[IPV6] SIT: Add PRL management for ISATAP.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 union {
260 struct dst_entry *dst;
261 struct rtable *rtable;
262 };
263 struct sec_path *sp;
264
265 /*
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
270 */
271 char cb[48];
272
273 unsigned int len,
274 data_len;
275 __u16 mac_len,
276 hdr_len;
277 union {
278 __wsum csum;
279 struct {
280 __u16 csum_start;
281 __u16 csum_offset;
282 };
283 };
284 __u32 priority;
285 __u8 local_df:1,
286 cloned:1,
287 ip_summed:2,
288 nohdr:1,
289 nfctinfo:3;
290 __u8 pkt_type:3,
291 fclone:2,
292 ipvs_property:1,
293 peeked:1,
294 nf_trace:1;
295 __be16 protocol;
296
297 void (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack *nfct;
300 struct sk_buff *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info *nf_bridge;
304 #endif
305
306 int iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308 __u16 queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 __u8 ndisc_nodetype:2;
317 /* 14 bit hole */
318
319 #ifdef CONFIG_NET_DMA
320 dma_cookie_t dma_cookie;
321 #endif
322 #ifdef CONFIG_NETWORK_SECMARK
323 __u32 secmark;
324 #endif
325
326 __u32 mark;
327
328 sk_buff_data_t transport_header;
329 sk_buff_data_t network_header;
330 sk_buff_data_t mac_header;
331 /* These elements must be at the end, see alloc_skb() for details. */
332 sk_buff_data_t tail;
333 sk_buff_data_t end;
334 unsigned char *head,
335 *data;
336 unsigned int truesize;
337 atomic_t users;
338 };
339
340 #ifdef __KERNEL__
341 /*
342 * Handling routines are only of interest to the kernel
343 */
344 #include <linux/slab.h>
345
346 #include <asm/system.h>
347
348 extern void kfree_skb(struct sk_buff *skb);
349 extern void __kfree_skb(struct sk_buff *skb);
350 extern struct sk_buff *__alloc_skb(unsigned int size,
351 gfp_t priority, int fclone, int node);
352 static inline struct sk_buff *alloc_skb(unsigned int size,
353 gfp_t priority)
354 {
355 return __alloc_skb(size, priority, 0, -1);
356 }
357
358 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
359 gfp_t priority)
360 {
361 return __alloc_skb(size, priority, 1, -1);
362 }
363
364 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
365 extern struct sk_buff *skb_clone(struct sk_buff *skb,
366 gfp_t priority);
367 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
368 gfp_t priority);
369 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
370 gfp_t gfp_mask);
371 extern int pskb_expand_head(struct sk_buff *skb,
372 int nhead, int ntail,
373 gfp_t gfp_mask);
374 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
375 unsigned int headroom);
376 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
377 int newheadroom, int newtailroom,
378 gfp_t priority);
379 extern int skb_to_sgvec(struct sk_buff *skb,
380 struct scatterlist *sg, int offset,
381 int len);
382 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
383 struct sk_buff **trailer);
384 extern int skb_pad(struct sk_buff *skb, int pad);
385 #define dev_kfree_skb(a) kfree_skb(a)
386 extern void skb_over_panic(struct sk_buff *skb, int len,
387 void *here);
388 extern void skb_under_panic(struct sk_buff *skb, int len,
389 void *here);
390 extern void skb_truesize_bug(struct sk_buff *skb);
391
392 static inline void skb_truesize_check(struct sk_buff *skb)
393 {
394 int len = sizeof(struct sk_buff) + skb->len;
395
396 if (unlikely((int)skb->truesize < len))
397 skb_truesize_bug(skb);
398 }
399
400 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
401 int getfrag(void *from, char *to, int offset,
402 int len,int odd, struct sk_buff *skb),
403 void *from, int length);
404
405 struct skb_seq_state
406 {
407 __u32 lower_offset;
408 __u32 upper_offset;
409 __u32 frag_idx;
410 __u32 stepped_offset;
411 struct sk_buff *root_skb;
412 struct sk_buff *cur_skb;
413 __u8 *frag_data;
414 };
415
416 extern void skb_prepare_seq_read(struct sk_buff *skb,
417 unsigned int from, unsigned int to,
418 struct skb_seq_state *st);
419 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
420 struct skb_seq_state *st);
421 extern void skb_abort_seq_read(struct skb_seq_state *st);
422
423 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
424 unsigned int to, struct ts_config *config,
425 struct ts_state *state);
426
427 #ifdef NET_SKBUFF_DATA_USES_OFFSET
428 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
429 {
430 return skb->head + skb->end;
431 }
432 #else
433 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
434 {
435 return skb->end;
436 }
437 #endif
438
439 /* Internal */
440 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
441
442 /**
443 * skb_queue_empty - check if a queue is empty
444 * @list: queue head
445 *
446 * Returns true if the queue is empty, false otherwise.
447 */
448 static inline int skb_queue_empty(const struct sk_buff_head *list)
449 {
450 return list->next == (struct sk_buff *)list;
451 }
452
453 /**
454 * skb_get - reference buffer
455 * @skb: buffer to reference
456 *
457 * Makes another reference to a socket buffer and returns a pointer
458 * to the buffer.
459 */
460 static inline struct sk_buff *skb_get(struct sk_buff *skb)
461 {
462 atomic_inc(&skb->users);
463 return skb;
464 }
465
466 /*
467 * If users == 1, we are the only owner and are can avoid redundant
468 * atomic change.
469 */
470
471 /**
472 * skb_cloned - is the buffer a clone
473 * @skb: buffer to check
474 *
475 * Returns true if the buffer was generated with skb_clone() and is
476 * one of multiple shared copies of the buffer. Cloned buffers are
477 * shared data so must not be written to under normal circumstances.
478 */
479 static inline int skb_cloned(const struct sk_buff *skb)
480 {
481 return skb->cloned &&
482 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
483 }
484
485 /**
486 * skb_header_cloned - is the header a clone
487 * @skb: buffer to check
488 *
489 * Returns true if modifying the header part of the buffer requires
490 * the data to be copied.
491 */
492 static inline int skb_header_cloned(const struct sk_buff *skb)
493 {
494 int dataref;
495
496 if (!skb->cloned)
497 return 0;
498
499 dataref = atomic_read(&skb_shinfo(skb)->dataref);
500 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
501 return dataref != 1;
502 }
503
504 /**
505 * skb_header_release - release reference to header
506 * @skb: buffer to operate on
507 *
508 * Drop a reference to the header part of the buffer. This is done
509 * by acquiring a payload reference. You must not read from the header
510 * part of skb->data after this.
511 */
512 static inline void skb_header_release(struct sk_buff *skb)
513 {
514 BUG_ON(skb->nohdr);
515 skb->nohdr = 1;
516 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
517 }
518
519 /**
520 * skb_shared - is the buffer shared
521 * @skb: buffer to check
522 *
523 * Returns true if more than one person has a reference to this
524 * buffer.
525 */
526 static inline int skb_shared(const struct sk_buff *skb)
527 {
528 return atomic_read(&skb->users) != 1;
529 }
530
531 /**
532 * skb_share_check - check if buffer is shared and if so clone it
533 * @skb: buffer to check
534 * @pri: priority for memory allocation
535 *
536 * If the buffer is shared the buffer is cloned and the old copy
537 * drops a reference. A new clone with a single reference is returned.
538 * If the buffer is not shared the original buffer is returned. When
539 * being called from interrupt status or with spinlocks held pri must
540 * be GFP_ATOMIC.
541 *
542 * NULL is returned on a memory allocation failure.
543 */
544 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
545 gfp_t pri)
546 {
547 might_sleep_if(pri & __GFP_WAIT);
548 if (skb_shared(skb)) {
549 struct sk_buff *nskb = skb_clone(skb, pri);
550 kfree_skb(skb);
551 skb = nskb;
552 }
553 return skb;
554 }
555
556 /*
557 * Copy shared buffers into a new sk_buff. We effectively do COW on
558 * packets to handle cases where we have a local reader and forward
559 * and a couple of other messy ones. The normal one is tcpdumping
560 * a packet thats being forwarded.
561 */
562
563 /**
564 * skb_unshare - make a copy of a shared buffer
565 * @skb: buffer to check
566 * @pri: priority for memory allocation
567 *
568 * If the socket buffer is a clone then this function creates a new
569 * copy of the data, drops a reference count on the old copy and returns
570 * the new copy with the reference count at 1. If the buffer is not a clone
571 * the original buffer is returned. When called with a spinlock held or
572 * from interrupt state @pri must be %GFP_ATOMIC
573 *
574 * %NULL is returned on a memory allocation failure.
575 */
576 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
577 gfp_t pri)
578 {
579 might_sleep_if(pri & __GFP_WAIT);
580 if (skb_cloned(skb)) {
581 struct sk_buff *nskb = skb_copy(skb, pri);
582 kfree_skb(skb); /* Free our shared copy */
583 skb = nskb;
584 }
585 return skb;
586 }
587
588 /**
589 * skb_peek
590 * @list_: list to peek at
591 *
592 * Peek an &sk_buff. Unlike most other operations you _MUST_
593 * be careful with this one. A peek leaves the buffer on the
594 * list and someone else may run off with it. You must hold
595 * the appropriate locks or have a private queue to do this.
596 *
597 * Returns %NULL for an empty list or a pointer to the head element.
598 * The reference count is not incremented and the reference is therefore
599 * volatile. Use with caution.
600 */
601 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
602 {
603 struct sk_buff *list = ((struct sk_buff *)list_)->next;
604 if (list == (struct sk_buff *)list_)
605 list = NULL;
606 return list;
607 }
608
609 /**
610 * skb_peek_tail
611 * @list_: list to peek at
612 *
613 * Peek an &sk_buff. Unlike most other operations you _MUST_
614 * be careful with this one. A peek leaves the buffer on the
615 * list and someone else may run off with it. You must hold
616 * the appropriate locks or have a private queue to do this.
617 *
618 * Returns %NULL for an empty list or a pointer to the tail element.
619 * The reference count is not incremented and the reference is therefore
620 * volatile. Use with caution.
621 */
622 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
623 {
624 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
625 if (list == (struct sk_buff *)list_)
626 list = NULL;
627 return list;
628 }
629
630 /**
631 * skb_queue_len - get queue length
632 * @list_: list to measure
633 *
634 * Return the length of an &sk_buff queue.
635 */
636 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
637 {
638 return list_->qlen;
639 }
640
641 /*
642 * This function creates a split out lock class for each invocation;
643 * this is needed for now since a whole lot of users of the skb-queue
644 * infrastructure in drivers have different locking usage (in hardirq)
645 * than the networking core (in softirq only). In the long run either the
646 * network layer or drivers should need annotation to consolidate the
647 * main types of usage into 3 classes.
648 */
649 static inline void skb_queue_head_init(struct sk_buff_head *list)
650 {
651 spin_lock_init(&list->lock);
652 list->prev = list->next = (struct sk_buff *)list;
653 list->qlen = 0;
654 }
655
656 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
657 struct lock_class_key *class)
658 {
659 skb_queue_head_init(list);
660 lockdep_set_class(&list->lock, class);
661 }
662
663 /*
664 * Insert an sk_buff at the start of a list.
665 *
666 * The "__skb_xxxx()" functions are the non-atomic ones that
667 * can only be called with interrupts disabled.
668 */
669
670 /**
671 * __skb_queue_after - queue a buffer at the list head
672 * @list: list to use
673 * @prev: place after this buffer
674 * @newsk: buffer to queue
675 *
676 * Queue a buffer int the middle of a list. This function takes no locks
677 * and you must therefore hold required locks before calling it.
678 *
679 * A buffer cannot be placed on two lists at the same time.
680 */
681 static inline void __skb_queue_after(struct sk_buff_head *list,
682 struct sk_buff *prev,
683 struct sk_buff *newsk)
684 {
685 struct sk_buff *next;
686 list->qlen++;
687
688 next = prev->next;
689 newsk->next = next;
690 newsk->prev = prev;
691 next->prev = prev->next = newsk;
692 }
693
694 /**
695 * __skb_queue_head - queue a buffer at the list head
696 * @list: list to use
697 * @newsk: buffer to queue
698 *
699 * Queue a buffer at the start of a list. This function takes no locks
700 * and you must therefore hold required locks before calling it.
701 *
702 * A buffer cannot be placed on two lists at the same time.
703 */
704 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
705 static inline void __skb_queue_head(struct sk_buff_head *list,
706 struct sk_buff *newsk)
707 {
708 __skb_queue_after(list, (struct sk_buff *)list, newsk);
709 }
710
711 /**
712 * __skb_queue_tail - queue a buffer at the list tail
713 * @list: list to use
714 * @newsk: buffer to queue
715 *
716 * Queue a buffer at the end of a list. This function takes no locks
717 * and you must therefore hold required locks before calling it.
718 *
719 * A buffer cannot be placed on two lists at the same time.
720 */
721 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
722 static inline void __skb_queue_tail(struct sk_buff_head *list,
723 struct sk_buff *newsk)
724 {
725 struct sk_buff *prev, *next;
726
727 list->qlen++;
728 next = (struct sk_buff *)list;
729 prev = next->prev;
730 newsk->next = next;
731 newsk->prev = prev;
732 next->prev = prev->next = newsk;
733 }
734
735
736 /**
737 * __skb_dequeue - remove from the head of the queue
738 * @list: list to dequeue from
739 *
740 * Remove the head of the list. This function does not take any locks
741 * so must be used with appropriate locks held only. The head item is
742 * returned or %NULL if the list is empty.
743 */
744 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
745 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
746 {
747 struct sk_buff *next, *prev, *result;
748
749 prev = (struct sk_buff *) list;
750 next = prev->next;
751 result = NULL;
752 if (next != prev) {
753 result = next;
754 next = next->next;
755 list->qlen--;
756 next->prev = prev;
757 prev->next = next;
758 result->next = result->prev = NULL;
759 }
760 return result;
761 }
762
763
764 /*
765 * Insert a packet on a list.
766 */
767 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
768 static inline void __skb_insert(struct sk_buff *newsk,
769 struct sk_buff *prev, struct sk_buff *next,
770 struct sk_buff_head *list)
771 {
772 newsk->next = next;
773 newsk->prev = prev;
774 next->prev = prev->next = newsk;
775 list->qlen++;
776 }
777
778 /*
779 * Place a packet after a given packet in a list.
780 */
781 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
782 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
783 {
784 __skb_insert(newsk, old, old->next, list);
785 }
786
787 /*
788 * remove sk_buff from list. _Must_ be called atomically, and with
789 * the list known..
790 */
791 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
792 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
793 {
794 struct sk_buff *next, *prev;
795
796 list->qlen--;
797 next = skb->next;
798 prev = skb->prev;
799 skb->next = skb->prev = NULL;
800 next->prev = prev;
801 prev->next = next;
802 }
803
804
805 /* XXX: more streamlined implementation */
806
807 /**
808 * __skb_dequeue_tail - remove from the tail of the queue
809 * @list: list to dequeue from
810 *
811 * Remove the tail of the list. This function does not take any locks
812 * so must be used with appropriate locks held only. The tail item is
813 * returned or %NULL if the list is empty.
814 */
815 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
816 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
817 {
818 struct sk_buff *skb = skb_peek_tail(list);
819 if (skb)
820 __skb_unlink(skb, list);
821 return skb;
822 }
823
824
825 static inline int skb_is_nonlinear(const struct sk_buff *skb)
826 {
827 return skb->data_len;
828 }
829
830 static inline unsigned int skb_headlen(const struct sk_buff *skb)
831 {
832 return skb->len - skb->data_len;
833 }
834
835 static inline int skb_pagelen(const struct sk_buff *skb)
836 {
837 int i, len = 0;
838
839 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
840 len += skb_shinfo(skb)->frags[i].size;
841 return len + skb_headlen(skb);
842 }
843
844 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
845 struct page *page, int off, int size)
846 {
847 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
848
849 frag->page = page;
850 frag->page_offset = off;
851 frag->size = size;
852 skb_shinfo(skb)->nr_frags = i + 1;
853 }
854
855 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
856 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
857 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
858
859 #ifdef NET_SKBUFF_DATA_USES_OFFSET
860 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
861 {
862 return skb->head + skb->tail;
863 }
864
865 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
866 {
867 skb->tail = skb->data - skb->head;
868 }
869
870 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
871 {
872 skb_reset_tail_pointer(skb);
873 skb->tail += offset;
874 }
875 #else /* NET_SKBUFF_DATA_USES_OFFSET */
876 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
877 {
878 return skb->tail;
879 }
880
881 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
882 {
883 skb->tail = skb->data;
884 }
885
886 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
887 {
888 skb->tail = skb->data + offset;
889 }
890
891 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
892
893 /*
894 * Add data to an sk_buff
895 */
896 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
897 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
898 {
899 unsigned char *tmp = skb_tail_pointer(skb);
900 SKB_LINEAR_ASSERT(skb);
901 skb->tail += len;
902 skb->len += len;
903 return tmp;
904 }
905
906 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
907 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
908 {
909 skb->data -= len;
910 skb->len += len;
911 return skb->data;
912 }
913
914 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
915 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
916 {
917 skb->len -= len;
918 BUG_ON(skb->len < skb->data_len);
919 return skb->data += len;
920 }
921
922 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
923
924 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
925 {
926 if (len > skb_headlen(skb) &&
927 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
928 return NULL;
929 skb->len -= len;
930 return skb->data += len;
931 }
932
933 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
934 {
935 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
936 }
937
938 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
939 {
940 if (likely(len <= skb_headlen(skb)))
941 return 1;
942 if (unlikely(len > skb->len))
943 return 0;
944 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
945 }
946
947 /**
948 * skb_headroom - bytes at buffer head
949 * @skb: buffer to check
950 *
951 * Return the number of bytes of free space at the head of an &sk_buff.
952 */
953 static inline unsigned int skb_headroom(const struct sk_buff *skb)
954 {
955 return skb->data - skb->head;
956 }
957
958 /**
959 * skb_tailroom - bytes at buffer end
960 * @skb: buffer to check
961 *
962 * Return the number of bytes of free space at the tail of an sk_buff
963 */
964 static inline int skb_tailroom(const struct sk_buff *skb)
965 {
966 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
967 }
968
969 /**
970 * skb_reserve - adjust headroom
971 * @skb: buffer to alter
972 * @len: bytes to move
973 *
974 * Increase the headroom of an empty &sk_buff by reducing the tail
975 * room. This is only allowed for an empty buffer.
976 */
977 static inline void skb_reserve(struct sk_buff *skb, int len)
978 {
979 skb->data += len;
980 skb->tail += len;
981 }
982
983 #ifdef NET_SKBUFF_DATA_USES_OFFSET
984 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
985 {
986 return skb->head + skb->transport_header;
987 }
988
989 static inline void skb_reset_transport_header(struct sk_buff *skb)
990 {
991 skb->transport_header = skb->data - skb->head;
992 }
993
994 static inline void skb_set_transport_header(struct sk_buff *skb,
995 const int offset)
996 {
997 skb_reset_transport_header(skb);
998 skb->transport_header += offset;
999 }
1000
1001 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1002 {
1003 return skb->head + skb->network_header;
1004 }
1005
1006 static inline void skb_reset_network_header(struct sk_buff *skb)
1007 {
1008 skb->network_header = skb->data - skb->head;
1009 }
1010
1011 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1012 {
1013 skb_reset_network_header(skb);
1014 skb->network_header += offset;
1015 }
1016
1017 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1018 {
1019 return skb->head + skb->mac_header;
1020 }
1021
1022 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1023 {
1024 return skb->mac_header != ~0U;
1025 }
1026
1027 static inline void skb_reset_mac_header(struct sk_buff *skb)
1028 {
1029 skb->mac_header = skb->data - skb->head;
1030 }
1031
1032 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1033 {
1034 skb_reset_mac_header(skb);
1035 skb->mac_header += offset;
1036 }
1037
1038 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1039
1040 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1041 {
1042 return skb->transport_header;
1043 }
1044
1045 static inline void skb_reset_transport_header(struct sk_buff *skb)
1046 {
1047 skb->transport_header = skb->data;
1048 }
1049
1050 static inline void skb_set_transport_header(struct sk_buff *skb,
1051 const int offset)
1052 {
1053 skb->transport_header = skb->data + offset;
1054 }
1055
1056 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1057 {
1058 return skb->network_header;
1059 }
1060
1061 static inline void skb_reset_network_header(struct sk_buff *skb)
1062 {
1063 skb->network_header = skb->data;
1064 }
1065
1066 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1067 {
1068 skb->network_header = skb->data + offset;
1069 }
1070
1071 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1072 {
1073 return skb->mac_header;
1074 }
1075
1076 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1077 {
1078 return skb->mac_header != NULL;
1079 }
1080
1081 static inline void skb_reset_mac_header(struct sk_buff *skb)
1082 {
1083 skb->mac_header = skb->data;
1084 }
1085
1086 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1087 {
1088 skb->mac_header = skb->data + offset;
1089 }
1090 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1091
1092 static inline int skb_transport_offset(const struct sk_buff *skb)
1093 {
1094 return skb_transport_header(skb) - skb->data;
1095 }
1096
1097 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1098 {
1099 return skb->transport_header - skb->network_header;
1100 }
1101
1102 static inline int skb_network_offset(const struct sk_buff *skb)
1103 {
1104 return skb_network_header(skb) - skb->data;
1105 }
1106
1107 /*
1108 * CPUs often take a performance hit when accessing unaligned memory
1109 * locations. The actual performance hit varies, it can be small if the
1110 * hardware handles it or large if we have to take an exception and fix it
1111 * in software.
1112 *
1113 * Since an ethernet header is 14 bytes network drivers often end up with
1114 * the IP header at an unaligned offset. The IP header can be aligned by
1115 * shifting the start of the packet by 2 bytes. Drivers should do this
1116 * with:
1117 *
1118 * skb_reserve(NET_IP_ALIGN);
1119 *
1120 * The downside to this alignment of the IP header is that the DMA is now
1121 * unaligned. On some architectures the cost of an unaligned DMA is high
1122 * and this cost outweighs the gains made by aligning the IP header.
1123 *
1124 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1125 * to be overridden.
1126 */
1127 #ifndef NET_IP_ALIGN
1128 #define NET_IP_ALIGN 2
1129 #endif
1130
1131 /*
1132 * The networking layer reserves some headroom in skb data (via
1133 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1134 * the header has to grow. In the default case, if the header has to grow
1135 * 16 bytes or less we avoid the reallocation.
1136 *
1137 * Unfortunately this headroom changes the DMA alignment of the resulting
1138 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1139 * on some architectures. An architecture can override this value,
1140 * perhaps setting it to a cacheline in size (since that will maintain
1141 * cacheline alignment of the DMA). It must be a power of 2.
1142 *
1143 * Various parts of the networking layer expect at least 16 bytes of
1144 * headroom, you should not reduce this.
1145 */
1146 #ifndef NET_SKB_PAD
1147 #define NET_SKB_PAD 16
1148 #endif
1149
1150 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1151
1152 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1153 {
1154 if (unlikely(skb->data_len)) {
1155 WARN_ON(1);
1156 return;
1157 }
1158 skb->len = len;
1159 skb_set_tail_pointer(skb, len);
1160 }
1161
1162 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1163
1164 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1165 {
1166 if (skb->data_len)
1167 return ___pskb_trim(skb, len);
1168 __skb_trim(skb, len);
1169 return 0;
1170 }
1171
1172 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1173 {
1174 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1175 }
1176
1177 /**
1178 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1179 * @skb: buffer to alter
1180 * @len: new length
1181 *
1182 * This is identical to pskb_trim except that the caller knows that
1183 * the skb is not cloned so we should never get an error due to out-
1184 * of-memory.
1185 */
1186 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1187 {
1188 int err = pskb_trim(skb, len);
1189 BUG_ON(err);
1190 }
1191
1192 /**
1193 * skb_orphan - orphan a buffer
1194 * @skb: buffer to orphan
1195 *
1196 * If a buffer currently has an owner then we call the owner's
1197 * destructor function and make the @skb unowned. The buffer continues
1198 * to exist but is no longer charged to its former owner.
1199 */
1200 static inline void skb_orphan(struct sk_buff *skb)
1201 {
1202 if (skb->destructor)
1203 skb->destructor(skb);
1204 skb->destructor = NULL;
1205 skb->sk = NULL;
1206 }
1207
1208 /**
1209 * __skb_queue_purge - empty a list
1210 * @list: list to empty
1211 *
1212 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1213 * the list and one reference dropped. This function does not take the
1214 * list lock and the caller must hold the relevant locks to use it.
1215 */
1216 extern void skb_queue_purge(struct sk_buff_head *list);
1217 static inline void __skb_queue_purge(struct sk_buff_head *list)
1218 {
1219 struct sk_buff *skb;
1220 while ((skb = __skb_dequeue(list)) != NULL)
1221 kfree_skb(skb);
1222 }
1223
1224 /**
1225 * __dev_alloc_skb - allocate an skbuff for receiving
1226 * @length: length to allocate
1227 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1228 *
1229 * Allocate a new &sk_buff and assign it a usage count of one. The
1230 * buffer has unspecified headroom built in. Users should allocate
1231 * the headroom they think they need without accounting for the
1232 * built in space. The built in space is used for optimisations.
1233 *
1234 * %NULL is returned if there is no free memory.
1235 */
1236 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1237 gfp_t gfp_mask)
1238 {
1239 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1240 if (likely(skb))
1241 skb_reserve(skb, NET_SKB_PAD);
1242 return skb;
1243 }
1244
1245 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1246
1247 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1248 unsigned int length, gfp_t gfp_mask);
1249
1250 /**
1251 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1252 * @dev: network device to receive on
1253 * @length: length to allocate
1254 *
1255 * Allocate a new &sk_buff and assign it a usage count of one. The
1256 * buffer has unspecified headroom built in. Users should allocate
1257 * the headroom they think they need without accounting for the
1258 * built in space. The built in space is used for optimisations.
1259 *
1260 * %NULL is returned if there is no free memory. Although this function
1261 * allocates memory it can be called from an interrupt.
1262 */
1263 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1264 unsigned int length)
1265 {
1266 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1267 }
1268
1269 /**
1270 * skb_clone_writable - is the header of a clone writable
1271 * @skb: buffer to check
1272 * @len: length up to which to write
1273 *
1274 * Returns true if modifying the header part of the cloned buffer
1275 * does not requires the data to be copied.
1276 */
1277 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1278 {
1279 return !skb_header_cloned(skb) &&
1280 skb_headroom(skb) + len <= skb->hdr_len;
1281 }
1282
1283 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1284 int cloned)
1285 {
1286 int delta = 0;
1287
1288 if (headroom < NET_SKB_PAD)
1289 headroom = NET_SKB_PAD;
1290 if (headroom > skb_headroom(skb))
1291 delta = headroom - skb_headroom(skb);
1292
1293 if (delta || cloned)
1294 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1295 GFP_ATOMIC);
1296 return 0;
1297 }
1298
1299 /**
1300 * skb_cow - copy header of skb when it is required
1301 * @skb: buffer to cow
1302 * @headroom: needed headroom
1303 *
1304 * If the skb passed lacks sufficient headroom or its data part
1305 * is shared, data is reallocated. If reallocation fails, an error
1306 * is returned and original skb is not changed.
1307 *
1308 * The result is skb with writable area skb->head...skb->tail
1309 * and at least @headroom of space at head.
1310 */
1311 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1312 {
1313 return __skb_cow(skb, headroom, skb_cloned(skb));
1314 }
1315
1316 /**
1317 * skb_cow_head - skb_cow but only making the head writable
1318 * @skb: buffer to cow
1319 * @headroom: needed headroom
1320 *
1321 * This function is identical to skb_cow except that we replace the
1322 * skb_cloned check by skb_header_cloned. It should be used when
1323 * you only need to push on some header and do not need to modify
1324 * the data.
1325 */
1326 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1327 {
1328 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1329 }
1330
1331 /**
1332 * skb_padto - pad an skbuff up to a minimal size
1333 * @skb: buffer to pad
1334 * @len: minimal length
1335 *
1336 * Pads up a buffer to ensure the trailing bytes exist and are
1337 * blanked. If the buffer already contains sufficient data it
1338 * is untouched. Otherwise it is extended. Returns zero on
1339 * success. The skb is freed on error.
1340 */
1341
1342 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1343 {
1344 unsigned int size = skb->len;
1345 if (likely(size >= len))
1346 return 0;
1347 return skb_pad(skb, len-size);
1348 }
1349
1350 static inline int skb_add_data(struct sk_buff *skb,
1351 char __user *from, int copy)
1352 {
1353 const int off = skb->len;
1354
1355 if (skb->ip_summed == CHECKSUM_NONE) {
1356 int err = 0;
1357 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1358 copy, 0, &err);
1359 if (!err) {
1360 skb->csum = csum_block_add(skb->csum, csum, off);
1361 return 0;
1362 }
1363 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1364 return 0;
1365
1366 __skb_trim(skb, off);
1367 return -EFAULT;
1368 }
1369
1370 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1371 struct page *page, int off)
1372 {
1373 if (i) {
1374 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1375
1376 return page == frag->page &&
1377 off == frag->page_offset + frag->size;
1378 }
1379 return 0;
1380 }
1381
1382 static inline int __skb_linearize(struct sk_buff *skb)
1383 {
1384 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1385 }
1386
1387 /**
1388 * skb_linearize - convert paged skb to linear one
1389 * @skb: buffer to linarize
1390 *
1391 * If there is no free memory -ENOMEM is returned, otherwise zero
1392 * is returned and the old skb data released.
1393 */
1394 static inline int skb_linearize(struct sk_buff *skb)
1395 {
1396 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1397 }
1398
1399 /**
1400 * skb_linearize_cow - make sure skb is linear and writable
1401 * @skb: buffer to process
1402 *
1403 * If there is no free memory -ENOMEM is returned, otherwise zero
1404 * is returned and the old skb data released.
1405 */
1406 static inline int skb_linearize_cow(struct sk_buff *skb)
1407 {
1408 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1409 __skb_linearize(skb) : 0;
1410 }
1411
1412 /**
1413 * skb_postpull_rcsum - update checksum for received skb after pull
1414 * @skb: buffer to update
1415 * @start: start of data before pull
1416 * @len: length of data pulled
1417 *
1418 * After doing a pull on a received packet, you need to call this to
1419 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1420 * CHECKSUM_NONE so that it can be recomputed from scratch.
1421 */
1422
1423 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1424 const void *start, unsigned int len)
1425 {
1426 if (skb->ip_summed == CHECKSUM_COMPLETE)
1427 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1428 }
1429
1430 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1431
1432 /**
1433 * pskb_trim_rcsum - trim received skb and update checksum
1434 * @skb: buffer to trim
1435 * @len: new length
1436 *
1437 * This is exactly the same as pskb_trim except that it ensures the
1438 * checksum of received packets are still valid after the operation.
1439 */
1440
1441 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1442 {
1443 if (likely(len >= skb->len))
1444 return 0;
1445 if (skb->ip_summed == CHECKSUM_COMPLETE)
1446 skb->ip_summed = CHECKSUM_NONE;
1447 return __pskb_trim(skb, len);
1448 }
1449
1450 #define skb_queue_walk(queue, skb) \
1451 for (skb = (queue)->next; \
1452 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1453 skb = skb->next)
1454
1455 #define skb_queue_walk_safe(queue, skb, tmp) \
1456 for (skb = (queue)->next, tmp = skb->next; \
1457 skb != (struct sk_buff *)(queue); \
1458 skb = tmp, tmp = skb->next)
1459
1460 #define skb_queue_reverse_walk(queue, skb) \
1461 for (skb = (queue)->prev; \
1462 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1463 skb = skb->prev)
1464
1465
1466 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1467 int *peeked, int *err);
1468 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1469 int noblock, int *err);
1470 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1471 struct poll_table_struct *wait);
1472 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1473 int offset, struct iovec *to,
1474 int size);
1475 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1476 int hlen,
1477 struct iovec *iov);
1478 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1479 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1480 unsigned int flags);
1481 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1482 int len, __wsum csum);
1483 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1484 void *to, int len);
1485 extern int skb_store_bits(struct sk_buff *skb, int offset,
1486 const void *from, int len);
1487 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1488 int offset, u8 *to, int len,
1489 __wsum csum);
1490 extern int skb_splice_bits(struct sk_buff *skb,
1491 unsigned int offset,
1492 struct pipe_inode_info *pipe,
1493 unsigned int len,
1494 unsigned int flags);
1495 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1496 extern void skb_split(struct sk_buff *skb,
1497 struct sk_buff *skb1, const u32 len);
1498
1499 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1500
1501 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1502 int len, void *buffer)
1503 {
1504 int hlen = skb_headlen(skb);
1505
1506 if (hlen - offset >= len)
1507 return skb->data + offset;
1508
1509 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1510 return NULL;
1511
1512 return buffer;
1513 }
1514
1515 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1516 void *to,
1517 const unsigned int len)
1518 {
1519 memcpy(to, skb->data, len);
1520 }
1521
1522 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1523 const int offset, void *to,
1524 const unsigned int len)
1525 {
1526 memcpy(to, skb->data + offset, len);
1527 }
1528
1529 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1530 const void *from,
1531 const unsigned int len)
1532 {
1533 memcpy(skb->data, from, len);
1534 }
1535
1536 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1537 const int offset,
1538 const void *from,
1539 const unsigned int len)
1540 {
1541 memcpy(skb->data + offset, from, len);
1542 }
1543
1544 extern void skb_init(void);
1545
1546 /**
1547 * skb_get_timestamp - get timestamp from a skb
1548 * @skb: skb to get stamp from
1549 * @stamp: pointer to struct timeval to store stamp in
1550 *
1551 * Timestamps are stored in the skb as offsets to a base timestamp.
1552 * This function converts the offset back to a struct timeval and stores
1553 * it in stamp.
1554 */
1555 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1556 {
1557 *stamp = ktime_to_timeval(skb->tstamp);
1558 }
1559
1560 static inline void __net_timestamp(struct sk_buff *skb)
1561 {
1562 skb->tstamp = ktime_get_real();
1563 }
1564
1565 static inline ktime_t net_timedelta(ktime_t t)
1566 {
1567 return ktime_sub(ktime_get_real(), t);
1568 }
1569
1570 static inline ktime_t net_invalid_timestamp(void)
1571 {
1572 return ktime_set(0, 0);
1573 }
1574
1575 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1576 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1577
1578 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1579 {
1580 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1581 }
1582
1583 /**
1584 * skb_checksum_complete - Calculate checksum of an entire packet
1585 * @skb: packet to process
1586 *
1587 * This function calculates the checksum over the entire packet plus
1588 * the value of skb->csum. The latter can be used to supply the
1589 * checksum of a pseudo header as used by TCP/UDP. It returns the
1590 * checksum.
1591 *
1592 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1593 * this function can be used to verify that checksum on received
1594 * packets. In that case the function should return zero if the
1595 * checksum is correct. In particular, this function will return zero
1596 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1597 * hardware has already verified the correctness of the checksum.
1598 */
1599 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1600 {
1601 return skb_csum_unnecessary(skb) ?
1602 0 : __skb_checksum_complete(skb);
1603 }
1604
1605 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1606 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1607 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1608 {
1609 if (nfct && atomic_dec_and_test(&nfct->use))
1610 nf_conntrack_destroy(nfct);
1611 }
1612 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1613 {
1614 if (nfct)
1615 atomic_inc(&nfct->use);
1616 }
1617 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1618 {
1619 if (skb)
1620 atomic_inc(&skb->users);
1621 }
1622 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1623 {
1624 if (skb)
1625 kfree_skb(skb);
1626 }
1627 #endif
1628 #ifdef CONFIG_BRIDGE_NETFILTER
1629 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1630 {
1631 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1632 kfree(nf_bridge);
1633 }
1634 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1635 {
1636 if (nf_bridge)
1637 atomic_inc(&nf_bridge->use);
1638 }
1639 #endif /* CONFIG_BRIDGE_NETFILTER */
1640 static inline void nf_reset(struct sk_buff *skb)
1641 {
1642 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1643 nf_conntrack_put(skb->nfct);
1644 skb->nfct = NULL;
1645 nf_conntrack_put_reasm(skb->nfct_reasm);
1646 skb->nfct_reasm = NULL;
1647 #endif
1648 #ifdef CONFIG_BRIDGE_NETFILTER
1649 nf_bridge_put(skb->nf_bridge);
1650 skb->nf_bridge = NULL;
1651 #endif
1652 }
1653
1654 /* Note: This doesn't put any conntrack and bridge info in dst. */
1655 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1656 {
1657 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1658 dst->nfct = src->nfct;
1659 nf_conntrack_get(src->nfct);
1660 dst->nfctinfo = src->nfctinfo;
1661 dst->nfct_reasm = src->nfct_reasm;
1662 nf_conntrack_get_reasm(src->nfct_reasm);
1663 #endif
1664 #ifdef CONFIG_BRIDGE_NETFILTER
1665 dst->nf_bridge = src->nf_bridge;
1666 nf_bridge_get(src->nf_bridge);
1667 #endif
1668 }
1669
1670 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1671 {
1672 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1673 nf_conntrack_put(dst->nfct);
1674 nf_conntrack_put_reasm(dst->nfct_reasm);
1675 #endif
1676 #ifdef CONFIG_BRIDGE_NETFILTER
1677 nf_bridge_put(dst->nf_bridge);
1678 #endif
1679 __nf_copy(dst, src);
1680 }
1681
1682 #ifdef CONFIG_NETWORK_SECMARK
1683 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1684 {
1685 to->secmark = from->secmark;
1686 }
1687
1688 static inline void skb_init_secmark(struct sk_buff *skb)
1689 {
1690 skb->secmark = 0;
1691 }
1692 #else
1693 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1694 { }
1695
1696 static inline void skb_init_secmark(struct sk_buff *skb)
1697 { }
1698 #endif
1699
1700 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1701 {
1702 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1703 skb->queue_mapping = queue_mapping;
1704 #endif
1705 }
1706
1707 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1708 {
1709 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1710 return skb->queue_mapping;
1711 #else
1712 return 0;
1713 #endif
1714 }
1715
1716 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1717 {
1718 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1719 to->queue_mapping = from->queue_mapping;
1720 #endif
1721 }
1722
1723 static inline int skb_is_gso(const struct sk_buff *skb)
1724 {
1725 return skb_shinfo(skb)->gso_size;
1726 }
1727
1728 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1729 {
1730 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1731 }
1732
1733 static inline void skb_forward_csum(struct sk_buff *skb)
1734 {
1735 /* Unfortunately we don't support this one. Any brave souls? */
1736 if (skb->ip_summed == CHECKSUM_COMPLETE)
1737 skb->ip_summed = CHECKSUM_NONE;
1738 }
1739
1740 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1741 #endif /* __KERNEL__ */
1742 #endif /* _LINUX_SKBUFF_H */