Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37
38 #ifdef __KERNEL__
39
40 struct sched_param {
41 int sched_priority;
42 };
43
44 #include <asm/param.h> /* for HZ */
45
46 #include <linux/capability.h>
47 #include <linux/threads.h>
48 #include <linux/kernel.h>
49 #include <linux/types.h>
50 #include <linux/timex.h>
51 #include <linux/jiffies.h>
52 #include <linux/rbtree.h>
53 #include <linux/thread_info.h>
54 #include <linux/cpumask.h>
55 #include <linux/errno.h>
56 #include <linux/nodemask.h>
57
58 #include <asm/system.h>
59 #include <asm/semaphore.h>
60 #include <asm/page.h>
61 #include <asm/ptrace.h>
62 #include <asm/mmu.h>
63 #include <asm/cputime.h>
64
65 #include <linux/smp.h>
66 #include <linux/sem.h>
67 #include <linux/signal.h>
68 #include <linux/securebits.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compiler.h>
71 #include <linux/completion.h>
72 #include <linux/pid.h>
73 #include <linux/percpu.h>
74 #include <linux/topology.h>
75 #include <linux/seccomp.h>
76 #include <linux/rcupdate.h>
77 #include <linux/futex.h>
78 #include <linux/rtmutex.h>
79
80 #include <linux/time.h>
81 #include <linux/param.h>
82 #include <linux/resource.h>
83 #include <linux/timer.h>
84 #include <linux/hrtimer.h>
85 #include <linux/task_io_accounting.h>
86
87 #include <asm/processor.h>
88
89 struct exec_domain;
90 struct futex_pi_state;
91
92 /*
93 * List of flags we want to share for kernel threads,
94 * if only because they are not used by them anyway.
95 */
96 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
97
98 /*
99 * These are the constant used to fake the fixed-point load-average
100 * counting. Some notes:
101 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
102 * a load-average precision of 10 bits integer + 11 bits fractional
103 * - if you want to count load-averages more often, you need more
104 * precision, or rounding will get you. With 2-second counting freq,
105 * the EXP_n values would be 1981, 2034 and 2043 if still using only
106 * 11 bit fractions.
107 */
108 extern unsigned long avenrun[]; /* Load averages */
109
110 #define FSHIFT 11 /* nr of bits of precision */
111 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
112 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
113 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
114 #define EXP_5 2014 /* 1/exp(5sec/5min) */
115 #define EXP_15 2037 /* 1/exp(5sec/15min) */
116
117 #define CALC_LOAD(load,exp,n) \
118 load *= exp; \
119 load += n*(FIXED_1-exp); \
120 load >>= FSHIFT;
121
122 extern unsigned long total_forks;
123 extern int nr_threads;
124 DECLARE_PER_CPU(unsigned long, process_counts);
125 extern int nr_processes(void);
126 extern unsigned long nr_running(void);
127 extern unsigned long nr_uninterruptible(void);
128 extern unsigned long nr_active(void);
129 extern unsigned long nr_iowait(void);
130 extern unsigned long weighted_cpuload(const int cpu);
131
132
133 /*
134 * Task state bitmask. NOTE! These bits are also
135 * encoded in fs/proc/array.c: get_task_state().
136 *
137 * We have two separate sets of flags: task->state
138 * is about runnability, while task->exit_state are
139 * about the task exiting. Confusing, but this way
140 * modifying one set can't modify the other one by
141 * mistake.
142 */
143 #define TASK_RUNNING 0
144 #define TASK_INTERRUPTIBLE 1
145 #define TASK_UNINTERRUPTIBLE 2
146 #define TASK_STOPPED 4
147 #define TASK_TRACED 8
148 /* in tsk->exit_state */
149 #define EXIT_ZOMBIE 16
150 #define EXIT_DEAD 32
151 /* in tsk->state again */
152 #define TASK_NONINTERACTIVE 64
153 #define TASK_DEAD 128
154
155 #define __set_task_state(tsk, state_value) \
156 do { (tsk)->state = (state_value); } while (0)
157 #define set_task_state(tsk, state_value) \
158 set_mb((tsk)->state, (state_value))
159
160 /*
161 * set_current_state() includes a barrier so that the write of current->state
162 * is correctly serialised wrt the caller's subsequent test of whether to
163 * actually sleep:
164 *
165 * set_current_state(TASK_UNINTERRUPTIBLE);
166 * if (do_i_need_to_sleep())
167 * schedule();
168 *
169 * If the caller does not need such serialisation then use __set_current_state()
170 */
171 #define __set_current_state(state_value) \
172 do { current->state = (state_value); } while (0)
173 #define set_current_state(state_value) \
174 set_mb(current->state, (state_value))
175
176 /* Task command name length */
177 #define TASK_COMM_LEN 16
178
179 #include <linux/spinlock.h>
180
181 /*
182 * This serializes "schedule()" and also protects
183 * the run-queue from deletions/modifications (but
184 * _adding_ to the beginning of the run-queue has
185 * a separate lock).
186 */
187 extern rwlock_t tasklist_lock;
188 extern spinlock_t mmlist_lock;
189
190 struct task_struct;
191
192 extern void sched_init(void);
193 extern void sched_init_smp(void);
194 extern void init_idle(struct task_struct *idle, int cpu);
195
196 extern cpumask_t nohz_cpu_mask;
197
198 /*
199 * Only dump TASK_* tasks. (-1 for all tasks)
200 */
201 extern void show_state_filter(unsigned long state_filter);
202
203 static inline void show_state(void)
204 {
205 show_state_filter(-1);
206 }
207
208 extern void show_regs(struct pt_regs *);
209
210 /*
211 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
212 * task), SP is the stack pointer of the first frame that should be shown in the back
213 * trace (or NULL if the entire call-chain of the task should be shown).
214 */
215 extern void show_stack(struct task_struct *task, unsigned long *sp);
216
217 void io_schedule(void);
218 long io_schedule_timeout(long timeout);
219
220 extern void cpu_init (void);
221 extern void trap_init(void);
222 extern void update_process_times(int user);
223 extern void scheduler_tick(void);
224
225 #ifdef CONFIG_DETECT_SOFTLOCKUP
226 extern void softlockup_tick(void);
227 extern void spawn_softlockup_task(void);
228 extern void touch_softlockup_watchdog(void);
229 #else
230 static inline void softlockup_tick(void)
231 {
232 }
233 static inline void spawn_softlockup_task(void)
234 {
235 }
236 static inline void touch_softlockup_watchdog(void)
237 {
238 }
239 #endif
240
241
242 /* Attach to any functions which should be ignored in wchan output. */
243 #define __sched __attribute__((__section__(".sched.text")))
244 /* Is this address in the __sched functions? */
245 extern int in_sched_functions(unsigned long addr);
246
247 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
248 extern signed long FASTCALL(schedule_timeout(signed long timeout));
249 extern signed long schedule_timeout_interruptible(signed long timeout);
250 extern signed long schedule_timeout_uninterruptible(signed long timeout);
251 asmlinkage void schedule(void);
252
253 struct nsproxy;
254
255 /* Maximum number of active map areas.. This is a random (large) number */
256 #define DEFAULT_MAX_MAP_COUNT 65536
257
258 extern int sysctl_max_map_count;
259
260 #include <linux/aio.h>
261
262 extern unsigned long
263 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
264 unsigned long, unsigned long);
265 extern unsigned long
266 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
267 unsigned long len, unsigned long pgoff,
268 unsigned long flags);
269 extern void arch_unmap_area(struct mm_struct *, unsigned long);
270 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
271
272 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
273 /*
274 * The mm counters are not protected by its page_table_lock,
275 * so must be incremented atomically.
276 */
277 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
278 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
279 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
280 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
281 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
282 typedef atomic_long_t mm_counter_t;
283
284 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
285 /*
286 * The mm counters are protected by its page_table_lock,
287 * so can be incremented directly.
288 */
289 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
290 #define get_mm_counter(mm, member) ((mm)->_##member)
291 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
292 #define inc_mm_counter(mm, member) (mm)->_##member++
293 #define dec_mm_counter(mm, member) (mm)->_##member--
294 typedef unsigned long mm_counter_t;
295
296 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
297
298 #define get_mm_rss(mm) \
299 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
300 #define update_hiwater_rss(mm) do { \
301 unsigned long _rss = get_mm_rss(mm); \
302 if ((mm)->hiwater_rss < _rss) \
303 (mm)->hiwater_rss = _rss; \
304 } while (0)
305 #define update_hiwater_vm(mm) do { \
306 if ((mm)->hiwater_vm < (mm)->total_vm) \
307 (mm)->hiwater_vm = (mm)->total_vm; \
308 } while (0)
309
310 struct mm_struct {
311 struct vm_area_struct * mmap; /* list of VMAs */
312 struct rb_root mm_rb;
313 struct vm_area_struct * mmap_cache; /* last find_vma result */
314 unsigned long (*get_unmapped_area) (struct file *filp,
315 unsigned long addr, unsigned long len,
316 unsigned long pgoff, unsigned long flags);
317 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
318 unsigned long mmap_base; /* base of mmap area */
319 unsigned long task_size; /* size of task vm space */
320 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
321 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
322 pgd_t * pgd;
323 atomic_t mm_users; /* How many users with user space? */
324 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
325 int map_count; /* number of VMAs */
326 struct rw_semaphore mmap_sem;
327 spinlock_t page_table_lock; /* Protects page tables and some counters */
328
329 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
330 * together off init_mm.mmlist, and are protected
331 * by mmlist_lock
332 */
333
334 /* Special counters, in some configurations protected by the
335 * page_table_lock, in other configurations by being atomic.
336 */
337 mm_counter_t _file_rss;
338 mm_counter_t _anon_rss;
339
340 unsigned long hiwater_rss; /* High-watermark of RSS usage */
341 unsigned long hiwater_vm; /* High-water virtual memory usage */
342
343 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
344 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
345 unsigned long start_code, end_code, start_data, end_data;
346 unsigned long start_brk, brk, start_stack;
347 unsigned long arg_start, arg_end, env_start, env_end;
348
349 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
350
351 cpumask_t cpu_vm_mask;
352
353 /* Architecture-specific MM context */
354 mm_context_t context;
355
356 /* Swap token stuff */
357 /*
358 * Last value of global fault stamp as seen by this process.
359 * In other words, this value gives an indication of how long
360 * it has been since this task got the token.
361 * Look at mm/thrash.c
362 */
363 unsigned int faultstamp;
364 unsigned int token_priority;
365 unsigned int last_interval;
366
367 unsigned char dumpable:2;
368
369 /* coredumping support */
370 int core_waiters;
371 struct completion *core_startup_done, core_done;
372
373 /* aio bits */
374 rwlock_t ioctx_list_lock;
375 struct kioctx *ioctx_list;
376 };
377
378 struct sighand_struct {
379 atomic_t count;
380 struct k_sigaction action[_NSIG];
381 spinlock_t siglock;
382 };
383
384 struct pacct_struct {
385 int ac_flag;
386 long ac_exitcode;
387 unsigned long ac_mem;
388 cputime_t ac_utime, ac_stime;
389 unsigned long ac_minflt, ac_majflt;
390 };
391
392 /*
393 * NOTE! "signal_struct" does not have it's own
394 * locking, because a shared signal_struct always
395 * implies a shared sighand_struct, so locking
396 * sighand_struct is always a proper superset of
397 * the locking of signal_struct.
398 */
399 struct signal_struct {
400 atomic_t count;
401 atomic_t live;
402
403 wait_queue_head_t wait_chldexit; /* for wait4() */
404
405 /* current thread group signal load-balancing target: */
406 struct task_struct *curr_target;
407
408 /* shared signal handling: */
409 struct sigpending shared_pending;
410
411 /* thread group exit support */
412 int group_exit_code;
413 /* overloaded:
414 * - notify group_exit_task when ->count is equal to notify_count
415 * - everyone except group_exit_task is stopped during signal delivery
416 * of fatal signals, group_exit_task processes the signal.
417 */
418 struct task_struct *group_exit_task;
419 int notify_count;
420
421 /* thread group stop support, overloads group_exit_code too */
422 int group_stop_count;
423 unsigned int flags; /* see SIGNAL_* flags below */
424
425 /* POSIX.1b Interval Timers */
426 struct list_head posix_timers;
427
428 /* ITIMER_REAL timer for the process */
429 struct hrtimer real_timer;
430 struct task_struct *tsk;
431 ktime_t it_real_incr;
432
433 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
434 cputime_t it_prof_expires, it_virt_expires;
435 cputime_t it_prof_incr, it_virt_incr;
436
437 /* job control IDs */
438 pid_t pgrp;
439 struct pid *tty_old_pgrp;
440
441 union {
442 pid_t session __deprecated;
443 pid_t __session;
444 };
445
446 /* boolean value for session group leader */
447 int leader;
448
449 struct tty_struct *tty; /* NULL if no tty */
450
451 /*
452 * Cumulative resource counters for dead threads in the group,
453 * and for reaped dead child processes forked by this group.
454 * Live threads maintain their own counters and add to these
455 * in __exit_signal, except for the group leader.
456 */
457 cputime_t utime, stime, cutime, cstime;
458 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
459 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
460
461 /*
462 * Cumulative ns of scheduled CPU time for dead threads in the
463 * group, not including a zombie group leader. (This only differs
464 * from jiffies_to_ns(utime + stime) if sched_clock uses something
465 * other than jiffies.)
466 */
467 unsigned long long sched_time;
468
469 /*
470 * We don't bother to synchronize most readers of this at all,
471 * because there is no reader checking a limit that actually needs
472 * to get both rlim_cur and rlim_max atomically, and either one
473 * alone is a single word that can safely be read normally.
474 * getrlimit/setrlimit use task_lock(current->group_leader) to
475 * protect this instead of the siglock, because they really
476 * have no need to disable irqs.
477 */
478 struct rlimit rlim[RLIM_NLIMITS];
479
480 struct list_head cpu_timers[3];
481
482 /* keep the process-shared keyrings here so that they do the right
483 * thing in threads created with CLONE_THREAD */
484 #ifdef CONFIG_KEYS
485 struct key *session_keyring; /* keyring inherited over fork */
486 struct key *process_keyring; /* keyring private to this process */
487 #endif
488 #ifdef CONFIG_BSD_PROCESS_ACCT
489 struct pacct_struct pacct; /* per-process accounting information */
490 #endif
491 #ifdef CONFIG_TASKSTATS
492 struct taskstats *stats;
493 #endif
494 };
495
496 /* Context switch must be unlocked if interrupts are to be enabled */
497 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
498 # define __ARCH_WANT_UNLOCKED_CTXSW
499 #endif
500
501 /*
502 * Bits in flags field of signal_struct.
503 */
504 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
505 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
506 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
507 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
508
509
510 /*
511 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
512 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
513 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
514 * values are inverted: lower p->prio value means higher priority.
515 *
516 * The MAX_USER_RT_PRIO value allows the actual maximum
517 * RT priority to be separate from the value exported to
518 * user-space. This allows kernel threads to set their
519 * priority to a value higher than any user task. Note:
520 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
521 */
522
523 #define MAX_USER_RT_PRIO 100
524 #define MAX_RT_PRIO MAX_USER_RT_PRIO
525
526 #define MAX_PRIO (MAX_RT_PRIO + 40)
527
528 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
529 #define rt_task(p) rt_prio((p)->prio)
530 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
531 #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
532 #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
533
534 /*
535 * Some day this will be a full-fledged user tracking system..
536 */
537 struct user_struct {
538 atomic_t __count; /* reference count */
539 atomic_t processes; /* How many processes does this user have? */
540 atomic_t files; /* How many open files does this user have? */
541 atomic_t sigpending; /* How many pending signals does this user have? */
542 #ifdef CONFIG_INOTIFY_USER
543 atomic_t inotify_watches; /* How many inotify watches does this user have? */
544 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
545 #endif
546 /* protected by mq_lock */
547 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
548 unsigned long locked_shm; /* How many pages of mlocked shm ? */
549
550 #ifdef CONFIG_KEYS
551 struct key *uid_keyring; /* UID specific keyring */
552 struct key *session_keyring; /* UID's default session keyring */
553 #endif
554
555 /* Hash table maintenance information */
556 struct list_head uidhash_list;
557 uid_t uid;
558 };
559
560 extern struct user_struct *find_user(uid_t);
561
562 extern struct user_struct root_user;
563 #define INIT_USER (&root_user)
564
565 struct backing_dev_info;
566 struct reclaim_state;
567
568 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
569 struct sched_info {
570 /* cumulative counters */
571 unsigned long cpu_time, /* time spent on the cpu */
572 run_delay, /* time spent waiting on a runqueue */
573 pcnt; /* # of timeslices run on this cpu */
574
575 /* timestamps */
576 unsigned long last_arrival, /* when we last ran on a cpu */
577 last_queued; /* when we were last queued to run */
578 };
579 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
580
581 #ifdef CONFIG_SCHEDSTATS
582 extern const struct file_operations proc_schedstat_operations;
583 #endif /* CONFIG_SCHEDSTATS */
584
585 #ifdef CONFIG_TASK_DELAY_ACCT
586 struct task_delay_info {
587 spinlock_t lock;
588 unsigned int flags; /* Private per-task flags */
589
590 /* For each stat XXX, add following, aligned appropriately
591 *
592 * struct timespec XXX_start, XXX_end;
593 * u64 XXX_delay;
594 * u32 XXX_count;
595 *
596 * Atomicity of updates to XXX_delay, XXX_count protected by
597 * single lock above (split into XXX_lock if contention is an issue).
598 */
599
600 /*
601 * XXX_count is incremented on every XXX operation, the delay
602 * associated with the operation is added to XXX_delay.
603 * XXX_delay contains the accumulated delay time in nanoseconds.
604 */
605 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
606 u64 blkio_delay; /* wait for sync block io completion */
607 u64 swapin_delay; /* wait for swapin block io completion */
608 u32 blkio_count; /* total count of the number of sync block */
609 /* io operations performed */
610 u32 swapin_count; /* total count of the number of swapin block */
611 /* io operations performed */
612 };
613 #endif /* CONFIG_TASK_DELAY_ACCT */
614
615 static inline int sched_info_on(void)
616 {
617 #ifdef CONFIG_SCHEDSTATS
618 return 1;
619 #elif defined(CONFIG_TASK_DELAY_ACCT)
620 extern int delayacct_on;
621 return delayacct_on;
622 #else
623 return 0;
624 #endif
625 }
626
627 enum idle_type
628 {
629 SCHED_IDLE,
630 NOT_IDLE,
631 NEWLY_IDLE,
632 MAX_IDLE_TYPES
633 };
634
635 /*
636 * sched-domains (multiprocessor balancing) declarations:
637 */
638 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
639
640 #ifdef CONFIG_SMP
641 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
642 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
643 #define SD_BALANCE_EXEC 4 /* Balance on exec */
644 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
645 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
646 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
647 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
648 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
649 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
650 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
651 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
652
653 #define BALANCE_FOR_MC_POWER \
654 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
655
656 #define BALANCE_FOR_PKG_POWER \
657 ((sched_mc_power_savings || sched_smt_power_savings) ? \
658 SD_POWERSAVINGS_BALANCE : 0)
659
660 #define test_sd_parent(sd, flag) ((sd->parent && \
661 (sd->parent->flags & flag)) ? 1 : 0)
662
663
664 struct sched_group {
665 struct sched_group *next; /* Must be a circular list */
666 cpumask_t cpumask;
667
668 /*
669 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
670 * single CPU. This is read only (except for setup, hotplug CPU).
671 */
672 unsigned long cpu_power;
673 };
674
675 struct sched_domain {
676 /* These fields must be setup */
677 struct sched_domain *parent; /* top domain must be null terminated */
678 struct sched_domain *child; /* bottom domain must be null terminated */
679 struct sched_group *groups; /* the balancing groups of the domain */
680 cpumask_t span; /* span of all CPUs in this domain */
681 unsigned long min_interval; /* Minimum balance interval ms */
682 unsigned long max_interval; /* Maximum balance interval ms */
683 unsigned int busy_factor; /* less balancing by factor if busy */
684 unsigned int imbalance_pct; /* No balance until over watermark */
685 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
686 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
687 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
688 unsigned int busy_idx;
689 unsigned int idle_idx;
690 unsigned int newidle_idx;
691 unsigned int wake_idx;
692 unsigned int forkexec_idx;
693 int flags; /* See SD_* */
694
695 /* Runtime fields. */
696 unsigned long last_balance; /* init to jiffies. units in jiffies */
697 unsigned int balance_interval; /* initialise to 1. units in ms. */
698 unsigned int nr_balance_failed; /* initialise to 0 */
699
700 #ifdef CONFIG_SCHEDSTATS
701 /* load_balance() stats */
702 unsigned long lb_cnt[MAX_IDLE_TYPES];
703 unsigned long lb_failed[MAX_IDLE_TYPES];
704 unsigned long lb_balanced[MAX_IDLE_TYPES];
705 unsigned long lb_imbalance[MAX_IDLE_TYPES];
706 unsigned long lb_gained[MAX_IDLE_TYPES];
707 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
708 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
709 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
710
711 /* Active load balancing */
712 unsigned long alb_cnt;
713 unsigned long alb_failed;
714 unsigned long alb_pushed;
715
716 /* SD_BALANCE_EXEC stats */
717 unsigned long sbe_cnt;
718 unsigned long sbe_balanced;
719 unsigned long sbe_pushed;
720
721 /* SD_BALANCE_FORK stats */
722 unsigned long sbf_cnt;
723 unsigned long sbf_balanced;
724 unsigned long sbf_pushed;
725
726 /* try_to_wake_up() stats */
727 unsigned long ttwu_wake_remote;
728 unsigned long ttwu_move_affine;
729 unsigned long ttwu_move_balance;
730 #endif
731 };
732
733 extern int partition_sched_domains(cpumask_t *partition1,
734 cpumask_t *partition2);
735
736 /*
737 * Maximum cache size the migration-costs auto-tuning code will
738 * search from:
739 */
740 extern unsigned int max_cache_size;
741
742 #endif /* CONFIG_SMP */
743
744
745 struct io_context; /* See blkdev.h */
746 struct cpuset;
747
748 #define NGROUPS_SMALL 32
749 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
750 struct group_info {
751 int ngroups;
752 atomic_t usage;
753 gid_t small_block[NGROUPS_SMALL];
754 int nblocks;
755 gid_t *blocks[0];
756 };
757
758 /*
759 * get_group_info() must be called with the owning task locked (via task_lock())
760 * when task != current. The reason being that the vast majority of callers are
761 * looking at current->group_info, which can not be changed except by the
762 * current task. Changing current->group_info requires the task lock, too.
763 */
764 #define get_group_info(group_info) do { \
765 atomic_inc(&(group_info)->usage); \
766 } while (0)
767
768 #define put_group_info(group_info) do { \
769 if (atomic_dec_and_test(&(group_info)->usage)) \
770 groups_free(group_info); \
771 } while (0)
772
773 extern struct group_info *groups_alloc(int gidsetsize);
774 extern void groups_free(struct group_info *group_info);
775 extern int set_current_groups(struct group_info *group_info);
776 extern int groups_search(struct group_info *group_info, gid_t grp);
777 /* access the groups "array" with this macro */
778 #define GROUP_AT(gi, i) \
779 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
780
781 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
782 extern void prefetch_stack(struct task_struct *t);
783 #else
784 static inline void prefetch_stack(struct task_struct *t) { }
785 #endif
786
787 struct audit_context; /* See audit.c */
788 struct mempolicy;
789 struct pipe_inode_info;
790 struct uts_namespace;
791
792 enum sleep_type {
793 SLEEP_NORMAL,
794 SLEEP_NONINTERACTIVE,
795 SLEEP_INTERACTIVE,
796 SLEEP_INTERRUPTED,
797 };
798
799 struct prio_array;
800
801 struct task_struct {
802 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
803 struct thread_info *thread_info;
804 atomic_t usage;
805 unsigned long flags; /* per process flags, defined below */
806 unsigned long ptrace;
807
808 int lock_depth; /* BKL lock depth */
809
810 #ifdef CONFIG_SMP
811 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
812 int oncpu;
813 #endif
814 #endif
815 int load_weight; /* for niceness load balancing purposes */
816 int prio, static_prio, normal_prio;
817 struct list_head run_list;
818 struct prio_array *array;
819
820 unsigned short ioprio;
821 #ifdef CONFIG_BLK_DEV_IO_TRACE
822 unsigned int btrace_seq;
823 #endif
824 unsigned long sleep_avg;
825 unsigned long long timestamp, last_ran;
826 unsigned long long sched_time; /* sched_clock time spent running */
827 enum sleep_type sleep_type;
828
829 unsigned long policy;
830 cpumask_t cpus_allowed;
831 unsigned int time_slice, first_time_slice;
832
833 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
834 struct sched_info sched_info;
835 #endif
836
837 struct list_head tasks;
838 /*
839 * ptrace_list/ptrace_children forms the list of my children
840 * that were stolen by a ptracer.
841 */
842 struct list_head ptrace_children;
843 struct list_head ptrace_list;
844
845 struct mm_struct *mm, *active_mm;
846
847 /* task state */
848 struct linux_binfmt *binfmt;
849 long exit_state;
850 int exit_code, exit_signal;
851 int pdeath_signal; /* The signal sent when the parent dies */
852 /* ??? */
853 unsigned long personality;
854 unsigned did_exec:1;
855 pid_t pid;
856 pid_t tgid;
857
858 #ifdef CONFIG_CC_STACKPROTECTOR
859 /* Canary value for the -fstack-protector gcc feature */
860 unsigned long stack_canary;
861 #endif
862 /*
863 * pointers to (original) parent process, youngest child, younger sibling,
864 * older sibling, respectively. (p->father can be replaced with
865 * p->parent->pid)
866 */
867 struct task_struct *real_parent; /* real parent process (when being debugged) */
868 struct task_struct *parent; /* parent process */
869 /*
870 * children/sibling forms the list of my children plus the
871 * tasks I'm ptracing.
872 */
873 struct list_head children; /* list of my children */
874 struct list_head sibling; /* linkage in my parent's children list */
875 struct task_struct *group_leader; /* threadgroup leader */
876
877 /* PID/PID hash table linkage. */
878 struct pid_link pids[PIDTYPE_MAX];
879 struct list_head thread_group;
880
881 struct completion *vfork_done; /* for vfork() */
882 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
883 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
884
885 unsigned long rt_priority;
886 cputime_t utime, stime;
887 unsigned long nvcsw, nivcsw; /* context switch counts */
888 struct timespec start_time;
889 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
890 unsigned long min_flt, maj_flt;
891
892 cputime_t it_prof_expires, it_virt_expires;
893 unsigned long long it_sched_expires;
894 struct list_head cpu_timers[3];
895
896 /* process credentials */
897 uid_t uid,euid,suid,fsuid;
898 gid_t gid,egid,sgid,fsgid;
899 struct group_info *group_info;
900 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
901 unsigned keep_capabilities:1;
902 struct user_struct *user;
903 #ifdef CONFIG_KEYS
904 struct key *request_key_auth; /* assumed request_key authority */
905 struct key *thread_keyring; /* keyring private to this thread */
906 unsigned char jit_keyring; /* default keyring to attach requested keys to */
907 #endif
908 /*
909 * fpu_counter contains the number of consecutive context switches
910 * that the FPU is used. If this is over a threshold, the lazy fpu
911 * saving becomes unlazy to save the trap. This is an unsigned char
912 * so that after 256 times the counter wraps and the behavior turns
913 * lazy again; this to deal with bursty apps that only use FPU for
914 * a short time
915 */
916 unsigned char fpu_counter;
917 int oomkilladj; /* OOM kill score adjustment (bit shift). */
918 char comm[TASK_COMM_LEN]; /* executable name excluding path
919 - access with [gs]et_task_comm (which lock
920 it with task_lock())
921 - initialized normally by flush_old_exec */
922 /* file system info */
923 int link_count, total_link_count;
924 #ifdef CONFIG_SYSVIPC
925 /* ipc stuff */
926 struct sysv_sem sysvsem;
927 #endif
928 /* CPU-specific state of this task */
929 struct thread_struct thread;
930 /* filesystem information */
931 struct fs_struct *fs;
932 /* open file information */
933 struct files_struct *files;
934 /* namespaces */
935 struct nsproxy *nsproxy;
936 /* signal handlers */
937 struct signal_struct *signal;
938 struct sighand_struct *sighand;
939
940 sigset_t blocked, real_blocked;
941 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
942 struct sigpending pending;
943
944 unsigned long sas_ss_sp;
945 size_t sas_ss_size;
946 int (*notifier)(void *priv);
947 void *notifier_data;
948 sigset_t *notifier_mask;
949
950 void *security;
951 struct audit_context *audit_context;
952 seccomp_t seccomp;
953
954 /* Thread group tracking */
955 u32 parent_exec_id;
956 u32 self_exec_id;
957 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
958 spinlock_t alloc_lock;
959
960 /* Protection of the PI data structures: */
961 spinlock_t pi_lock;
962
963 #ifdef CONFIG_RT_MUTEXES
964 /* PI waiters blocked on a rt_mutex held by this task */
965 struct plist_head pi_waiters;
966 /* Deadlock detection and priority inheritance handling */
967 struct rt_mutex_waiter *pi_blocked_on;
968 #endif
969
970 #ifdef CONFIG_DEBUG_MUTEXES
971 /* mutex deadlock detection */
972 struct mutex_waiter *blocked_on;
973 #endif
974 #ifdef CONFIG_TRACE_IRQFLAGS
975 unsigned int irq_events;
976 int hardirqs_enabled;
977 unsigned long hardirq_enable_ip;
978 unsigned int hardirq_enable_event;
979 unsigned long hardirq_disable_ip;
980 unsigned int hardirq_disable_event;
981 int softirqs_enabled;
982 unsigned long softirq_disable_ip;
983 unsigned int softirq_disable_event;
984 unsigned long softirq_enable_ip;
985 unsigned int softirq_enable_event;
986 int hardirq_context;
987 int softirq_context;
988 #endif
989 #ifdef CONFIG_LOCKDEP
990 # define MAX_LOCK_DEPTH 30UL
991 u64 curr_chain_key;
992 int lockdep_depth;
993 struct held_lock held_locks[MAX_LOCK_DEPTH];
994 unsigned int lockdep_recursion;
995 #endif
996
997 /* journalling filesystem info */
998 void *journal_info;
999
1000 /* VM state */
1001 struct reclaim_state *reclaim_state;
1002
1003 struct backing_dev_info *backing_dev_info;
1004
1005 struct io_context *io_context;
1006
1007 unsigned long ptrace_message;
1008 siginfo_t *last_siginfo; /* For ptrace use. */
1009 /*
1010 * current io wait handle: wait queue entry to use for io waits
1011 * If this thread is processing aio, this points at the waitqueue
1012 * inside the currently handled kiocb. It may be NULL (i.e. default
1013 * to a stack based synchronous wait) if its doing sync IO.
1014 */
1015 wait_queue_t *io_wait;
1016 #ifdef CONFIG_TASK_XACCT
1017 /* i/o counters(bytes read/written, #syscalls */
1018 u64 rchar, wchar, syscr, syscw;
1019 #endif
1020 struct task_io_accounting ioac;
1021 #if defined(CONFIG_TASK_XACCT)
1022 u64 acct_rss_mem1; /* accumulated rss usage */
1023 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1024 cputime_t acct_stimexpd;/* stime since last update */
1025 #endif
1026 #ifdef CONFIG_NUMA
1027 struct mempolicy *mempolicy;
1028 short il_next;
1029 #endif
1030 #ifdef CONFIG_CPUSETS
1031 struct cpuset *cpuset;
1032 nodemask_t mems_allowed;
1033 int cpuset_mems_generation;
1034 int cpuset_mem_spread_rotor;
1035 #endif
1036 struct robust_list_head __user *robust_list;
1037 #ifdef CONFIG_COMPAT
1038 struct compat_robust_list_head __user *compat_robust_list;
1039 #endif
1040 struct list_head pi_state_list;
1041 struct futex_pi_state *pi_state_cache;
1042
1043 atomic_t fs_excl; /* holding fs exclusive resources */
1044 struct rcu_head rcu;
1045
1046 /*
1047 * cache last used pipe for splice
1048 */
1049 struct pipe_inode_info *splice_pipe;
1050 #ifdef CONFIG_TASK_DELAY_ACCT
1051 struct task_delay_info *delays;
1052 #endif
1053 #ifdef CONFIG_FAULT_INJECTION
1054 int make_it_fail;
1055 #endif
1056 };
1057
1058 static inline pid_t process_group(struct task_struct *tsk)
1059 {
1060 return tsk->signal->pgrp;
1061 }
1062
1063 static inline pid_t signal_session(struct signal_struct *sig)
1064 {
1065 return sig->__session;
1066 }
1067
1068 static inline pid_t process_session(struct task_struct *tsk)
1069 {
1070 return signal_session(tsk->signal);
1071 }
1072
1073 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1074 {
1075 sig->__session = session;
1076 }
1077
1078 static inline struct pid *task_pid(struct task_struct *task)
1079 {
1080 return task->pids[PIDTYPE_PID].pid;
1081 }
1082
1083 static inline struct pid *task_tgid(struct task_struct *task)
1084 {
1085 return task->group_leader->pids[PIDTYPE_PID].pid;
1086 }
1087
1088 static inline struct pid *task_pgrp(struct task_struct *task)
1089 {
1090 return task->group_leader->pids[PIDTYPE_PGID].pid;
1091 }
1092
1093 static inline struct pid *task_session(struct task_struct *task)
1094 {
1095 return task->group_leader->pids[PIDTYPE_SID].pid;
1096 }
1097
1098 /**
1099 * pid_alive - check that a task structure is not stale
1100 * @p: Task structure to be checked.
1101 *
1102 * Test if a process is not yet dead (at most zombie state)
1103 * If pid_alive fails, then pointers within the task structure
1104 * can be stale and must not be dereferenced.
1105 */
1106 static inline int pid_alive(struct task_struct *p)
1107 {
1108 return p->pids[PIDTYPE_PID].pid != NULL;
1109 }
1110
1111 /**
1112 * is_init - check if a task structure is init
1113 * @tsk: Task structure to be checked.
1114 *
1115 * Check if a task structure is the first user space task the kernel created.
1116 */
1117 static inline int is_init(struct task_struct *tsk)
1118 {
1119 return tsk->pid == 1;
1120 }
1121
1122 extern struct pid *cad_pid;
1123
1124 extern void free_task(struct task_struct *tsk);
1125 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1126
1127 extern void __put_task_struct(struct task_struct *t);
1128
1129 static inline void put_task_struct(struct task_struct *t)
1130 {
1131 if (atomic_dec_and_test(&t->usage))
1132 __put_task_struct(t);
1133 }
1134
1135 /*
1136 * Per process flags
1137 */
1138 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1139 /* Not implemented yet, only for 486*/
1140 #define PF_STARTING 0x00000002 /* being created */
1141 #define PF_EXITING 0x00000004 /* getting shut down */
1142 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1143 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1144 #define PF_DUMPCORE 0x00000200 /* dumped core */
1145 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1146 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1147 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1148 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1149 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1150 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1151 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1152 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1153 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1154 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1155 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1156 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1157 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1158 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1159 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1160 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1161 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1162
1163 /*
1164 * Only the _current_ task can read/write to tsk->flags, but other
1165 * tasks can access tsk->flags in readonly mode for example
1166 * with tsk_used_math (like during threaded core dumping).
1167 * There is however an exception to this rule during ptrace
1168 * or during fork: the ptracer task is allowed to write to the
1169 * child->flags of its traced child (same goes for fork, the parent
1170 * can write to the child->flags), because we're guaranteed the
1171 * child is not running and in turn not changing child->flags
1172 * at the same time the parent does it.
1173 */
1174 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1175 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1176 #define clear_used_math() clear_stopped_child_used_math(current)
1177 #define set_used_math() set_stopped_child_used_math(current)
1178 #define conditional_stopped_child_used_math(condition, child) \
1179 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1180 #define conditional_used_math(condition) \
1181 conditional_stopped_child_used_math(condition, current)
1182 #define copy_to_stopped_child_used_math(child) \
1183 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1184 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1185 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1186 #define used_math() tsk_used_math(current)
1187
1188 #ifdef CONFIG_SMP
1189 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1190 #else
1191 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1192 {
1193 if (!cpu_isset(0, new_mask))
1194 return -EINVAL;
1195 return 0;
1196 }
1197 #endif
1198
1199 extern unsigned long long sched_clock(void);
1200 extern unsigned long long
1201 current_sched_time(const struct task_struct *current_task);
1202
1203 /* sched_exec is called by processes performing an exec */
1204 #ifdef CONFIG_SMP
1205 extern void sched_exec(void);
1206 #else
1207 #define sched_exec() {}
1208 #endif
1209
1210 #ifdef CONFIG_HOTPLUG_CPU
1211 extern void idle_task_exit(void);
1212 #else
1213 static inline void idle_task_exit(void) {}
1214 #endif
1215
1216 extern void sched_idle_next(void);
1217
1218 #ifdef CONFIG_RT_MUTEXES
1219 extern int rt_mutex_getprio(struct task_struct *p);
1220 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1221 extern void rt_mutex_adjust_pi(struct task_struct *p);
1222 #else
1223 static inline int rt_mutex_getprio(struct task_struct *p)
1224 {
1225 return p->normal_prio;
1226 }
1227 # define rt_mutex_adjust_pi(p) do { } while (0)
1228 #endif
1229
1230 extern void set_user_nice(struct task_struct *p, long nice);
1231 extern int task_prio(const struct task_struct *p);
1232 extern int task_nice(const struct task_struct *p);
1233 extern int can_nice(const struct task_struct *p, const int nice);
1234 extern int task_curr(const struct task_struct *p);
1235 extern int idle_cpu(int cpu);
1236 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1237 extern struct task_struct *idle_task(int cpu);
1238 extern struct task_struct *curr_task(int cpu);
1239 extern void set_curr_task(int cpu, struct task_struct *p);
1240
1241 void yield(void);
1242
1243 /*
1244 * The default (Linux) execution domain.
1245 */
1246 extern struct exec_domain default_exec_domain;
1247
1248 union thread_union {
1249 struct thread_info thread_info;
1250 unsigned long stack[THREAD_SIZE/sizeof(long)];
1251 };
1252
1253 #ifndef __HAVE_ARCH_KSTACK_END
1254 static inline int kstack_end(void *addr)
1255 {
1256 /* Reliable end of stack detection:
1257 * Some APM bios versions misalign the stack
1258 */
1259 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1260 }
1261 #endif
1262
1263 extern union thread_union init_thread_union;
1264 extern struct task_struct init_task;
1265
1266 extern struct mm_struct init_mm;
1267
1268 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1269 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1270 extern void __set_special_pids(pid_t session, pid_t pgrp);
1271
1272 /* per-UID process charging. */
1273 extern struct user_struct * alloc_uid(uid_t);
1274 static inline struct user_struct *get_uid(struct user_struct *u)
1275 {
1276 atomic_inc(&u->__count);
1277 return u;
1278 }
1279 extern void free_uid(struct user_struct *);
1280 extern void switch_uid(struct user_struct *);
1281
1282 #include <asm/current.h>
1283
1284 extern void do_timer(unsigned long ticks);
1285
1286 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1287 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1288 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1289 unsigned long clone_flags));
1290 #ifdef CONFIG_SMP
1291 extern void kick_process(struct task_struct *tsk);
1292 #else
1293 static inline void kick_process(struct task_struct *tsk) { }
1294 #endif
1295 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags));
1296 extern void FASTCALL(sched_exit(struct task_struct * p));
1297
1298 extern int in_group_p(gid_t);
1299 extern int in_egroup_p(gid_t);
1300
1301 extern void proc_caches_init(void);
1302 extern void flush_signals(struct task_struct *);
1303 extern void flush_signal_handlers(struct task_struct *, int force_default);
1304 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1305
1306 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1307 {
1308 unsigned long flags;
1309 int ret;
1310
1311 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1312 ret = dequeue_signal(tsk, mask, info);
1313 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1314
1315 return ret;
1316 }
1317
1318 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1319 sigset_t *mask);
1320 extern void unblock_all_signals(void);
1321 extern void release_task(struct task_struct * p);
1322 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1323 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1324 extern int force_sigsegv(int, struct task_struct *);
1325 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1326 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1327 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1328 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1329 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1330 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1331 extern int kill_pid(struct pid *pid, int sig, int priv);
1332 extern void do_notify_parent(struct task_struct *, int);
1333 extern void force_sig(int, struct task_struct *);
1334 extern void force_sig_specific(int, struct task_struct *);
1335 extern int send_sig(int, struct task_struct *, int);
1336 extern void zap_other_threads(struct task_struct *p);
1337 extern int kill_proc(pid_t, int, int);
1338 extern struct sigqueue *sigqueue_alloc(void);
1339 extern void sigqueue_free(struct sigqueue *);
1340 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1341 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1342 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1343 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1344
1345 static inline int kill_cad_pid(int sig, int priv)
1346 {
1347 return kill_pid(cad_pid, sig, priv);
1348 }
1349
1350 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1351 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1352 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1353 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1354
1355 static inline int is_si_special(const struct siginfo *info)
1356 {
1357 return info <= SEND_SIG_FORCED;
1358 }
1359
1360 /* True if we are on the alternate signal stack. */
1361
1362 static inline int on_sig_stack(unsigned long sp)
1363 {
1364 return (sp - current->sas_ss_sp < current->sas_ss_size);
1365 }
1366
1367 static inline int sas_ss_flags(unsigned long sp)
1368 {
1369 return (current->sas_ss_size == 0 ? SS_DISABLE
1370 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1371 }
1372
1373 /*
1374 * Routines for handling mm_structs
1375 */
1376 extern struct mm_struct * mm_alloc(void);
1377
1378 /* mmdrop drops the mm and the page tables */
1379 extern void FASTCALL(__mmdrop(struct mm_struct *));
1380 static inline void mmdrop(struct mm_struct * mm)
1381 {
1382 if (atomic_dec_and_test(&mm->mm_count))
1383 __mmdrop(mm);
1384 }
1385
1386 /* mmput gets rid of the mappings and all user-space */
1387 extern void mmput(struct mm_struct *);
1388 /* Grab a reference to a task's mm, if it is not already going away */
1389 extern struct mm_struct *get_task_mm(struct task_struct *task);
1390 /* Remove the current tasks stale references to the old mm_struct */
1391 extern void mm_release(struct task_struct *, struct mm_struct *);
1392
1393 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1394 extern void flush_thread(void);
1395 extern void exit_thread(void);
1396
1397 extern void exit_files(struct task_struct *);
1398 extern void __cleanup_signal(struct signal_struct *);
1399 extern void __cleanup_sighand(struct sighand_struct *);
1400 extern void exit_itimers(struct signal_struct *);
1401
1402 extern NORET_TYPE void do_group_exit(int);
1403
1404 extern void daemonize(const char *, ...);
1405 extern int allow_signal(int);
1406 extern int disallow_signal(int);
1407
1408 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1409 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1410 struct task_struct *fork_idle(int);
1411
1412 extern void set_task_comm(struct task_struct *tsk, char *from);
1413 extern void get_task_comm(char *to, struct task_struct *tsk);
1414
1415 #ifdef CONFIG_SMP
1416 extern void wait_task_inactive(struct task_struct * p);
1417 #else
1418 #define wait_task_inactive(p) do { } while (0)
1419 #endif
1420
1421 #define remove_parent(p) list_del_init(&(p)->sibling)
1422 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1423
1424 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1425
1426 #define for_each_process(p) \
1427 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1428
1429 /*
1430 * Careful: do_each_thread/while_each_thread is a double loop so
1431 * 'break' will not work as expected - use goto instead.
1432 */
1433 #define do_each_thread(g, t) \
1434 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1435
1436 #define while_each_thread(g, t) \
1437 while ((t = next_thread(t)) != g)
1438
1439 /* de_thread depends on thread_group_leader not being a pid based check */
1440 #define thread_group_leader(p) (p == p->group_leader)
1441
1442 /* Do to the insanities of de_thread it is possible for a process
1443 * to have the pid of the thread group leader without actually being
1444 * the thread group leader. For iteration through the pids in proc
1445 * all we care about is that we have a task with the appropriate
1446 * pid, we don't actually care if we have the right task.
1447 */
1448 static inline int has_group_leader_pid(struct task_struct *p)
1449 {
1450 return p->pid == p->tgid;
1451 }
1452
1453 static inline struct task_struct *next_thread(const struct task_struct *p)
1454 {
1455 return list_entry(rcu_dereference(p->thread_group.next),
1456 struct task_struct, thread_group);
1457 }
1458
1459 static inline int thread_group_empty(struct task_struct *p)
1460 {
1461 return list_empty(&p->thread_group);
1462 }
1463
1464 #define delay_group_leader(p) \
1465 (thread_group_leader(p) && !thread_group_empty(p))
1466
1467 /*
1468 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1469 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1470 * pins the final release of task.io_context. Also protects ->cpuset.
1471 *
1472 * Nests both inside and outside of read_lock(&tasklist_lock).
1473 * It must not be nested with write_lock_irq(&tasklist_lock),
1474 * neither inside nor outside.
1475 */
1476 static inline void task_lock(struct task_struct *p)
1477 {
1478 spin_lock(&p->alloc_lock);
1479 }
1480
1481 static inline void task_unlock(struct task_struct *p)
1482 {
1483 spin_unlock(&p->alloc_lock);
1484 }
1485
1486 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1487 unsigned long *flags);
1488
1489 static inline void unlock_task_sighand(struct task_struct *tsk,
1490 unsigned long *flags)
1491 {
1492 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1493 }
1494
1495 #ifndef __HAVE_THREAD_FUNCTIONS
1496
1497 #define task_thread_info(task) (task)->thread_info
1498 #define task_stack_page(task) ((void*)((task)->thread_info))
1499
1500 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1501 {
1502 *task_thread_info(p) = *task_thread_info(org);
1503 task_thread_info(p)->task = p;
1504 }
1505
1506 static inline unsigned long *end_of_stack(struct task_struct *p)
1507 {
1508 return (unsigned long *)(p->thread_info + 1);
1509 }
1510
1511 #endif
1512
1513 /* set thread flags in other task's structures
1514 * - see asm/thread_info.h for TIF_xxxx flags available
1515 */
1516 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1517 {
1518 set_ti_thread_flag(task_thread_info(tsk), flag);
1519 }
1520
1521 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1522 {
1523 clear_ti_thread_flag(task_thread_info(tsk), flag);
1524 }
1525
1526 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1527 {
1528 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1529 }
1530
1531 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1532 {
1533 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1534 }
1535
1536 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1537 {
1538 return test_ti_thread_flag(task_thread_info(tsk), flag);
1539 }
1540
1541 static inline void set_tsk_need_resched(struct task_struct *tsk)
1542 {
1543 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1544 }
1545
1546 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1547 {
1548 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1549 }
1550
1551 static inline int signal_pending(struct task_struct *p)
1552 {
1553 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1554 }
1555
1556 static inline int need_resched(void)
1557 {
1558 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1559 }
1560
1561 /*
1562 * cond_resched() and cond_resched_lock(): latency reduction via
1563 * explicit rescheduling in places that are safe. The return
1564 * value indicates whether a reschedule was done in fact.
1565 * cond_resched_lock() will drop the spinlock before scheduling,
1566 * cond_resched_softirq() will enable bhs before scheduling.
1567 */
1568 extern int cond_resched(void);
1569 extern int cond_resched_lock(spinlock_t * lock);
1570 extern int cond_resched_softirq(void);
1571
1572 /*
1573 * Does a critical section need to be broken due to another
1574 * task waiting?:
1575 */
1576 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1577 # define need_lockbreak(lock) ((lock)->break_lock)
1578 #else
1579 # define need_lockbreak(lock) 0
1580 #endif
1581
1582 /*
1583 * Does a critical section need to be broken due to another
1584 * task waiting or preemption being signalled:
1585 */
1586 static inline int lock_need_resched(spinlock_t *lock)
1587 {
1588 if (need_lockbreak(lock) || need_resched())
1589 return 1;
1590 return 0;
1591 }
1592
1593 /* Reevaluate whether the task has signals pending delivery.
1594 This is required every time the blocked sigset_t changes.
1595 callers must hold sighand->siglock. */
1596
1597 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1598 extern void recalc_sigpending(void);
1599
1600 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1601
1602 /*
1603 * Wrappers for p->thread_info->cpu access. No-op on UP.
1604 */
1605 #ifdef CONFIG_SMP
1606
1607 static inline unsigned int task_cpu(const struct task_struct *p)
1608 {
1609 return task_thread_info(p)->cpu;
1610 }
1611
1612 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1613 {
1614 task_thread_info(p)->cpu = cpu;
1615 }
1616
1617 #else
1618
1619 static inline unsigned int task_cpu(const struct task_struct *p)
1620 {
1621 return 0;
1622 }
1623
1624 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1625 {
1626 }
1627
1628 #endif /* CONFIG_SMP */
1629
1630 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1631 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1632 #else
1633 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1634 {
1635 mm->mmap_base = TASK_UNMAPPED_BASE;
1636 mm->get_unmapped_area = arch_get_unmapped_area;
1637 mm->unmap_area = arch_unmap_area;
1638 }
1639 #endif
1640
1641 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1642 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1643
1644 #include <linux/sysdev.h>
1645 extern int sched_mc_power_savings, sched_smt_power_savings;
1646 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings;
1647 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls);
1648
1649 extern void normalize_rt_tasks(void);
1650
1651 #ifdef CONFIG_TASK_XACCT
1652 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1653 {
1654 tsk->rchar += amt;
1655 }
1656
1657 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1658 {
1659 tsk->wchar += amt;
1660 }
1661
1662 static inline void inc_syscr(struct task_struct *tsk)
1663 {
1664 tsk->syscr++;
1665 }
1666
1667 static inline void inc_syscw(struct task_struct *tsk)
1668 {
1669 tsk->syscw++;
1670 }
1671 #else
1672 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1673 {
1674 }
1675
1676 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1677 {
1678 }
1679
1680 static inline void inc_syscr(struct task_struct *tsk)
1681 {
1682 }
1683
1684 static inline void inc_syscw(struct task_struct *tsk)
1685 {
1686 }
1687 #endif
1688
1689 #endif /* __KERNEL__ */
1690
1691 #endif