net: skb->rtable accessor
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
37
38 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
39 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X) \
41 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48 *
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
51 *
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
57 *
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
62 * not UNNECESSARY.
63 *
64 * PARTIAL: identical to the case for output below. This may occur
65 * on a packet received directly from another Linux OS, e.g.,
66 * a virtualised Linux kernel on the same host. The packet can
67 * be treated in the same way as UNNECESSARY except that on
68 * output (i.e., forwarding) the checksum must be filled in
69 * by the OS or the hardware.
70 *
71 * B. Checksumming on output.
72 *
73 * NONE: skb is checksummed by protocol or csum is not required.
74 *
75 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
76 * from skb->csum_start to the end and to record the checksum
77 * at skb->csum_start + skb->csum_offset.
78 *
79 * Device must show its capabilities in dev->features, set
80 * at device setup time.
81 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
82 * everything.
83 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
84 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85 * TCP/UDP over IPv4. Sigh. Vendors like this
86 * way by an unknown reason. Though, see comment above
87 * about CHECKSUM_UNNECESSARY. 8)
88 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
89 *
90 * Any questions? No questions, good. --ANK
91 */
92
93 struct net_device;
94 struct scatterlist;
95 struct pipe_inode_info;
96
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
98 struct nf_conntrack {
99 atomic_t use;
100 };
101 #endif
102
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info {
105 atomic_t use;
106 struct net_device *physindev;
107 struct net_device *physoutdev;
108 unsigned int mask;
109 unsigned long data[32 / sizeof(unsigned long)];
110 };
111 #endif
112
113 struct sk_buff_head {
114 /* These two members must be first. */
115 struct sk_buff *next;
116 struct sk_buff *prev;
117
118 __u32 qlen;
119 spinlock_t lock;
120 };
121
122 struct sk_buff;
123
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
126
127 typedef struct skb_frag_struct skb_frag_t;
128
129 struct skb_frag_struct {
130 struct page *page;
131 __u32 page_offset;
132 __u32 size;
133 };
134
135 #define HAVE_HW_TIME_STAMP
136
137 /**
138 * struct skb_shared_hwtstamps - hardware time stamps
139 * @hwtstamp: hardware time stamp transformed into duration
140 * since arbitrary point in time
141 * @syststamp: hwtstamp transformed to system time base
142 *
143 * Software time stamps generated by ktime_get_real() are stored in
144 * skb->tstamp. The relation between the different kinds of time
145 * stamps is as follows:
146 *
147 * syststamp and tstamp can be compared against each other in
148 * arbitrary combinations. The accuracy of a
149 * syststamp/tstamp/"syststamp from other device" comparison is
150 * limited by the accuracy of the transformation into system time
151 * base. This depends on the device driver and its underlying
152 * hardware.
153 *
154 * hwtstamps can only be compared against other hwtstamps from
155 * the same device.
156 *
157 * This structure is attached to packets as part of the
158 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
159 */
160 struct skb_shared_hwtstamps {
161 ktime_t hwtstamp;
162 ktime_t syststamp;
163 };
164
165 /**
166 * struct skb_shared_tx - instructions for time stamping of outgoing packets
167 * @hardware: generate hardware time stamp
168 * @software: generate software time stamp
169 * @in_progress: device driver is going to provide
170 * hardware time stamp
171 * @flags: all shared_tx flags
172 *
173 * These flags are attached to packets as part of the
174 * &skb_shared_info. Use skb_tx() to get a pointer.
175 */
176 union skb_shared_tx {
177 struct {
178 __u8 hardware:1,
179 software:1,
180 in_progress:1;
181 };
182 __u8 flags;
183 };
184
185 /* This data is invariant across clones and lives at
186 * the end of the header data, ie. at skb->end.
187 */
188 struct skb_shared_info {
189 atomic_t dataref;
190 unsigned short nr_frags;
191 unsigned short gso_size;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs;
194 unsigned short gso_type;
195 __be32 ip6_frag_id;
196 union skb_shared_tx tx_flags;
197 #ifdef CONFIG_HAS_DMA
198 unsigned int num_dma_maps;
199 #endif
200 struct sk_buff *frag_list;
201 struct skb_shared_hwtstamps hwtstamps;
202 skb_frag_t frags[MAX_SKB_FRAGS];
203 #ifdef CONFIG_HAS_DMA
204 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
205 #endif
206 /* Intermediate layers must ensure that destructor_arg
207 * remains valid until skb destructor */
208 void * destructor_arg;
209 };
210
211 /* We divide dataref into two halves. The higher 16 bits hold references
212 * to the payload part of skb->data. The lower 16 bits hold references to
213 * the entire skb->data. A clone of a headerless skb holds the length of
214 * the header in skb->hdr_len.
215 *
216 * All users must obey the rule that the skb->data reference count must be
217 * greater than or equal to the payload reference count.
218 *
219 * Holding a reference to the payload part means that the user does not
220 * care about modifications to the header part of skb->data.
221 */
222 #define SKB_DATAREF_SHIFT 16
223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224
225
226 enum {
227 SKB_FCLONE_UNAVAILABLE,
228 SKB_FCLONE_ORIG,
229 SKB_FCLONE_CLONE,
230 };
231
232 enum {
233 SKB_GSO_TCPV4 = 1 << 0,
234 SKB_GSO_UDP = 1 << 1,
235
236 /* This indicates the skb is from an untrusted source. */
237 SKB_GSO_DODGY = 1 << 2,
238
239 /* This indicates the tcp segment has CWR set. */
240 SKB_GSO_TCP_ECN = 1 << 3,
241
242 SKB_GSO_TCPV6 = 1 << 4,
243
244 SKB_GSO_FCOE = 1 << 5,
245 };
246
247 #if BITS_PER_LONG > 32
248 #define NET_SKBUFF_DATA_USES_OFFSET 1
249 #endif
250
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 typedef unsigned int sk_buff_data_t;
253 #else
254 typedef unsigned char *sk_buff_data_t;
255 #endif
256
257 /**
258 * struct sk_buff - socket buffer
259 * @next: Next buffer in list
260 * @prev: Previous buffer in list
261 * @sk: Socket we are owned by
262 * @tstamp: Time we arrived
263 * @dev: Device we arrived on/are leaving by
264 * @transport_header: Transport layer header
265 * @network_header: Network layer header
266 * @mac_header: Link layer header
267 * @dst: destination entry
268 * @sp: the security path, used for xfrm
269 * @cb: Control buffer. Free for use by every layer. Put private vars here
270 * @len: Length of actual data
271 * @data_len: Data length
272 * @mac_len: Length of link layer header
273 * @hdr_len: writable header length of cloned skb
274 * @csum: Checksum (must include start/offset pair)
275 * @csum_start: Offset from skb->head where checksumming should start
276 * @csum_offset: Offset from csum_start where checksum should be stored
277 * @local_df: allow local fragmentation
278 * @cloned: Head may be cloned (check refcnt to be sure)
279 * @nohdr: Payload reference only, must not modify header
280 * @pkt_type: Packet class
281 * @fclone: skbuff clone status
282 * @ip_summed: Driver fed us an IP checksum
283 * @priority: Packet queueing priority
284 * @users: User count - see {datagram,tcp}.c
285 * @protocol: Packet protocol from driver
286 * @truesize: Buffer size
287 * @head: Head of buffer
288 * @data: Data head pointer
289 * @tail: Tail pointer
290 * @end: End pointer
291 * @destructor: Destruct function
292 * @mark: Generic packet mark
293 * @nfct: Associated connection, if any
294 * @ipvs_property: skbuff is owned by ipvs
295 * @peeked: this packet has been seen already, so stats have been
296 * done for it, don't do them again
297 * @nf_trace: netfilter packet trace flag
298 * @nfctinfo: Relationship of this skb to the connection
299 * @nfct_reasm: netfilter conntrack re-assembly pointer
300 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
301 * @iif: ifindex of device we arrived on
302 * @queue_mapping: Queue mapping for multiqueue devices
303 * @tc_index: Traffic control index
304 * @tc_verd: traffic control verdict
305 * @ndisc_nodetype: router type (from link layer)
306 * @do_not_encrypt: set to prevent encryption of this frame
307 * @requeue: set to indicate that the wireless core should attempt
308 * a software retry on this frame if we failed to
309 * receive an ACK for it
310 * @dma_cookie: a cookie to one of several possible DMA operations
311 * done by skb DMA functions
312 * @secmark: security marking
313 * @vlan_tci: vlan tag control information
314 */
315
316 struct sk_buff {
317 /* These two members must be first. */
318 struct sk_buff *next;
319 struct sk_buff *prev;
320
321 struct sock *sk;
322 ktime_t tstamp;
323 struct net_device *dev;
324
325 union {
326 struct dst_entry *dst;
327 unsigned long _skb_dst;
328 };
329 #ifdef CONFIG_XFRM
330 struct sec_path *sp;
331 #endif
332 /*
333 * This is the control buffer. It is free to use for every
334 * layer. Please put your private variables there. If you
335 * want to keep them across layers you have to do a skb_clone()
336 * first. This is owned by whoever has the skb queued ATM.
337 */
338 char cb[48];
339
340 unsigned int len,
341 data_len;
342 __u16 mac_len,
343 hdr_len;
344 union {
345 __wsum csum;
346 struct {
347 __u16 csum_start;
348 __u16 csum_offset;
349 };
350 };
351 __u32 priority;
352 __u8 local_df:1,
353 cloned:1,
354 ip_summed:2,
355 nohdr:1,
356 nfctinfo:3;
357 __u8 pkt_type:3,
358 fclone:2,
359 ipvs_property:1,
360 peeked:1,
361 nf_trace:1;
362 __be16 protocol;
363
364 void (*destructor)(struct sk_buff *skb);
365 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
366 struct nf_conntrack *nfct;
367 struct sk_buff *nfct_reasm;
368 #endif
369 #ifdef CONFIG_BRIDGE_NETFILTER
370 struct nf_bridge_info *nf_bridge;
371 #endif
372
373 int iif;
374 __u16 queue_mapping;
375 #ifdef CONFIG_NET_SCHED
376 __u16 tc_index; /* traffic control index */
377 #ifdef CONFIG_NET_CLS_ACT
378 __u16 tc_verd; /* traffic control verdict */
379 #endif
380 #endif
381 #ifdef CONFIG_IPV6_NDISC_NODETYPE
382 __u8 ndisc_nodetype:2;
383 #endif
384 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
385 __u8 do_not_encrypt:1;
386 __u8 requeue:1;
387 #endif
388 /* 0/13/14 bit hole */
389
390 #ifdef CONFIG_NET_DMA
391 dma_cookie_t dma_cookie;
392 #endif
393 #ifdef CONFIG_NETWORK_SECMARK
394 __u32 secmark;
395 #endif
396
397 __u32 mark;
398
399 __u16 vlan_tci;
400
401 sk_buff_data_t transport_header;
402 sk_buff_data_t network_header;
403 sk_buff_data_t mac_header;
404 /* These elements must be at the end, see alloc_skb() for details. */
405 sk_buff_data_t tail;
406 sk_buff_data_t end;
407 unsigned char *head,
408 *data;
409 unsigned int truesize;
410 atomic_t users;
411 };
412
413 #ifdef __KERNEL__
414 /*
415 * Handling routines are only of interest to the kernel
416 */
417 #include <linux/slab.h>
418
419 #include <asm/system.h>
420
421 #ifdef CONFIG_HAS_DMA
422 #include <linux/dma-mapping.h>
423 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
424 enum dma_data_direction dir);
425 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
426 enum dma_data_direction dir);
427 #endif
428
429 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
430 {
431 return (struct rtable *)skb->_skb_dst;
432 }
433
434 extern void kfree_skb(struct sk_buff *skb);
435 extern void consume_skb(struct sk_buff *skb);
436 extern void __kfree_skb(struct sk_buff *skb);
437 extern struct sk_buff *__alloc_skb(unsigned int size,
438 gfp_t priority, int fclone, int node);
439 static inline struct sk_buff *alloc_skb(unsigned int size,
440 gfp_t priority)
441 {
442 return __alloc_skb(size, priority, 0, -1);
443 }
444
445 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
446 gfp_t priority)
447 {
448 return __alloc_skb(size, priority, 1, -1);
449 }
450
451 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
452
453 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
454 extern struct sk_buff *skb_clone(struct sk_buff *skb,
455 gfp_t priority);
456 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
457 gfp_t priority);
458 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
459 gfp_t gfp_mask);
460 extern int pskb_expand_head(struct sk_buff *skb,
461 int nhead, int ntail,
462 gfp_t gfp_mask);
463 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
464 unsigned int headroom);
465 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
466 int newheadroom, int newtailroom,
467 gfp_t priority);
468 extern int skb_to_sgvec(struct sk_buff *skb,
469 struct scatterlist *sg, int offset,
470 int len);
471 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
472 struct sk_buff **trailer);
473 extern int skb_pad(struct sk_buff *skb, int pad);
474 #define dev_kfree_skb(a) consume_skb(a)
475 #define dev_consume_skb(a) kfree_skb_clean(a)
476 extern void skb_over_panic(struct sk_buff *skb, int len,
477 void *here);
478 extern void skb_under_panic(struct sk_buff *skb, int len,
479 void *here);
480
481 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
482 int getfrag(void *from, char *to, int offset,
483 int len,int odd, struct sk_buff *skb),
484 void *from, int length);
485
486 struct skb_seq_state
487 {
488 __u32 lower_offset;
489 __u32 upper_offset;
490 __u32 frag_idx;
491 __u32 stepped_offset;
492 struct sk_buff *root_skb;
493 struct sk_buff *cur_skb;
494 __u8 *frag_data;
495 };
496
497 extern void skb_prepare_seq_read(struct sk_buff *skb,
498 unsigned int from, unsigned int to,
499 struct skb_seq_state *st);
500 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
501 struct skb_seq_state *st);
502 extern void skb_abort_seq_read(struct skb_seq_state *st);
503
504 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
505 unsigned int to, struct ts_config *config,
506 struct ts_state *state);
507
508 #ifdef NET_SKBUFF_DATA_USES_OFFSET
509 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
510 {
511 return skb->head + skb->end;
512 }
513 #else
514 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
515 {
516 return skb->end;
517 }
518 #endif
519
520 /* Internal */
521 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
522
523 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
524 {
525 return &skb_shinfo(skb)->hwtstamps;
526 }
527
528 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
529 {
530 return &skb_shinfo(skb)->tx_flags;
531 }
532
533 /**
534 * skb_queue_empty - check if a queue is empty
535 * @list: queue head
536 *
537 * Returns true if the queue is empty, false otherwise.
538 */
539 static inline int skb_queue_empty(const struct sk_buff_head *list)
540 {
541 return list->next == (struct sk_buff *)list;
542 }
543
544 /**
545 * skb_queue_is_last - check if skb is the last entry in the queue
546 * @list: queue head
547 * @skb: buffer
548 *
549 * Returns true if @skb is the last buffer on the list.
550 */
551 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
552 const struct sk_buff *skb)
553 {
554 return (skb->next == (struct sk_buff *) list);
555 }
556
557 /**
558 * skb_queue_is_first - check if skb is the first entry in the queue
559 * @list: queue head
560 * @skb: buffer
561 *
562 * Returns true if @skb is the first buffer on the list.
563 */
564 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
565 const struct sk_buff *skb)
566 {
567 return (skb->prev == (struct sk_buff *) list);
568 }
569
570 /**
571 * skb_queue_next - return the next packet in the queue
572 * @list: queue head
573 * @skb: current buffer
574 *
575 * Return the next packet in @list after @skb. It is only valid to
576 * call this if skb_queue_is_last() evaluates to false.
577 */
578 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
579 const struct sk_buff *skb)
580 {
581 /* This BUG_ON may seem severe, but if we just return then we
582 * are going to dereference garbage.
583 */
584 BUG_ON(skb_queue_is_last(list, skb));
585 return skb->next;
586 }
587
588 /**
589 * skb_queue_prev - return the prev packet in the queue
590 * @list: queue head
591 * @skb: current buffer
592 *
593 * Return the prev packet in @list before @skb. It is only valid to
594 * call this if skb_queue_is_first() evaluates to false.
595 */
596 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
597 const struct sk_buff *skb)
598 {
599 /* This BUG_ON may seem severe, but if we just return then we
600 * are going to dereference garbage.
601 */
602 BUG_ON(skb_queue_is_first(list, skb));
603 return skb->prev;
604 }
605
606 /**
607 * skb_get - reference buffer
608 * @skb: buffer to reference
609 *
610 * Makes another reference to a socket buffer and returns a pointer
611 * to the buffer.
612 */
613 static inline struct sk_buff *skb_get(struct sk_buff *skb)
614 {
615 atomic_inc(&skb->users);
616 return skb;
617 }
618
619 /*
620 * If users == 1, we are the only owner and are can avoid redundant
621 * atomic change.
622 */
623
624 /**
625 * skb_cloned - is the buffer a clone
626 * @skb: buffer to check
627 *
628 * Returns true if the buffer was generated with skb_clone() and is
629 * one of multiple shared copies of the buffer. Cloned buffers are
630 * shared data so must not be written to under normal circumstances.
631 */
632 static inline int skb_cloned(const struct sk_buff *skb)
633 {
634 return skb->cloned &&
635 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
636 }
637
638 /**
639 * skb_header_cloned - is the header a clone
640 * @skb: buffer to check
641 *
642 * Returns true if modifying the header part of the buffer requires
643 * the data to be copied.
644 */
645 static inline int skb_header_cloned(const struct sk_buff *skb)
646 {
647 int dataref;
648
649 if (!skb->cloned)
650 return 0;
651
652 dataref = atomic_read(&skb_shinfo(skb)->dataref);
653 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
654 return dataref != 1;
655 }
656
657 /**
658 * skb_header_release - release reference to header
659 * @skb: buffer to operate on
660 *
661 * Drop a reference to the header part of the buffer. This is done
662 * by acquiring a payload reference. You must not read from the header
663 * part of skb->data after this.
664 */
665 static inline void skb_header_release(struct sk_buff *skb)
666 {
667 BUG_ON(skb->nohdr);
668 skb->nohdr = 1;
669 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
670 }
671
672 /**
673 * skb_shared - is the buffer shared
674 * @skb: buffer to check
675 *
676 * Returns true if more than one person has a reference to this
677 * buffer.
678 */
679 static inline int skb_shared(const struct sk_buff *skb)
680 {
681 return atomic_read(&skb->users) != 1;
682 }
683
684 /**
685 * skb_share_check - check if buffer is shared and if so clone it
686 * @skb: buffer to check
687 * @pri: priority for memory allocation
688 *
689 * If the buffer is shared the buffer is cloned and the old copy
690 * drops a reference. A new clone with a single reference is returned.
691 * If the buffer is not shared the original buffer is returned. When
692 * being called from interrupt status or with spinlocks held pri must
693 * be GFP_ATOMIC.
694 *
695 * NULL is returned on a memory allocation failure.
696 */
697 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
698 gfp_t pri)
699 {
700 might_sleep_if(pri & __GFP_WAIT);
701 if (skb_shared(skb)) {
702 struct sk_buff *nskb = skb_clone(skb, pri);
703 kfree_skb(skb);
704 skb = nskb;
705 }
706 return skb;
707 }
708
709 /*
710 * Copy shared buffers into a new sk_buff. We effectively do COW on
711 * packets to handle cases where we have a local reader and forward
712 * and a couple of other messy ones. The normal one is tcpdumping
713 * a packet thats being forwarded.
714 */
715
716 /**
717 * skb_unshare - make a copy of a shared buffer
718 * @skb: buffer to check
719 * @pri: priority for memory allocation
720 *
721 * If the socket buffer is a clone then this function creates a new
722 * copy of the data, drops a reference count on the old copy and returns
723 * the new copy with the reference count at 1. If the buffer is not a clone
724 * the original buffer is returned. When called with a spinlock held or
725 * from interrupt state @pri must be %GFP_ATOMIC
726 *
727 * %NULL is returned on a memory allocation failure.
728 */
729 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
730 gfp_t pri)
731 {
732 might_sleep_if(pri & __GFP_WAIT);
733 if (skb_cloned(skb)) {
734 struct sk_buff *nskb = skb_copy(skb, pri);
735 kfree_skb(skb); /* Free our shared copy */
736 skb = nskb;
737 }
738 return skb;
739 }
740
741 /**
742 * skb_peek
743 * @list_: list to peek at
744 *
745 * Peek an &sk_buff. Unlike most other operations you _MUST_
746 * be careful with this one. A peek leaves the buffer on the
747 * list and someone else may run off with it. You must hold
748 * the appropriate locks or have a private queue to do this.
749 *
750 * Returns %NULL for an empty list or a pointer to the head element.
751 * The reference count is not incremented and the reference is therefore
752 * volatile. Use with caution.
753 */
754 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
755 {
756 struct sk_buff *list = ((struct sk_buff *)list_)->next;
757 if (list == (struct sk_buff *)list_)
758 list = NULL;
759 return list;
760 }
761
762 /**
763 * skb_peek_tail
764 * @list_: list to peek at
765 *
766 * Peek an &sk_buff. Unlike most other operations you _MUST_
767 * be careful with this one. A peek leaves the buffer on the
768 * list and someone else may run off with it. You must hold
769 * the appropriate locks or have a private queue to do this.
770 *
771 * Returns %NULL for an empty list or a pointer to the tail element.
772 * The reference count is not incremented and the reference is therefore
773 * volatile. Use with caution.
774 */
775 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
776 {
777 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
778 if (list == (struct sk_buff *)list_)
779 list = NULL;
780 return list;
781 }
782
783 /**
784 * skb_queue_len - get queue length
785 * @list_: list to measure
786 *
787 * Return the length of an &sk_buff queue.
788 */
789 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
790 {
791 return list_->qlen;
792 }
793
794 /**
795 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
796 * @list: queue to initialize
797 *
798 * This initializes only the list and queue length aspects of
799 * an sk_buff_head object. This allows to initialize the list
800 * aspects of an sk_buff_head without reinitializing things like
801 * the spinlock. It can also be used for on-stack sk_buff_head
802 * objects where the spinlock is known to not be used.
803 */
804 static inline void __skb_queue_head_init(struct sk_buff_head *list)
805 {
806 list->prev = list->next = (struct sk_buff *)list;
807 list->qlen = 0;
808 }
809
810 /*
811 * This function creates a split out lock class for each invocation;
812 * this is needed for now since a whole lot of users of the skb-queue
813 * infrastructure in drivers have different locking usage (in hardirq)
814 * than the networking core (in softirq only). In the long run either the
815 * network layer or drivers should need annotation to consolidate the
816 * main types of usage into 3 classes.
817 */
818 static inline void skb_queue_head_init(struct sk_buff_head *list)
819 {
820 spin_lock_init(&list->lock);
821 __skb_queue_head_init(list);
822 }
823
824 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
825 struct lock_class_key *class)
826 {
827 skb_queue_head_init(list);
828 lockdep_set_class(&list->lock, class);
829 }
830
831 /*
832 * Insert an sk_buff on a list.
833 *
834 * The "__skb_xxxx()" functions are the non-atomic ones that
835 * can only be called with interrupts disabled.
836 */
837 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
838 static inline void __skb_insert(struct sk_buff *newsk,
839 struct sk_buff *prev, struct sk_buff *next,
840 struct sk_buff_head *list)
841 {
842 newsk->next = next;
843 newsk->prev = prev;
844 next->prev = prev->next = newsk;
845 list->qlen++;
846 }
847
848 static inline void __skb_queue_splice(const struct sk_buff_head *list,
849 struct sk_buff *prev,
850 struct sk_buff *next)
851 {
852 struct sk_buff *first = list->next;
853 struct sk_buff *last = list->prev;
854
855 first->prev = prev;
856 prev->next = first;
857
858 last->next = next;
859 next->prev = last;
860 }
861
862 /**
863 * skb_queue_splice - join two skb lists, this is designed for stacks
864 * @list: the new list to add
865 * @head: the place to add it in the first list
866 */
867 static inline void skb_queue_splice(const struct sk_buff_head *list,
868 struct sk_buff_head *head)
869 {
870 if (!skb_queue_empty(list)) {
871 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
872 head->qlen += list->qlen;
873 }
874 }
875
876 /**
877 * skb_queue_splice - join two skb lists and reinitialise the emptied list
878 * @list: the new list to add
879 * @head: the place to add it in the first list
880 *
881 * The list at @list is reinitialised
882 */
883 static inline void skb_queue_splice_init(struct sk_buff_head *list,
884 struct sk_buff_head *head)
885 {
886 if (!skb_queue_empty(list)) {
887 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
888 head->qlen += list->qlen;
889 __skb_queue_head_init(list);
890 }
891 }
892
893 /**
894 * skb_queue_splice_tail - join two skb lists, each list being a queue
895 * @list: the new list to add
896 * @head: the place to add it in the first list
897 */
898 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
899 struct sk_buff_head *head)
900 {
901 if (!skb_queue_empty(list)) {
902 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
903 head->qlen += list->qlen;
904 }
905 }
906
907 /**
908 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
909 * @list: the new list to add
910 * @head: the place to add it in the first list
911 *
912 * Each of the lists is a queue.
913 * The list at @list is reinitialised
914 */
915 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
916 struct sk_buff_head *head)
917 {
918 if (!skb_queue_empty(list)) {
919 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
920 head->qlen += list->qlen;
921 __skb_queue_head_init(list);
922 }
923 }
924
925 /**
926 * __skb_queue_after - queue a buffer at the list head
927 * @list: list to use
928 * @prev: place after this buffer
929 * @newsk: buffer to queue
930 *
931 * Queue a buffer int the middle of a list. This function takes no locks
932 * and you must therefore hold required locks before calling it.
933 *
934 * A buffer cannot be placed on two lists at the same time.
935 */
936 static inline void __skb_queue_after(struct sk_buff_head *list,
937 struct sk_buff *prev,
938 struct sk_buff *newsk)
939 {
940 __skb_insert(newsk, prev, prev->next, list);
941 }
942
943 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
944 struct sk_buff_head *list);
945
946 static inline void __skb_queue_before(struct sk_buff_head *list,
947 struct sk_buff *next,
948 struct sk_buff *newsk)
949 {
950 __skb_insert(newsk, next->prev, next, list);
951 }
952
953 /**
954 * __skb_queue_head - queue a buffer at the list head
955 * @list: list to use
956 * @newsk: buffer to queue
957 *
958 * Queue a buffer at the start of a list. This function takes no locks
959 * and you must therefore hold required locks before calling it.
960 *
961 * A buffer cannot be placed on two lists at the same time.
962 */
963 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
964 static inline void __skb_queue_head(struct sk_buff_head *list,
965 struct sk_buff *newsk)
966 {
967 __skb_queue_after(list, (struct sk_buff *)list, newsk);
968 }
969
970 /**
971 * __skb_queue_tail - queue a buffer at the list tail
972 * @list: list to use
973 * @newsk: buffer to queue
974 *
975 * Queue a buffer at the end of a list. This function takes no locks
976 * and you must therefore hold required locks before calling it.
977 *
978 * A buffer cannot be placed on two lists at the same time.
979 */
980 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
981 static inline void __skb_queue_tail(struct sk_buff_head *list,
982 struct sk_buff *newsk)
983 {
984 __skb_queue_before(list, (struct sk_buff *)list, newsk);
985 }
986
987 /*
988 * remove sk_buff from list. _Must_ be called atomically, and with
989 * the list known..
990 */
991 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
992 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
993 {
994 struct sk_buff *next, *prev;
995
996 list->qlen--;
997 next = skb->next;
998 prev = skb->prev;
999 skb->next = skb->prev = NULL;
1000 next->prev = prev;
1001 prev->next = next;
1002 }
1003
1004 /**
1005 * __skb_dequeue - remove from the head of the queue
1006 * @list: list to dequeue from
1007 *
1008 * Remove the head of the list. This function does not take any locks
1009 * so must be used with appropriate locks held only. The head item is
1010 * returned or %NULL if the list is empty.
1011 */
1012 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1013 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1014 {
1015 struct sk_buff *skb = skb_peek(list);
1016 if (skb)
1017 __skb_unlink(skb, list);
1018 return skb;
1019 }
1020
1021 /**
1022 * __skb_dequeue_tail - remove from the tail of the queue
1023 * @list: list to dequeue from
1024 *
1025 * Remove the tail of the list. This function does not take any locks
1026 * so must be used with appropriate locks held only. The tail item is
1027 * returned or %NULL if the list is empty.
1028 */
1029 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1030 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1031 {
1032 struct sk_buff *skb = skb_peek_tail(list);
1033 if (skb)
1034 __skb_unlink(skb, list);
1035 return skb;
1036 }
1037
1038
1039 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1040 {
1041 return skb->data_len;
1042 }
1043
1044 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1045 {
1046 return skb->len - skb->data_len;
1047 }
1048
1049 static inline int skb_pagelen(const struct sk_buff *skb)
1050 {
1051 int i, len = 0;
1052
1053 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1054 len += skb_shinfo(skb)->frags[i].size;
1055 return len + skb_headlen(skb);
1056 }
1057
1058 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1059 struct page *page, int off, int size)
1060 {
1061 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1062
1063 frag->page = page;
1064 frag->page_offset = off;
1065 frag->size = size;
1066 skb_shinfo(skb)->nr_frags = i + 1;
1067 }
1068
1069 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1070 int off, int size);
1071
1072 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1073 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1074 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1075
1076 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1077 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1078 {
1079 return skb->head + skb->tail;
1080 }
1081
1082 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1083 {
1084 skb->tail = skb->data - skb->head;
1085 }
1086
1087 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1088 {
1089 skb_reset_tail_pointer(skb);
1090 skb->tail += offset;
1091 }
1092 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1093 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1094 {
1095 return skb->tail;
1096 }
1097
1098 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1099 {
1100 skb->tail = skb->data;
1101 }
1102
1103 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1104 {
1105 skb->tail = skb->data + offset;
1106 }
1107
1108 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1109
1110 /*
1111 * Add data to an sk_buff
1112 */
1113 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1114 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1115 {
1116 unsigned char *tmp = skb_tail_pointer(skb);
1117 SKB_LINEAR_ASSERT(skb);
1118 skb->tail += len;
1119 skb->len += len;
1120 return tmp;
1121 }
1122
1123 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1124 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1125 {
1126 skb->data -= len;
1127 skb->len += len;
1128 return skb->data;
1129 }
1130
1131 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1132 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1133 {
1134 skb->len -= len;
1135 BUG_ON(skb->len < skb->data_len);
1136 return skb->data += len;
1137 }
1138
1139 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1140
1141 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1142 {
1143 if (len > skb_headlen(skb) &&
1144 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1145 return NULL;
1146 skb->len -= len;
1147 return skb->data += len;
1148 }
1149
1150 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1151 {
1152 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1153 }
1154
1155 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1156 {
1157 if (likely(len <= skb_headlen(skb)))
1158 return 1;
1159 if (unlikely(len > skb->len))
1160 return 0;
1161 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1162 }
1163
1164 /**
1165 * skb_headroom - bytes at buffer head
1166 * @skb: buffer to check
1167 *
1168 * Return the number of bytes of free space at the head of an &sk_buff.
1169 */
1170 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1171 {
1172 return skb->data - skb->head;
1173 }
1174
1175 /**
1176 * skb_tailroom - bytes at buffer end
1177 * @skb: buffer to check
1178 *
1179 * Return the number of bytes of free space at the tail of an sk_buff
1180 */
1181 static inline int skb_tailroom(const struct sk_buff *skb)
1182 {
1183 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1184 }
1185
1186 /**
1187 * skb_reserve - adjust headroom
1188 * @skb: buffer to alter
1189 * @len: bytes to move
1190 *
1191 * Increase the headroom of an empty &sk_buff by reducing the tail
1192 * room. This is only allowed for an empty buffer.
1193 */
1194 static inline void skb_reserve(struct sk_buff *skb, int len)
1195 {
1196 skb->data += len;
1197 skb->tail += len;
1198 }
1199
1200 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1201 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1202 {
1203 return skb->head + skb->transport_header;
1204 }
1205
1206 static inline void skb_reset_transport_header(struct sk_buff *skb)
1207 {
1208 skb->transport_header = skb->data - skb->head;
1209 }
1210
1211 static inline void skb_set_transport_header(struct sk_buff *skb,
1212 const int offset)
1213 {
1214 skb_reset_transport_header(skb);
1215 skb->transport_header += offset;
1216 }
1217
1218 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1219 {
1220 return skb->head + skb->network_header;
1221 }
1222
1223 static inline void skb_reset_network_header(struct sk_buff *skb)
1224 {
1225 skb->network_header = skb->data - skb->head;
1226 }
1227
1228 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1229 {
1230 skb_reset_network_header(skb);
1231 skb->network_header += offset;
1232 }
1233
1234 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1235 {
1236 return skb->head + skb->mac_header;
1237 }
1238
1239 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1240 {
1241 return skb->mac_header != ~0U;
1242 }
1243
1244 static inline void skb_reset_mac_header(struct sk_buff *skb)
1245 {
1246 skb->mac_header = skb->data - skb->head;
1247 }
1248
1249 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1250 {
1251 skb_reset_mac_header(skb);
1252 skb->mac_header += offset;
1253 }
1254
1255 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1256
1257 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1258 {
1259 return skb->transport_header;
1260 }
1261
1262 static inline void skb_reset_transport_header(struct sk_buff *skb)
1263 {
1264 skb->transport_header = skb->data;
1265 }
1266
1267 static inline void skb_set_transport_header(struct sk_buff *skb,
1268 const int offset)
1269 {
1270 skb->transport_header = skb->data + offset;
1271 }
1272
1273 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1274 {
1275 return skb->network_header;
1276 }
1277
1278 static inline void skb_reset_network_header(struct sk_buff *skb)
1279 {
1280 skb->network_header = skb->data;
1281 }
1282
1283 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1284 {
1285 skb->network_header = skb->data + offset;
1286 }
1287
1288 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1289 {
1290 return skb->mac_header;
1291 }
1292
1293 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1294 {
1295 return skb->mac_header != NULL;
1296 }
1297
1298 static inline void skb_reset_mac_header(struct sk_buff *skb)
1299 {
1300 skb->mac_header = skb->data;
1301 }
1302
1303 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1304 {
1305 skb->mac_header = skb->data + offset;
1306 }
1307 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1308
1309 static inline int skb_transport_offset(const struct sk_buff *skb)
1310 {
1311 return skb_transport_header(skb) - skb->data;
1312 }
1313
1314 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1315 {
1316 return skb->transport_header - skb->network_header;
1317 }
1318
1319 static inline int skb_network_offset(const struct sk_buff *skb)
1320 {
1321 return skb_network_header(skb) - skb->data;
1322 }
1323
1324 /*
1325 * CPUs often take a performance hit when accessing unaligned memory
1326 * locations. The actual performance hit varies, it can be small if the
1327 * hardware handles it or large if we have to take an exception and fix it
1328 * in software.
1329 *
1330 * Since an ethernet header is 14 bytes network drivers often end up with
1331 * the IP header at an unaligned offset. The IP header can be aligned by
1332 * shifting the start of the packet by 2 bytes. Drivers should do this
1333 * with:
1334 *
1335 * skb_reserve(NET_IP_ALIGN);
1336 *
1337 * The downside to this alignment of the IP header is that the DMA is now
1338 * unaligned. On some architectures the cost of an unaligned DMA is high
1339 * and this cost outweighs the gains made by aligning the IP header.
1340 *
1341 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1342 * to be overridden.
1343 */
1344 #ifndef NET_IP_ALIGN
1345 #define NET_IP_ALIGN 2
1346 #endif
1347
1348 /*
1349 * The networking layer reserves some headroom in skb data (via
1350 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1351 * the header has to grow. In the default case, if the header has to grow
1352 * 32 bytes or less we avoid the reallocation.
1353 *
1354 * Unfortunately this headroom changes the DMA alignment of the resulting
1355 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1356 * on some architectures. An architecture can override this value,
1357 * perhaps setting it to a cacheline in size (since that will maintain
1358 * cacheline alignment of the DMA). It must be a power of 2.
1359 *
1360 * Various parts of the networking layer expect at least 32 bytes of
1361 * headroom, you should not reduce this.
1362 */
1363 #ifndef NET_SKB_PAD
1364 #define NET_SKB_PAD 32
1365 #endif
1366
1367 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1368
1369 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1370 {
1371 if (unlikely(skb->data_len)) {
1372 WARN_ON(1);
1373 return;
1374 }
1375 skb->len = len;
1376 skb_set_tail_pointer(skb, len);
1377 }
1378
1379 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1380
1381 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1382 {
1383 if (skb->data_len)
1384 return ___pskb_trim(skb, len);
1385 __skb_trim(skb, len);
1386 return 0;
1387 }
1388
1389 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1390 {
1391 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1392 }
1393
1394 /**
1395 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1396 * @skb: buffer to alter
1397 * @len: new length
1398 *
1399 * This is identical to pskb_trim except that the caller knows that
1400 * the skb is not cloned so we should never get an error due to out-
1401 * of-memory.
1402 */
1403 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1404 {
1405 int err = pskb_trim(skb, len);
1406 BUG_ON(err);
1407 }
1408
1409 /**
1410 * skb_orphan - orphan a buffer
1411 * @skb: buffer to orphan
1412 *
1413 * If a buffer currently has an owner then we call the owner's
1414 * destructor function and make the @skb unowned. The buffer continues
1415 * to exist but is no longer charged to its former owner.
1416 */
1417 static inline void skb_orphan(struct sk_buff *skb)
1418 {
1419 if (skb->destructor)
1420 skb->destructor(skb);
1421 skb->destructor = NULL;
1422 skb->sk = NULL;
1423 }
1424
1425 /**
1426 * __skb_queue_purge - empty a list
1427 * @list: list to empty
1428 *
1429 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1430 * the list and one reference dropped. This function does not take the
1431 * list lock and the caller must hold the relevant locks to use it.
1432 */
1433 extern void skb_queue_purge(struct sk_buff_head *list);
1434 static inline void __skb_queue_purge(struct sk_buff_head *list)
1435 {
1436 struct sk_buff *skb;
1437 while ((skb = __skb_dequeue(list)) != NULL)
1438 kfree_skb(skb);
1439 }
1440
1441 /**
1442 * __dev_alloc_skb - allocate an skbuff for receiving
1443 * @length: length to allocate
1444 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1445 *
1446 * Allocate a new &sk_buff and assign it a usage count of one. The
1447 * buffer has unspecified headroom built in. Users should allocate
1448 * the headroom they think they need without accounting for the
1449 * built in space. The built in space is used for optimisations.
1450 *
1451 * %NULL is returned if there is no free memory.
1452 */
1453 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1454 gfp_t gfp_mask)
1455 {
1456 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1457 if (likely(skb))
1458 skb_reserve(skb, NET_SKB_PAD);
1459 return skb;
1460 }
1461
1462 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1463
1464 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1465 unsigned int length, gfp_t gfp_mask);
1466
1467 /**
1468 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1469 * @dev: network device to receive on
1470 * @length: length to allocate
1471 *
1472 * Allocate a new &sk_buff and assign it a usage count of one. The
1473 * buffer has unspecified headroom built in. Users should allocate
1474 * the headroom they think they need without accounting for the
1475 * built in space. The built in space is used for optimisations.
1476 *
1477 * %NULL is returned if there is no free memory. Although this function
1478 * allocates memory it can be called from an interrupt.
1479 */
1480 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1481 unsigned int length)
1482 {
1483 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1484 }
1485
1486 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1487
1488 /**
1489 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1490 * @dev: network device to receive on
1491 *
1492 * Allocate a new page node local to the specified device.
1493 *
1494 * %NULL is returned if there is no free memory.
1495 */
1496 static inline struct page *netdev_alloc_page(struct net_device *dev)
1497 {
1498 return __netdev_alloc_page(dev, GFP_ATOMIC);
1499 }
1500
1501 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1502 {
1503 __free_page(page);
1504 }
1505
1506 /**
1507 * skb_clone_writable - is the header of a clone writable
1508 * @skb: buffer to check
1509 * @len: length up to which to write
1510 *
1511 * Returns true if modifying the header part of the cloned buffer
1512 * does not requires the data to be copied.
1513 */
1514 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1515 {
1516 return !skb_header_cloned(skb) &&
1517 skb_headroom(skb) + len <= skb->hdr_len;
1518 }
1519
1520 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1521 int cloned)
1522 {
1523 int delta = 0;
1524
1525 if (headroom < NET_SKB_PAD)
1526 headroom = NET_SKB_PAD;
1527 if (headroom > skb_headroom(skb))
1528 delta = headroom - skb_headroom(skb);
1529
1530 if (delta || cloned)
1531 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1532 GFP_ATOMIC);
1533 return 0;
1534 }
1535
1536 /**
1537 * skb_cow - copy header of skb when it is required
1538 * @skb: buffer to cow
1539 * @headroom: needed headroom
1540 *
1541 * If the skb passed lacks sufficient headroom or its data part
1542 * is shared, data is reallocated. If reallocation fails, an error
1543 * is returned and original skb is not changed.
1544 *
1545 * The result is skb with writable area skb->head...skb->tail
1546 * and at least @headroom of space at head.
1547 */
1548 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1549 {
1550 return __skb_cow(skb, headroom, skb_cloned(skb));
1551 }
1552
1553 /**
1554 * skb_cow_head - skb_cow but only making the head writable
1555 * @skb: buffer to cow
1556 * @headroom: needed headroom
1557 *
1558 * This function is identical to skb_cow except that we replace the
1559 * skb_cloned check by skb_header_cloned. It should be used when
1560 * you only need to push on some header and do not need to modify
1561 * the data.
1562 */
1563 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1564 {
1565 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1566 }
1567
1568 /**
1569 * skb_padto - pad an skbuff up to a minimal size
1570 * @skb: buffer to pad
1571 * @len: minimal length
1572 *
1573 * Pads up a buffer to ensure the trailing bytes exist and are
1574 * blanked. If the buffer already contains sufficient data it
1575 * is untouched. Otherwise it is extended. Returns zero on
1576 * success. The skb is freed on error.
1577 */
1578
1579 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1580 {
1581 unsigned int size = skb->len;
1582 if (likely(size >= len))
1583 return 0;
1584 return skb_pad(skb, len - size);
1585 }
1586
1587 static inline int skb_add_data(struct sk_buff *skb,
1588 char __user *from, int copy)
1589 {
1590 const int off = skb->len;
1591
1592 if (skb->ip_summed == CHECKSUM_NONE) {
1593 int err = 0;
1594 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1595 copy, 0, &err);
1596 if (!err) {
1597 skb->csum = csum_block_add(skb->csum, csum, off);
1598 return 0;
1599 }
1600 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1601 return 0;
1602
1603 __skb_trim(skb, off);
1604 return -EFAULT;
1605 }
1606
1607 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1608 struct page *page, int off)
1609 {
1610 if (i) {
1611 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1612
1613 return page == frag->page &&
1614 off == frag->page_offset + frag->size;
1615 }
1616 return 0;
1617 }
1618
1619 static inline int __skb_linearize(struct sk_buff *skb)
1620 {
1621 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1622 }
1623
1624 /**
1625 * skb_linearize - convert paged skb to linear one
1626 * @skb: buffer to linarize
1627 *
1628 * If there is no free memory -ENOMEM is returned, otherwise zero
1629 * is returned and the old skb data released.
1630 */
1631 static inline int skb_linearize(struct sk_buff *skb)
1632 {
1633 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1634 }
1635
1636 /**
1637 * skb_linearize_cow - make sure skb is linear and writable
1638 * @skb: buffer to process
1639 *
1640 * If there is no free memory -ENOMEM is returned, otherwise zero
1641 * is returned and the old skb data released.
1642 */
1643 static inline int skb_linearize_cow(struct sk_buff *skb)
1644 {
1645 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1646 __skb_linearize(skb) : 0;
1647 }
1648
1649 /**
1650 * skb_postpull_rcsum - update checksum for received skb after pull
1651 * @skb: buffer to update
1652 * @start: start of data before pull
1653 * @len: length of data pulled
1654 *
1655 * After doing a pull on a received packet, you need to call this to
1656 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1657 * CHECKSUM_NONE so that it can be recomputed from scratch.
1658 */
1659
1660 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1661 const void *start, unsigned int len)
1662 {
1663 if (skb->ip_summed == CHECKSUM_COMPLETE)
1664 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1665 }
1666
1667 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1668
1669 /**
1670 * pskb_trim_rcsum - trim received skb and update checksum
1671 * @skb: buffer to trim
1672 * @len: new length
1673 *
1674 * This is exactly the same as pskb_trim except that it ensures the
1675 * checksum of received packets are still valid after the operation.
1676 */
1677
1678 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1679 {
1680 if (likely(len >= skb->len))
1681 return 0;
1682 if (skb->ip_summed == CHECKSUM_COMPLETE)
1683 skb->ip_summed = CHECKSUM_NONE;
1684 return __pskb_trim(skb, len);
1685 }
1686
1687 #define skb_queue_walk(queue, skb) \
1688 for (skb = (queue)->next; \
1689 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1690 skb = skb->next)
1691
1692 #define skb_queue_walk_safe(queue, skb, tmp) \
1693 for (skb = (queue)->next, tmp = skb->next; \
1694 skb != (struct sk_buff *)(queue); \
1695 skb = tmp, tmp = skb->next)
1696
1697 #define skb_queue_walk_from(queue, skb) \
1698 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1699 skb = skb->next)
1700
1701 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1702 for (tmp = skb->next; \
1703 skb != (struct sk_buff *)(queue); \
1704 skb = tmp, tmp = skb->next)
1705
1706 #define skb_queue_reverse_walk(queue, skb) \
1707 for (skb = (queue)->prev; \
1708 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1709 skb = skb->prev)
1710
1711
1712 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1713 int *peeked, int *err);
1714 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1715 int noblock, int *err);
1716 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1717 struct poll_table_struct *wait);
1718 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1719 int offset, struct iovec *to,
1720 int size);
1721 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1722 int hlen,
1723 struct iovec *iov);
1724 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1725 int offset,
1726 const struct iovec *from,
1727 int from_offset,
1728 int len);
1729 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1730 int offset,
1731 const struct iovec *to,
1732 int to_offset,
1733 int size);
1734 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1735 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1736 unsigned int flags);
1737 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1738 int len, __wsum csum);
1739 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1740 void *to, int len);
1741 extern int skb_store_bits(struct sk_buff *skb, int offset,
1742 const void *from, int len);
1743 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1744 int offset, u8 *to, int len,
1745 __wsum csum);
1746 extern int skb_splice_bits(struct sk_buff *skb,
1747 unsigned int offset,
1748 struct pipe_inode_info *pipe,
1749 unsigned int len,
1750 unsigned int flags);
1751 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1752 extern void skb_split(struct sk_buff *skb,
1753 struct sk_buff *skb1, const u32 len);
1754 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1755 int shiftlen);
1756
1757 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1758
1759 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1760 int len, void *buffer)
1761 {
1762 int hlen = skb_headlen(skb);
1763
1764 if (hlen - offset >= len)
1765 return skb->data + offset;
1766
1767 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1768 return NULL;
1769
1770 return buffer;
1771 }
1772
1773 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1774 void *to,
1775 const unsigned int len)
1776 {
1777 memcpy(to, skb->data, len);
1778 }
1779
1780 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1781 const int offset, void *to,
1782 const unsigned int len)
1783 {
1784 memcpy(to, skb->data + offset, len);
1785 }
1786
1787 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1788 const void *from,
1789 const unsigned int len)
1790 {
1791 memcpy(skb->data, from, len);
1792 }
1793
1794 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1795 const int offset,
1796 const void *from,
1797 const unsigned int len)
1798 {
1799 memcpy(skb->data + offset, from, len);
1800 }
1801
1802 extern void skb_init(void);
1803
1804 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1805 {
1806 return skb->tstamp;
1807 }
1808
1809 /**
1810 * skb_get_timestamp - get timestamp from a skb
1811 * @skb: skb to get stamp from
1812 * @stamp: pointer to struct timeval to store stamp in
1813 *
1814 * Timestamps are stored in the skb as offsets to a base timestamp.
1815 * This function converts the offset back to a struct timeval and stores
1816 * it in stamp.
1817 */
1818 static inline void skb_get_timestamp(const struct sk_buff *skb,
1819 struct timeval *stamp)
1820 {
1821 *stamp = ktime_to_timeval(skb->tstamp);
1822 }
1823
1824 static inline void skb_get_timestampns(const struct sk_buff *skb,
1825 struct timespec *stamp)
1826 {
1827 *stamp = ktime_to_timespec(skb->tstamp);
1828 }
1829
1830 static inline void __net_timestamp(struct sk_buff *skb)
1831 {
1832 skb->tstamp = ktime_get_real();
1833 }
1834
1835 static inline ktime_t net_timedelta(ktime_t t)
1836 {
1837 return ktime_sub(ktime_get_real(), t);
1838 }
1839
1840 static inline ktime_t net_invalid_timestamp(void)
1841 {
1842 return ktime_set(0, 0);
1843 }
1844
1845 /**
1846 * skb_tstamp_tx - queue clone of skb with send time stamps
1847 * @orig_skb: the original outgoing packet
1848 * @hwtstamps: hardware time stamps, may be NULL if not available
1849 *
1850 * If the skb has a socket associated, then this function clones the
1851 * skb (thus sharing the actual data and optional structures), stores
1852 * the optional hardware time stamping information (if non NULL) or
1853 * generates a software time stamp (otherwise), then queues the clone
1854 * to the error queue of the socket. Errors are silently ignored.
1855 */
1856 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1857 struct skb_shared_hwtstamps *hwtstamps);
1858
1859 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1860 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1861
1862 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1863 {
1864 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1865 }
1866
1867 /**
1868 * skb_checksum_complete - Calculate checksum of an entire packet
1869 * @skb: packet to process
1870 *
1871 * This function calculates the checksum over the entire packet plus
1872 * the value of skb->csum. The latter can be used to supply the
1873 * checksum of a pseudo header as used by TCP/UDP. It returns the
1874 * checksum.
1875 *
1876 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1877 * this function can be used to verify that checksum on received
1878 * packets. In that case the function should return zero if the
1879 * checksum is correct. In particular, this function will return zero
1880 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1881 * hardware has already verified the correctness of the checksum.
1882 */
1883 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1884 {
1885 return skb_csum_unnecessary(skb) ?
1886 0 : __skb_checksum_complete(skb);
1887 }
1888
1889 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1890 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1891 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1892 {
1893 if (nfct && atomic_dec_and_test(&nfct->use))
1894 nf_conntrack_destroy(nfct);
1895 }
1896 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1897 {
1898 if (nfct)
1899 atomic_inc(&nfct->use);
1900 }
1901 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1902 {
1903 if (skb)
1904 atomic_inc(&skb->users);
1905 }
1906 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1907 {
1908 if (skb)
1909 kfree_skb(skb);
1910 }
1911 #endif
1912 #ifdef CONFIG_BRIDGE_NETFILTER
1913 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1914 {
1915 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1916 kfree(nf_bridge);
1917 }
1918 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1919 {
1920 if (nf_bridge)
1921 atomic_inc(&nf_bridge->use);
1922 }
1923 #endif /* CONFIG_BRIDGE_NETFILTER */
1924 static inline void nf_reset(struct sk_buff *skb)
1925 {
1926 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1927 nf_conntrack_put(skb->nfct);
1928 skb->nfct = NULL;
1929 nf_conntrack_put_reasm(skb->nfct_reasm);
1930 skb->nfct_reasm = NULL;
1931 #endif
1932 #ifdef CONFIG_BRIDGE_NETFILTER
1933 nf_bridge_put(skb->nf_bridge);
1934 skb->nf_bridge = NULL;
1935 #endif
1936 }
1937
1938 /* Note: This doesn't put any conntrack and bridge info in dst. */
1939 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1940 {
1941 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1942 dst->nfct = src->nfct;
1943 nf_conntrack_get(src->nfct);
1944 dst->nfctinfo = src->nfctinfo;
1945 dst->nfct_reasm = src->nfct_reasm;
1946 nf_conntrack_get_reasm(src->nfct_reasm);
1947 #endif
1948 #ifdef CONFIG_BRIDGE_NETFILTER
1949 dst->nf_bridge = src->nf_bridge;
1950 nf_bridge_get(src->nf_bridge);
1951 #endif
1952 }
1953
1954 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1955 {
1956 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1957 nf_conntrack_put(dst->nfct);
1958 nf_conntrack_put_reasm(dst->nfct_reasm);
1959 #endif
1960 #ifdef CONFIG_BRIDGE_NETFILTER
1961 nf_bridge_put(dst->nf_bridge);
1962 #endif
1963 __nf_copy(dst, src);
1964 }
1965
1966 #ifdef CONFIG_NETWORK_SECMARK
1967 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1968 {
1969 to->secmark = from->secmark;
1970 }
1971
1972 static inline void skb_init_secmark(struct sk_buff *skb)
1973 {
1974 skb->secmark = 0;
1975 }
1976 #else
1977 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1978 { }
1979
1980 static inline void skb_init_secmark(struct sk_buff *skb)
1981 { }
1982 #endif
1983
1984 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1985 {
1986 skb->queue_mapping = queue_mapping;
1987 }
1988
1989 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
1990 {
1991 return skb->queue_mapping;
1992 }
1993
1994 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1995 {
1996 to->queue_mapping = from->queue_mapping;
1997 }
1998
1999 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2000 {
2001 skb->queue_mapping = rx_queue + 1;
2002 }
2003
2004 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2005 {
2006 return skb->queue_mapping - 1;
2007 }
2008
2009 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2010 {
2011 return (skb->queue_mapping != 0);
2012 }
2013
2014 extern u16 skb_tx_hash(const struct net_device *dev,
2015 const struct sk_buff *skb);
2016
2017 #ifdef CONFIG_XFRM
2018 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2019 {
2020 return skb->sp;
2021 }
2022 #else
2023 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2024 {
2025 return NULL;
2026 }
2027 #endif
2028
2029 static inline int skb_is_gso(const struct sk_buff *skb)
2030 {
2031 return skb_shinfo(skb)->gso_size;
2032 }
2033
2034 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2035 {
2036 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2037 }
2038
2039 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2040
2041 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2042 {
2043 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2044 * wanted then gso_type will be set. */
2045 struct skb_shared_info *shinfo = skb_shinfo(skb);
2046 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2047 __skb_warn_lro_forwarding(skb);
2048 return true;
2049 }
2050 return false;
2051 }
2052
2053 static inline void skb_forward_csum(struct sk_buff *skb)
2054 {
2055 /* Unfortunately we don't support this one. Any brave souls? */
2056 if (skb->ip_summed == CHECKSUM_COMPLETE)
2057 skb->ip_summed = CHECKSUM_NONE;
2058 }
2059
2060 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2061 #endif /* __KERNEL__ */
2062 #endif /* _LINUX_SKBUFF_H */