772 nf_bridge_put(dst->nf_bridge);
2773 #endif
2774 __nf_copy(dst, src);
2775 }
2776
2777 #ifdef CONFIG_NETWORK_SECMARK
2778 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2779 {
2780 to->secmark = from->secmark;
2781 }
2782
2783 static inline void skb_init_secmark(struct sk_buff *skb)
2784 {
2785 skb->secmark = 0;
2786 }
2787 #else
2788 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2789 { }
2790
2791 static inline void skb_init_secmark(struct sk_buff *skb)
2792 { }
2793 #endif
2794
2795 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2796 {
2797 skb->queue_mapping = queue_mapping;
2798 }
2799
2800 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2801 {
2802 return skb->queue_mapping;
2803 }
2804
2805 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2806 {
2807 to->queue_mapping = from->queue_mapping;
2808 }
2809
2810 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2811 {
2812 skb->queue_mapping = rx_queue + 1;
2813 }
2814
2815 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2816 {
2817 return skb->queue_mapping - 1;
2818 }
2819
2820 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2821 {
2822 return skb->queue_mapping != 0;
2823 }
2824
2825 extern u16 __skb_tx_hash(const struct net_device *dev,
2826 const struct sk_buff *skb,
2827 unsigned int num_tx_queues);
2828
2829 #ifdef CONFIG_XFRM
2830 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2831 {
2832 return skb->sp;
2833 }
2834 #else
2835 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2836 {
2837 return NULL;
2838 }
2839 #endif
2840
2841 /* Keeps track of mac header offset relative to skb->head.
2842 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2843 * For non-tunnel skb it points to skb_mac_header() and for
2844 * tunnel skb it points to outer mac header. */
2845 struct skb_gso_cb {
2846 int mac_offset;
2847 };
2848 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2849
2850 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2851 {
2852 return (skb_mac_header(inner_skb) - inner_skb->head) -
2853 SKB_GSO_CB(inner_skb)->mac_offset;
2854 }
2855
2856 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2857 {
2858 int new_headroom, headroom;
2859 int ret;
2860
2861 headroom = skb_headroom(skb);
2862 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2863 if (ret)
2864 return ret;
2865
2866 new_headroom = skb_headroom(skb);
2867 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2868 return 0;
2869 }
2870
2871 static inline bool skb_is_gso(const struct sk_buff *skb)
2872 {
2873 return skb_shinfo(skb)->gso_size;
2874 }
2875
2876 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2877 {
2878 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2879 }
2880
2881 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2882
2883 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2884 {
2885 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2886 * wanted then gso_type will be set. */
2887 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2888
2889 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2890 unlikely(shinfo->gso_type == 0)) {
2891 __skb_warn_lro_forwarding(skb);
2892 return true;
2893 }
2894 return false;
2895 }
2896
2897 static inline void skb_forward_csum(struct sk_buff *skb)
2898 {
2899 /* Unfortunately we don't support this one. Any brave souls? */
2900 if (skb->ip_summed == CHECKSUM_COMPLETE)
2901 skb->ip_summed = CHECKSUM_NONE;
2902 }
2903
2904 /**
2905 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2906 * @skb: skb to check
2907 *
2908 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2909 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2910 * use this helper, to document places where we make this assertion.
2911 */
2912 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2913 {
2914 #ifdef DEBUG
2915 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2916 #endif
2917 }
2918
2919 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2920
2921 u32 __skb_get_poff(const struct sk_buff *skb);
2922
2923 /**
2924 * skb_head_is_locked - Determine if the skb->head is locked down
2925 * @skb: skb to check
2926 *
2927 * The head on skbs build around a head frag can be removed if they are
2928 * not cloned. This function returns true if the skb head is locked down
2929 * due to either being allocated via kmalloc, or by being a clone with
2930 * multiple references to the head.
2931 */
2932 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2933 {
2934 return !skb->head_frag || skb_cloned(skb);
2935 }
2936 #endif /* __KERNEL__ */
2937 #endif /* _LINUX_SKBUFF_H */