Merge branch 'for-linus' of git://git390.osdl.marist.edu/pub/scm/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90
91 #include <asm/processor.h>
92
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98
99 /*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105 /*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
114 */
115 extern unsigned long avenrun[]; /* Load averages */
116
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
123
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
128
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 extern unsigned long weighted_cpuload(const int cpu);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 /*
162 * Task state bitmask. NOTE! These bits are also
163 * encoded in fs/proc/array.c: get_task_state().
164 *
165 * We have two separate sets of flags: task->state
166 * is about runnability, while task->exit_state are
167 * about the task exiting. Confusing, but this way
168 * modifying one set can't modify the other one by
169 * mistake.
170 */
171 #define TASK_RUNNING 0
172 #define TASK_INTERRUPTIBLE 1
173 #define TASK_UNINTERRUPTIBLE 2
174 #define __TASK_STOPPED 4
175 #define __TASK_TRACED 8
176 /* in tsk->exit_state */
177 #define EXIT_ZOMBIE 16
178 #define EXIT_DEAD 32
179 /* in tsk->state again */
180 #define TASK_DEAD 64
181 #define TASK_WAKEKILL 128
182
183 /* Convenience macros for the sake of set_task_state */
184 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
185 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
186 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
187
188 /* Convenience macros for the sake of wake_up */
189 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
190 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
191
192 /* get_task_state() */
193 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
194 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
195 __TASK_TRACED)
196
197 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
198 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
199 #define task_is_stopped_or_traced(task) \
200 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
201 #define task_contributes_to_load(task) \
202 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
203
204 #define __set_task_state(tsk, state_value) \
205 do { (tsk)->state = (state_value); } while (0)
206 #define set_task_state(tsk, state_value) \
207 set_mb((tsk)->state, (state_value))
208
209 /*
210 * set_current_state() includes a barrier so that the write of current->state
211 * is correctly serialised wrt the caller's subsequent test of whether to
212 * actually sleep:
213 *
214 * set_current_state(TASK_UNINTERRUPTIBLE);
215 * if (do_i_need_to_sleep())
216 * schedule();
217 *
218 * If the caller does not need such serialisation then use __set_current_state()
219 */
220 #define __set_current_state(state_value) \
221 do { current->state = (state_value); } while (0)
222 #define set_current_state(state_value) \
223 set_mb(current->state, (state_value))
224
225 /* Task command name length */
226 #define TASK_COMM_LEN 16
227
228 #include <linux/spinlock.h>
229
230 /*
231 * This serializes "schedule()" and also protects
232 * the run-queue from deletions/modifications (but
233 * _adding_ to the beginning of the run-queue has
234 * a separate lock).
235 */
236 extern rwlock_t tasklist_lock;
237 extern spinlock_t mmlist_lock;
238
239 struct task_struct;
240
241 extern void sched_init(void);
242 extern void sched_init_smp(void);
243 extern asmlinkage void schedule_tail(struct task_struct *prev);
244 extern void init_idle(struct task_struct *idle, int cpu);
245 extern void init_idle_bootup_task(struct task_struct *idle);
246
247 extern cpumask_t nohz_cpu_mask;
248 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
249 extern int select_nohz_load_balancer(int cpu);
250 #else
251 static inline int select_nohz_load_balancer(int cpu)
252 {
253 return 0;
254 }
255 #endif
256
257 extern unsigned long rt_needs_cpu(int cpu);
258
259 /*
260 * Only dump TASK_* tasks. (0 for all tasks)
261 */
262 extern void show_state_filter(unsigned long state_filter);
263
264 static inline void show_state(void)
265 {
266 show_state_filter(0);
267 }
268
269 extern void show_regs(struct pt_regs *);
270
271 /*
272 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
273 * task), SP is the stack pointer of the first frame that should be shown in the back
274 * trace (or NULL if the entire call-chain of the task should be shown).
275 */
276 extern void show_stack(struct task_struct *task, unsigned long *sp);
277
278 void io_schedule(void);
279 long io_schedule_timeout(long timeout);
280
281 extern void cpu_init (void);
282 extern void trap_init(void);
283 extern void account_process_tick(struct task_struct *task, int user);
284 extern void update_process_times(int user);
285 extern void scheduler_tick(void);
286 extern void hrtick_resched(void);
287
288 extern void sched_show_task(struct task_struct *p);
289
290 #ifdef CONFIG_DETECT_SOFTLOCKUP
291 extern void softlockup_tick(void);
292 extern void spawn_softlockup_task(void);
293 extern void touch_softlockup_watchdog(void);
294 extern void touch_all_softlockup_watchdogs(void);
295 extern unsigned long softlockup_thresh;
296 extern unsigned long sysctl_hung_task_check_count;
297 extern unsigned long sysctl_hung_task_timeout_secs;
298 extern unsigned long sysctl_hung_task_warnings;
299 #else
300 static inline void softlockup_tick(void)
301 {
302 }
303 static inline void spawn_softlockup_task(void)
304 {
305 }
306 static inline void touch_softlockup_watchdog(void)
307 {
308 }
309 static inline void touch_all_softlockup_watchdogs(void)
310 {
311 }
312 #endif
313
314
315 /* Attach to any functions which should be ignored in wchan output. */
316 #define __sched __attribute__((__section__(".sched.text")))
317
318 /* Linker adds these: start and end of __sched functions */
319 extern char __sched_text_start[], __sched_text_end[];
320
321 /* Is this address in the __sched functions? */
322 extern int in_sched_functions(unsigned long addr);
323
324 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
325 extern signed long schedule_timeout(signed long timeout);
326 extern signed long schedule_timeout_interruptible(signed long timeout);
327 extern signed long schedule_timeout_killable(signed long timeout);
328 extern signed long schedule_timeout_uninterruptible(signed long timeout);
329 asmlinkage void schedule(void);
330
331 struct nsproxy;
332 struct user_namespace;
333
334 /* Maximum number of active map areas.. This is a random (large) number */
335 #define DEFAULT_MAX_MAP_COUNT 65536
336
337 extern int sysctl_max_map_count;
338
339 #include <linux/aio.h>
340
341 extern unsigned long
342 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
343 unsigned long, unsigned long);
344 extern unsigned long
345 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
346 unsigned long len, unsigned long pgoff,
347 unsigned long flags);
348 extern void arch_unmap_area(struct mm_struct *, unsigned long);
349 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
350
351 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
352 /*
353 * The mm counters are not protected by its page_table_lock,
354 * so must be incremented atomically.
355 */
356 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
357 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
358 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
359 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
360 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
361
362 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
363 /*
364 * The mm counters are protected by its page_table_lock,
365 * so can be incremented directly.
366 */
367 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
368 #define get_mm_counter(mm, member) ((mm)->_##member)
369 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
370 #define inc_mm_counter(mm, member) (mm)->_##member++
371 #define dec_mm_counter(mm, member) (mm)->_##member--
372
373 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
374
375 #define get_mm_rss(mm) \
376 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
377 #define update_hiwater_rss(mm) do { \
378 unsigned long _rss = get_mm_rss(mm); \
379 if ((mm)->hiwater_rss < _rss) \
380 (mm)->hiwater_rss = _rss; \
381 } while (0)
382 #define update_hiwater_vm(mm) do { \
383 if ((mm)->hiwater_vm < (mm)->total_vm) \
384 (mm)->hiwater_vm = (mm)->total_vm; \
385 } while (0)
386
387 extern void set_dumpable(struct mm_struct *mm, int value);
388 extern int get_dumpable(struct mm_struct *mm);
389
390 /* mm flags */
391 /* dumpable bits */
392 #define MMF_DUMPABLE 0 /* core dump is permitted */
393 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
394 #define MMF_DUMPABLE_BITS 2
395
396 /* coredump filter bits */
397 #define MMF_DUMP_ANON_PRIVATE 2
398 #define MMF_DUMP_ANON_SHARED 3
399 #define MMF_DUMP_MAPPED_PRIVATE 4
400 #define MMF_DUMP_MAPPED_SHARED 5
401 #define MMF_DUMP_ELF_HEADERS 6
402 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
403 #define MMF_DUMP_FILTER_BITS 5
404 #define MMF_DUMP_FILTER_MASK \
405 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
406 #define MMF_DUMP_FILTER_DEFAULT \
407 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
408
409 struct sighand_struct {
410 atomic_t count;
411 struct k_sigaction action[_NSIG];
412 spinlock_t siglock;
413 wait_queue_head_t signalfd_wqh;
414 };
415
416 struct pacct_struct {
417 int ac_flag;
418 long ac_exitcode;
419 unsigned long ac_mem;
420 cputime_t ac_utime, ac_stime;
421 unsigned long ac_minflt, ac_majflt;
422 };
423
424 /*
425 * NOTE! "signal_struct" does not have it's own
426 * locking, because a shared signal_struct always
427 * implies a shared sighand_struct, so locking
428 * sighand_struct is always a proper superset of
429 * the locking of signal_struct.
430 */
431 struct signal_struct {
432 atomic_t count;
433 atomic_t live;
434
435 wait_queue_head_t wait_chldexit; /* for wait4() */
436
437 /* current thread group signal load-balancing target: */
438 struct task_struct *curr_target;
439
440 /* shared signal handling: */
441 struct sigpending shared_pending;
442
443 /* thread group exit support */
444 int group_exit_code;
445 /* overloaded:
446 * - notify group_exit_task when ->count is equal to notify_count
447 * - everyone except group_exit_task is stopped during signal delivery
448 * of fatal signals, group_exit_task processes the signal.
449 */
450 struct task_struct *group_exit_task;
451 int notify_count;
452
453 /* thread group stop support, overloads group_exit_code too */
454 int group_stop_count;
455 unsigned int flags; /* see SIGNAL_* flags below */
456
457 /* POSIX.1b Interval Timers */
458 struct list_head posix_timers;
459
460 /* ITIMER_REAL timer for the process */
461 struct hrtimer real_timer;
462 struct pid *leader_pid;
463 ktime_t it_real_incr;
464
465 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
466 cputime_t it_prof_expires, it_virt_expires;
467 cputime_t it_prof_incr, it_virt_incr;
468
469 /* job control IDs */
470
471 /*
472 * pgrp and session fields are deprecated.
473 * use the task_session_Xnr and task_pgrp_Xnr routines below
474 */
475
476 union {
477 pid_t pgrp __deprecated;
478 pid_t __pgrp;
479 };
480
481 struct pid *tty_old_pgrp;
482
483 union {
484 pid_t session __deprecated;
485 pid_t __session;
486 };
487
488 /* boolean value for session group leader */
489 int leader;
490
491 struct tty_struct *tty; /* NULL if no tty */
492
493 /*
494 * Cumulative resource counters for dead threads in the group,
495 * and for reaped dead child processes forked by this group.
496 * Live threads maintain their own counters and add to these
497 * in __exit_signal, except for the group leader.
498 */
499 cputime_t utime, stime, cutime, cstime;
500 cputime_t gtime;
501 cputime_t cgtime;
502 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
503 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
504 unsigned long inblock, oublock, cinblock, coublock;
505
506 /*
507 * Cumulative ns of scheduled CPU time for dead threads in the
508 * group, not including a zombie group leader. (This only differs
509 * from jiffies_to_ns(utime + stime) if sched_clock uses something
510 * other than jiffies.)
511 */
512 unsigned long long sum_sched_runtime;
513
514 /*
515 * We don't bother to synchronize most readers of this at all,
516 * because there is no reader checking a limit that actually needs
517 * to get both rlim_cur and rlim_max atomically, and either one
518 * alone is a single word that can safely be read normally.
519 * getrlimit/setrlimit use task_lock(current->group_leader) to
520 * protect this instead of the siglock, because they really
521 * have no need to disable irqs.
522 */
523 struct rlimit rlim[RLIM_NLIMITS];
524
525 struct list_head cpu_timers[3];
526
527 /* keep the process-shared keyrings here so that they do the right
528 * thing in threads created with CLONE_THREAD */
529 #ifdef CONFIG_KEYS
530 struct key *session_keyring; /* keyring inherited over fork */
531 struct key *process_keyring; /* keyring private to this process */
532 #endif
533 #ifdef CONFIG_BSD_PROCESS_ACCT
534 struct pacct_struct pacct; /* per-process accounting information */
535 #endif
536 #ifdef CONFIG_TASKSTATS
537 struct taskstats *stats;
538 #endif
539 #ifdef CONFIG_AUDIT
540 unsigned audit_tty;
541 struct tty_audit_buf *tty_audit_buf;
542 #endif
543 };
544
545 /* Context switch must be unlocked if interrupts are to be enabled */
546 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
547 # define __ARCH_WANT_UNLOCKED_CTXSW
548 #endif
549
550 /*
551 * Bits in flags field of signal_struct.
552 */
553 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
554 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
555 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
556 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
557 /*
558 * Pending notifications to parent.
559 */
560 #define SIGNAL_CLD_STOPPED 0x00000010
561 #define SIGNAL_CLD_CONTINUED 0x00000020
562 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
563
564 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
565
566 /* If true, all threads except ->group_exit_task have pending SIGKILL */
567 static inline int signal_group_exit(const struct signal_struct *sig)
568 {
569 return (sig->flags & SIGNAL_GROUP_EXIT) ||
570 (sig->group_exit_task != NULL);
571 }
572
573 /*
574 * Some day this will be a full-fledged user tracking system..
575 */
576 struct user_struct {
577 atomic_t __count; /* reference count */
578 atomic_t processes; /* How many processes does this user have? */
579 atomic_t files; /* How many open files does this user have? */
580 atomic_t sigpending; /* How many pending signals does this user have? */
581 #ifdef CONFIG_INOTIFY_USER
582 atomic_t inotify_watches; /* How many inotify watches does this user have? */
583 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
584 #endif
585 #ifdef CONFIG_POSIX_MQUEUE
586 /* protected by mq_lock */
587 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
588 #endif
589 unsigned long locked_shm; /* How many pages of mlocked shm ? */
590
591 #ifdef CONFIG_KEYS
592 struct key *uid_keyring; /* UID specific keyring */
593 struct key *session_keyring; /* UID's default session keyring */
594 #endif
595
596 /* Hash table maintenance information */
597 struct hlist_node uidhash_node;
598 uid_t uid;
599
600 #ifdef CONFIG_USER_SCHED
601 struct task_group *tg;
602 #ifdef CONFIG_SYSFS
603 struct kobject kobj;
604 struct work_struct work;
605 #endif
606 #endif
607 };
608
609 extern int uids_sysfs_init(void);
610
611 extern struct user_struct *find_user(uid_t);
612
613 extern struct user_struct root_user;
614 #define INIT_USER (&root_user)
615
616 struct backing_dev_info;
617 struct reclaim_state;
618
619 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
620 struct sched_info {
621 /* cumulative counters */
622 unsigned long pcount; /* # of times run on this cpu */
623 unsigned long long cpu_time, /* time spent on the cpu */
624 run_delay; /* time spent waiting on a runqueue */
625
626 /* timestamps */
627 unsigned long long last_arrival,/* when we last ran on a cpu */
628 last_queued; /* when we were last queued to run */
629 #ifdef CONFIG_SCHEDSTATS
630 /* BKL stats */
631 unsigned int bkl_count;
632 #endif
633 };
634 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
635
636 #ifdef CONFIG_SCHEDSTATS
637 extern const struct file_operations proc_schedstat_operations;
638 #endif /* CONFIG_SCHEDSTATS */
639
640 #ifdef CONFIG_TASK_DELAY_ACCT
641 struct task_delay_info {
642 spinlock_t lock;
643 unsigned int flags; /* Private per-task flags */
644
645 /* For each stat XXX, add following, aligned appropriately
646 *
647 * struct timespec XXX_start, XXX_end;
648 * u64 XXX_delay;
649 * u32 XXX_count;
650 *
651 * Atomicity of updates to XXX_delay, XXX_count protected by
652 * single lock above (split into XXX_lock if contention is an issue).
653 */
654
655 /*
656 * XXX_count is incremented on every XXX operation, the delay
657 * associated with the operation is added to XXX_delay.
658 * XXX_delay contains the accumulated delay time in nanoseconds.
659 */
660 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
661 u64 blkio_delay; /* wait for sync block io completion */
662 u64 swapin_delay; /* wait for swapin block io completion */
663 u32 blkio_count; /* total count of the number of sync block */
664 /* io operations performed */
665 u32 swapin_count; /* total count of the number of swapin block */
666 /* io operations performed */
667 };
668 #endif /* CONFIG_TASK_DELAY_ACCT */
669
670 static inline int sched_info_on(void)
671 {
672 #ifdef CONFIG_SCHEDSTATS
673 return 1;
674 #elif defined(CONFIG_TASK_DELAY_ACCT)
675 extern int delayacct_on;
676 return delayacct_on;
677 #else
678 return 0;
679 #endif
680 }
681
682 enum cpu_idle_type {
683 CPU_IDLE,
684 CPU_NOT_IDLE,
685 CPU_NEWLY_IDLE,
686 CPU_MAX_IDLE_TYPES
687 };
688
689 /*
690 * sched-domains (multiprocessor balancing) declarations:
691 */
692
693 /*
694 * Increase resolution of nice-level calculations:
695 */
696 #define SCHED_LOAD_SHIFT 10
697 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
698
699 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
700
701 #ifdef CONFIG_SMP
702 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
703 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
704 #define SD_BALANCE_EXEC 4 /* Balance on exec */
705 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
706 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
707 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
708 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
709 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
710 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
711 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
712 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
713 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
714
715 #define BALANCE_FOR_MC_POWER \
716 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
717
718 #define BALANCE_FOR_PKG_POWER \
719 ((sched_mc_power_savings || sched_smt_power_savings) ? \
720 SD_POWERSAVINGS_BALANCE : 0)
721
722 #define test_sd_parent(sd, flag) ((sd->parent && \
723 (sd->parent->flags & flag)) ? 1 : 0)
724
725
726 struct sched_group {
727 struct sched_group *next; /* Must be a circular list */
728 cpumask_t cpumask;
729
730 /*
731 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
732 * single CPU. This is read only (except for setup, hotplug CPU).
733 * Note : Never change cpu_power without recompute its reciprocal
734 */
735 unsigned int __cpu_power;
736 /*
737 * reciprocal value of cpu_power to avoid expensive divides
738 * (see include/linux/reciprocal_div.h)
739 */
740 u32 reciprocal_cpu_power;
741 };
742
743 enum sched_domain_level {
744 SD_LV_NONE = 0,
745 SD_LV_SIBLING,
746 SD_LV_MC,
747 SD_LV_CPU,
748 SD_LV_NODE,
749 SD_LV_ALLNODES,
750 SD_LV_MAX
751 };
752
753 struct sched_domain_attr {
754 int relax_domain_level;
755 };
756
757 #define SD_ATTR_INIT (struct sched_domain_attr) { \
758 .relax_domain_level = -1, \
759 }
760
761 struct sched_domain {
762 /* These fields must be setup */
763 struct sched_domain *parent; /* top domain must be null terminated */
764 struct sched_domain *child; /* bottom domain must be null terminated */
765 struct sched_group *groups; /* the balancing groups of the domain */
766 cpumask_t span; /* span of all CPUs in this domain */
767 int first_cpu; /* cache of the first cpu in this domain */
768 unsigned long min_interval; /* Minimum balance interval ms */
769 unsigned long max_interval; /* Maximum balance interval ms */
770 unsigned int busy_factor; /* less balancing by factor if busy */
771 unsigned int imbalance_pct; /* No balance until over watermark */
772 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
773 unsigned int busy_idx;
774 unsigned int idle_idx;
775 unsigned int newidle_idx;
776 unsigned int wake_idx;
777 unsigned int forkexec_idx;
778 int flags; /* See SD_* */
779 enum sched_domain_level level;
780
781 /* Runtime fields. */
782 unsigned long last_balance; /* init to jiffies. units in jiffies */
783 unsigned int balance_interval; /* initialise to 1. units in ms. */
784 unsigned int nr_balance_failed; /* initialise to 0 */
785
786 #ifdef CONFIG_SCHEDSTATS
787 /* load_balance() stats */
788 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
789 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
790 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
791 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
792 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
793 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
794 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
795 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
796
797 /* Active load balancing */
798 unsigned int alb_count;
799 unsigned int alb_failed;
800 unsigned int alb_pushed;
801
802 /* SD_BALANCE_EXEC stats */
803 unsigned int sbe_count;
804 unsigned int sbe_balanced;
805 unsigned int sbe_pushed;
806
807 /* SD_BALANCE_FORK stats */
808 unsigned int sbf_count;
809 unsigned int sbf_balanced;
810 unsigned int sbf_pushed;
811
812 /* try_to_wake_up() stats */
813 unsigned int ttwu_wake_remote;
814 unsigned int ttwu_move_affine;
815 unsigned int ttwu_move_balance;
816 #endif
817 };
818
819 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
820 struct sched_domain_attr *dattr_new);
821 extern int arch_reinit_sched_domains(void);
822
823 #endif /* CONFIG_SMP */
824
825 /*
826 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
827 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
828 * task of nice 0 or enough lower priority tasks to bring up the
829 * weighted_cpuload
830 */
831 static inline int above_background_load(void)
832 {
833 unsigned long cpu;
834
835 for_each_online_cpu(cpu) {
836 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
837 return 1;
838 }
839 return 0;
840 }
841
842 struct io_context; /* See blkdev.h */
843 #define NGROUPS_SMALL 32
844 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
845 struct group_info {
846 int ngroups;
847 atomic_t usage;
848 gid_t small_block[NGROUPS_SMALL];
849 int nblocks;
850 gid_t *blocks[0];
851 };
852
853 /*
854 * get_group_info() must be called with the owning task locked (via task_lock())
855 * when task != current. The reason being that the vast majority of callers are
856 * looking at current->group_info, which can not be changed except by the
857 * current task. Changing current->group_info requires the task lock, too.
858 */
859 #define get_group_info(group_info) do { \
860 atomic_inc(&(group_info)->usage); \
861 } while (0)
862
863 #define put_group_info(group_info) do { \
864 if (atomic_dec_and_test(&(group_info)->usage)) \
865 groups_free(group_info); \
866 } while (0)
867
868 extern struct group_info *groups_alloc(int gidsetsize);
869 extern void groups_free(struct group_info *group_info);
870 extern int set_current_groups(struct group_info *group_info);
871 extern int groups_search(struct group_info *group_info, gid_t grp);
872 /* access the groups "array" with this macro */
873 #define GROUP_AT(gi, i) \
874 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
875
876 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
877 extern void prefetch_stack(struct task_struct *t);
878 #else
879 static inline void prefetch_stack(struct task_struct *t) { }
880 #endif
881
882 struct audit_context; /* See audit.c */
883 struct mempolicy;
884 struct pipe_inode_info;
885 struct uts_namespace;
886
887 struct rq;
888 struct sched_domain;
889
890 struct sched_class {
891 const struct sched_class *next;
892
893 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
894 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
895 void (*yield_task) (struct rq *rq);
896 int (*select_task_rq)(struct task_struct *p, int sync);
897
898 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
899
900 struct task_struct * (*pick_next_task) (struct rq *rq);
901 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
902
903 #ifdef CONFIG_SMP
904 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
905 struct rq *busiest, unsigned long max_load_move,
906 struct sched_domain *sd, enum cpu_idle_type idle,
907 int *all_pinned, int *this_best_prio);
908
909 int (*move_one_task) (struct rq *this_rq, int this_cpu,
910 struct rq *busiest, struct sched_domain *sd,
911 enum cpu_idle_type idle);
912 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
913 void (*post_schedule) (struct rq *this_rq);
914 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
915 #endif
916
917 void (*set_curr_task) (struct rq *rq);
918 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
919 void (*task_new) (struct rq *rq, struct task_struct *p);
920 void (*set_cpus_allowed)(struct task_struct *p,
921 const cpumask_t *newmask);
922
923 void (*join_domain)(struct rq *rq);
924 void (*leave_domain)(struct rq *rq);
925
926 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
927 int running);
928 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
929 int running);
930 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
931 int oldprio, int running);
932
933 #ifdef CONFIG_FAIR_GROUP_SCHED
934 void (*moved_group) (struct task_struct *p);
935 #endif
936 };
937
938 struct load_weight {
939 unsigned long weight, inv_weight;
940 };
941
942 /*
943 * CFS stats for a schedulable entity (task, task-group etc)
944 *
945 * Current field usage histogram:
946 *
947 * 4 se->block_start
948 * 4 se->run_node
949 * 4 se->sleep_start
950 * 6 se->load.weight
951 */
952 struct sched_entity {
953 struct load_weight load; /* for load-balancing */
954 struct rb_node run_node;
955 struct list_head group_node;
956 unsigned int on_rq;
957
958 u64 exec_start;
959 u64 sum_exec_runtime;
960 u64 vruntime;
961 u64 prev_sum_exec_runtime;
962
963 u64 last_wakeup;
964 u64 avg_overlap;
965
966 #ifdef CONFIG_SCHEDSTATS
967 u64 wait_start;
968 u64 wait_max;
969 u64 wait_count;
970 u64 wait_sum;
971
972 u64 sleep_start;
973 u64 sleep_max;
974 s64 sum_sleep_runtime;
975
976 u64 block_start;
977 u64 block_max;
978 u64 exec_max;
979 u64 slice_max;
980
981 u64 nr_migrations;
982 u64 nr_migrations_cold;
983 u64 nr_failed_migrations_affine;
984 u64 nr_failed_migrations_running;
985 u64 nr_failed_migrations_hot;
986 u64 nr_forced_migrations;
987 u64 nr_forced2_migrations;
988
989 u64 nr_wakeups;
990 u64 nr_wakeups_sync;
991 u64 nr_wakeups_migrate;
992 u64 nr_wakeups_local;
993 u64 nr_wakeups_remote;
994 u64 nr_wakeups_affine;
995 u64 nr_wakeups_affine_attempts;
996 u64 nr_wakeups_passive;
997 u64 nr_wakeups_idle;
998 #endif
999
1000 #ifdef CONFIG_FAIR_GROUP_SCHED
1001 struct sched_entity *parent;
1002 /* rq on which this entity is (to be) queued: */
1003 struct cfs_rq *cfs_rq;
1004 /* rq "owned" by this entity/group: */
1005 struct cfs_rq *my_q;
1006 #endif
1007 };
1008
1009 struct sched_rt_entity {
1010 struct list_head run_list;
1011 unsigned int time_slice;
1012 unsigned long timeout;
1013 int nr_cpus_allowed;
1014
1015 struct sched_rt_entity *back;
1016 #ifdef CONFIG_RT_GROUP_SCHED
1017 struct sched_rt_entity *parent;
1018 /* rq on which this entity is (to be) queued: */
1019 struct rt_rq *rt_rq;
1020 /* rq "owned" by this entity/group: */
1021 struct rt_rq *my_q;
1022 #endif
1023 };
1024
1025 struct task_struct {
1026 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1027 void *stack;
1028 atomic_t usage;
1029 unsigned int flags; /* per process flags, defined below */
1030 unsigned int ptrace;
1031
1032 int lock_depth; /* BKL lock depth */
1033
1034 #ifdef CONFIG_SMP
1035 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1036 int oncpu;
1037 #endif
1038 #endif
1039
1040 int prio, static_prio, normal_prio;
1041 const struct sched_class *sched_class;
1042 struct sched_entity se;
1043 struct sched_rt_entity rt;
1044
1045 #ifdef CONFIG_PREEMPT_NOTIFIERS
1046 /* list of struct preempt_notifier: */
1047 struct hlist_head preempt_notifiers;
1048 #endif
1049
1050 /*
1051 * fpu_counter contains the number of consecutive context switches
1052 * that the FPU is used. If this is over a threshold, the lazy fpu
1053 * saving becomes unlazy to save the trap. This is an unsigned char
1054 * so that after 256 times the counter wraps and the behavior turns
1055 * lazy again; this to deal with bursty apps that only use FPU for
1056 * a short time
1057 */
1058 unsigned char fpu_counter;
1059 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1060 #ifdef CONFIG_BLK_DEV_IO_TRACE
1061 unsigned int btrace_seq;
1062 #endif
1063
1064 unsigned int policy;
1065 cpumask_t cpus_allowed;
1066
1067 #ifdef CONFIG_PREEMPT_RCU
1068 int rcu_read_lock_nesting;
1069 int rcu_flipctr_idx;
1070 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1071
1072 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1073 struct sched_info sched_info;
1074 #endif
1075
1076 struct list_head tasks;
1077 /*
1078 * ptrace_list/ptrace_children forms the list of my children
1079 * that were stolen by a ptracer.
1080 */
1081 struct list_head ptrace_children;
1082 struct list_head ptrace_list;
1083
1084 struct mm_struct *mm, *active_mm;
1085
1086 /* task state */
1087 struct linux_binfmt *binfmt;
1088 int exit_state;
1089 int exit_code, exit_signal;
1090 int pdeath_signal; /* The signal sent when the parent dies */
1091 /* ??? */
1092 unsigned int personality;
1093 unsigned did_exec:1;
1094 pid_t pid;
1095 pid_t tgid;
1096
1097 #ifdef CONFIG_CC_STACKPROTECTOR
1098 /* Canary value for the -fstack-protector gcc feature */
1099 unsigned long stack_canary;
1100 #endif
1101 /*
1102 * pointers to (original) parent process, youngest child, younger sibling,
1103 * older sibling, respectively. (p->father can be replaced with
1104 * p->parent->pid)
1105 */
1106 struct task_struct *real_parent; /* real parent process (when being debugged) */
1107 struct task_struct *parent; /* parent process */
1108 /*
1109 * children/sibling forms the list of my children plus the
1110 * tasks I'm ptracing.
1111 */
1112 struct list_head children; /* list of my children */
1113 struct list_head sibling; /* linkage in my parent's children list */
1114 struct task_struct *group_leader; /* threadgroup leader */
1115
1116 /* PID/PID hash table linkage. */
1117 struct pid_link pids[PIDTYPE_MAX];
1118 struct list_head thread_group;
1119
1120 struct completion *vfork_done; /* for vfork() */
1121 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1122 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1123
1124 unsigned int rt_priority;
1125 cputime_t utime, stime, utimescaled, stimescaled;
1126 cputime_t gtime;
1127 cputime_t prev_utime, prev_stime;
1128 unsigned long nvcsw, nivcsw; /* context switch counts */
1129 struct timespec start_time; /* monotonic time */
1130 struct timespec real_start_time; /* boot based time */
1131 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1132 unsigned long min_flt, maj_flt;
1133
1134 cputime_t it_prof_expires, it_virt_expires;
1135 unsigned long long it_sched_expires;
1136 struct list_head cpu_timers[3];
1137
1138 /* process credentials */
1139 uid_t uid,euid,suid,fsuid;
1140 gid_t gid,egid,sgid,fsgid;
1141 struct group_info *group_info;
1142 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1143 unsigned securebits;
1144 struct user_struct *user;
1145 #ifdef CONFIG_KEYS
1146 struct key *request_key_auth; /* assumed request_key authority */
1147 struct key *thread_keyring; /* keyring private to this thread */
1148 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1149 #endif
1150 char comm[TASK_COMM_LEN]; /* executable name excluding path
1151 - access with [gs]et_task_comm (which lock
1152 it with task_lock())
1153 - initialized normally by flush_old_exec */
1154 /* file system info */
1155 int link_count, total_link_count;
1156 #ifdef CONFIG_SYSVIPC
1157 /* ipc stuff */
1158 struct sysv_sem sysvsem;
1159 #endif
1160 #ifdef CONFIG_DETECT_SOFTLOCKUP
1161 /* hung task detection */
1162 unsigned long last_switch_timestamp;
1163 unsigned long last_switch_count;
1164 #endif
1165 /* CPU-specific state of this task */
1166 struct thread_struct thread;
1167 /* filesystem information */
1168 struct fs_struct *fs;
1169 /* open file information */
1170 struct files_struct *files;
1171 /* namespaces */
1172 struct nsproxy *nsproxy;
1173 /* signal handlers */
1174 struct signal_struct *signal;
1175 struct sighand_struct *sighand;
1176
1177 sigset_t blocked, real_blocked;
1178 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1179 struct sigpending pending;
1180
1181 unsigned long sas_ss_sp;
1182 size_t sas_ss_size;
1183 int (*notifier)(void *priv);
1184 void *notifier_data;
1185 sigset_t *notifier_mask;
1186 #ifdef CONFIG_SECURITY
1187 void *security;
1188 #endif
1189 struct audit_context *audit_context;
1190 #ifdef CONFIG_AUDITSYSCALL
1191 uid_t loginuid;
1192 unsigned int sessionid;
1193 #endif
1194 seccomp_t seccomp;
1195
1196 /* Thread group tracking */
1197 u32 parent_exec_id;
1198 u32 self_exec_id;
1199 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1200 spinlock_t alloc_lock;
1201
1202 /* Protection of the PI data structures: */
1203 spinlock_t pi_lock;
1204
1205 #ifdef CONFIG_RT_MUTEXES
1206 /* PI waiters blocked on a rt_mutex held by this task */
1207 struct plist_head pi_waiters;
1208 /* Deadlock detection and priority inheritance handling */
1209 struct rt_mutex_waiter *pi_blocked_on;
1210 #endif
1211
1212 #ifdef CONFIG_DEBUG_MUTEXES
1213 /* mutex deadlock detection */
1214 struct mutex_waiter *blocked_on;
1215 #endif
1216 #ifdef CONFIG_TRACE_IRQFLAGS
1217 unsigned int irq_events;
1218 int hardirqs_enabled;
1219 unsigned long hardirq_enable_ip;
1220 unsigned int hardirq_enable_event;
1221 unsigned long hardirq_disable_ip;
1222 unsigned int hardirq_disable_event;
1223 int softirqs_enabled;
1224 unsigned long softirq_disable_ip;
1225 unsigned int softirq_disable_event;
1226 unsigned long softirq_enable_ip;
1227 unsigned int softirq_enable_event;
1228 int hardirq_context;
1229 int softirq_context;
1230 #endif
1231 #ifdef CONFIG_LOCKDEP
1232 # define MAX_LOCK_DEPTH 48UL
1233 u64 curr_chain_key;
1234 int lockdep_depth;
1235 struct held_lock held_locks[MAX_LOCK_DEPTH];
1236 unsigned int lockdep_recursion;
1237 #endif
1238
1239 /* journalling filesystem info */
1240 void *journal_info;
1241
1242 /* stacked block device info */
1243 struct bio *bio_list, **bio_tail;
1244
1245 /* VM state */
1246 struct reclaim_state *reclaim_state;
1247
1248 struct backing_dev_info *backing_dev_info;
1249
1250 struct io_context *io_context;
1251
1252 unsigned long ptrace_message;
1253 siginfo_t *last_siginfo; /* For ptrace use. */
1254 #ifdef CONFIG_TASK_XACCT
1255 /* i/o counters(bytes read/written, #syscalls */
1256 u64 rchar, wchar, syscr, syscw;
1257 #endif
1258 struct task_io_accounting ioac;
1259 #if defined(CONFIG_TASK_XACCT)
1260 u64 acct_rss_mem1; /* accumulated rss usage */
1261 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1262 cputime_t acct_stimexpd;/* stime since last update */
1263 #endif
1264 #ifdef CONFIG_NUMA
1265 struct mempolicy *mempolicy;
1266 short il_next;
1267 #endif
1268 #ifdef CONFIG_CPUSETS
1269 nodemask_t mems_allowed;
1270 int cpuset_mems_generation;
1271 int cpuset_mem_spread_rotor;
1272 #endif
1273 #ifdef CONFIG_CGROUPS
1274 /* Control Group info protected by css_set_lock */
1275 struct css_set *cgroups;
1276 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1277 struct list_head cg_list;
1278 #endif
1279 #ifdef CONFIG_FUTEX
1280 struct robust_list_head __user *robust_list;
1281 #ifdef CONFIG_COMPAT
1282 struct compat_robust_list_head __user *compat_robust_list;
1283 #endif
1284 struct list_head pi_state_list;
1285 struct futex_pi_state *pi_state_cache;
1286 #endif
1287 atomic_t fs_excl; /* holding fs exclusive resources */
1288 struct rcu_head rcu;
1289
1290 /*
1291 * cache last used pipe for splice
1292 */
1293 struct pipe_inode_info *splice_pipe;
1294 #ifdef CONFIG_TASK_DELAY_ACCT
1295 struct task_delay_info *delays;
1296 #endif
1297 #ifdef CONFIG_FAULT_INJECTION
1298 int make_it_fail;
1299 #endif
1300 struct prop_local_single dirties;
1301 #ifdef CONFIG_LATENCYTOP
1302 int latency_record_count;
1303 struct latency_record latency_record[LT_SAVECOUNT];
1304 #endif
1305 };
1306
1307 /*
1308 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1309 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1310 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1311 * values are inverted: lower p->prio value means higher priority.
1312 *
1313 * The MAX_USER_RT_PRIO value allows the actual maximum
1314 * RT priority to be separate from the value exported to
1315 * user-space. This allows kernel threads to set their
1316 * priority to a value higher than any user task. Note:
1317 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1318 */
1319
1320 #define MAX_USER_RT_PRIO 100
1321 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1322
1323 #define MAX_PRIO (MAX_RT_PRIO + 40)
1324 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1325
1326 static inline int rt_prio(int prio)
1327 {
1328 if (unlikely(prio < MAX_RT_PRIO))
1329 return 1;
1330 return 0;
1331 }
1332
1333 static inline int rt_task(struct task_struct *p)
1334 {
1335 return rt_prio(p->prio);
1336 }
1337
1338 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1339 {
1340 tsk->signal->__session = session;
1341 }
1342
1343 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1344 {
1345 tsk->signal->__pgrp = pgrp;
1346 }
1347
1348 static inline struct pid *task_pid(struct task_struct *task)
1349 {
1350 return task->pids[PIDTYPE_PID].pid;
1351 }
1352
1353 static inline struct pid *task_tgid(struct task_struct *task)
1354 {
1355 return task->group_leader->pids[PIDTYPE_PID].pid;
1356 }
1357
1358 static inline struct pid *task_pgrp(struct task_struct *task)
1359 {
1360 return task->group_leader->pids[PIDTYPE_PGID].pid;
1361 }
1362
1363 static inline struct pid *task_session(struct task_struct *task)
1364 {
1365 return task->group_leader->pids[PIDTYPE_SID].pid;
1366 }
1367
1368 struct pid_namespace;
1369
1370 /*
1371 * the helpers to get the task's different pids as they are seen
1372 * from various namespaces
1373 *
1374 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1375 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1376 * current.
1377 * task_xid_nr_ns() : id seen from the ns specified;
1378 *
1379 * set_task_vxid() : assigns a virtual id to a task;
1380 *
1381 * see also pid_nr() etc in include/linux/pid.h
1382 */
1383
1384 static inline pid_t task_pid_nr(struct task_struct *tsk)
1385 {
1386 return tsk->pid;
1387 }
1388
1389 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1390
1391 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1392 {
1393 return pid_vnr(task_pid(tsk));
1394 }
1395
1396
1397 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1398 {
1399 return tsk->tgid;
1400 }
1401
1402 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1403
1404 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1405 {
1406 return pid_vnr(task_tgid(tsk));
1407 }
1408
1409
1410 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1411 {
1412 return tsk->signal->__pgrp;
1413 }
1414
1415 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1416
1417 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1418 {
1419 return pid_vnr(task_pgrp(tsk));
1420 }
1421
1422
1423 static inline pid_t task_session_nr(struct task_struct *tsk)
1424 {
1425 return tsk->signal->__session;
1426 }
1427
1428 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1429
1430 static inline pid_t task_session_vnr(struct task_struct *tsk)
1431 {
1432 return pid_vnr(task_session(tsk));
1433 }
1434
1435
1436 /**
1437 * pid_alive - check that a task structure is not stale
1438 * @p: Task structure to be checked.
1439 *
1440 * Test if a process is not yet dead (at most zombie state)
1441 * If pid_alive fails, then pointers within the task structure
1442 * can be stale and must not be dereferenced.
1443 */
1444 static inline int pid_alive(struct task_struct *p)
1445 {
1446 return p->pids[PIDTYPE_PID].pid != NULL;
1447 }
1448
1449 /**
1450 * is_global_init - check if a task structure is init
1451 * @tsk: Task structure to be checked.
1452 *
1453 * Check if a task structure is the first user space task the kernel created.
1454 */
1455 static inline int is_global_init(struct task_struct *tsk)
1456 {
1457 return tsk->pid == 1;
1458 }
1459
1460 /*
1461 * is_container_init:
1462 * check whether in the task is init in its own pid namespace.
1463 */
1464 extern int is_container_init(struct task_struct *tsk);
1465
1466 extern struct pid *cad_pid;
1467
1468 extern void free_task(struct task_struct *tsk);
1469 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1470
1471 extern void __put_task_struct(struct task_struct *t);
1472
1473 static inline void put_task_struct(struct task_struct *t)
1474 {
1475 if (atomic_dec_and_test(&t->usage))
1476 __put_task_struct(t);
1477 }
1478
1479 /*
1480 * Per process flags
1481 */
1482 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1483 /* Not implemented yet, only for 486*/
1484 #define PF_STARTING 0x00000002 /* being created */
1485 #define PF_EXITING 0x00000004 /* getting shut down */
1486 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1487 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1488 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1489 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1490 #define PF_DUMPCORE 0x00000200 /* dumped core */
1491 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1492 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1493 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1494 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1495 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1496 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1497 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1498 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1499 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1500 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1501 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1502 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1503 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1504 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1505 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1506 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1507 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1508 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1509
1510 /*
1511 * Only the _current_ task can read/write to tsk->flags, but other
1512 * tasks can access tsk->flags in readonly mode for example
1513 * with tsk_used_math (like during threaded core dumping).
1514 * There is however an exception to this rule during ptrace
1515 * or during fork: the ptracer task is allowed to write to the
1516 * child->flags of its traced child (same goes for fork, the parent
1517 * can write to the child->flags), because we're guaranteed the
1518 * child is not running and in turn not changing child->flags
1519 * at the same time the parent does it.
1520 */
1521 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1522 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1523 #define clear_used_math() clear_stopped_child_used_math(current)
1524 #define set_used_math() set_stopped_child_used_math(current)
1525 #define conditional_stopped_child_used_math(condition, child) \
1526 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1527 #define conditional_used_math(condition) \
1528 conditional_stopped_child_used_math(condition, current)
1529 #define copy_to_stopped_child_used_math(child) \
1530 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1531 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1532 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1533 #define used_math() tsk_used_math(current)
1534
1535 #ifdef CONFIG_SMP
1536 extern int set_cpus_allowed_ptr(struct task_struct *p,
1537 const cpumask_t *new_mask);
1538 #else
1539 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1540 const cpumask_t *new_mask)
1541 {
1542 if (!cpu_isset(0, *new_mask))
1543 return -EINVAL;
1544 return 0;
1545 }
1546 #endif
1547 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1548 {
1549 return set_cpus_allowed_ptr(p, &new_mask);
1550 }
1551
1552 extern unsigned long long sched_clock(void);
1553
1554 /*
1555 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1556 * clock constructed from sched_clock():
1557 */
1558 extern unsigned long long cpu_clock(int cpu);
1559
1560 extern unsigned long long
1561 task_sched_runtime(struct task_struct *task);
1562
1563 /* sched_exec is called by processes performing an exec */
1564 #ifdef CONFIG_SMP
1565 extern void sched_exec(void);
1566 #else
1567 #define sched_exec() {}
1568 #endif
1569
1570 extern void sched_clock_idle_sleep_event(void);
1571 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1572
1573 #ifdef CONFIG_HOTPLUG_CPU
1574 extern void idle_task_exit(void);
1575 #else
1576 static inline void idle_task_exit(void) {}
1577 #endif
1578
1579 extern void sched_idle_next(void);
1580
1581 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1582 extern void wake_up_idle_cpu(int cpu);
1583 #else
1584 static inline void wake_up_idle_cpu(int cpu) { }
1585 #endif
1586
1587 #ifdef CONFIG_SCHED_DEBUG
1588 extern unsigned int sysctl_sched_latency;
1589 extern unsigned int sysctl_sched_min_granularity;
1590 extern unsigned int sysctl_sched_wakeup_granularity;
1591 extern unsigned int sysctl_sched_child_runs_first;
1592 extern unsigned int sysctl_sched_features;
1593 extern unsigned int sysctl_sched_migration_cost;
1594 extern unsigned int sysctl_sched_nr_migrate;
1595
1596 int sched_nr_latency_handler(struct ctl_table *table, int write,
1597 struct file *file, void __user *buffer, size_t *length,
1598 loff_t *ppos);
1599 #endif
1600 extern unsigned int sysctl_sched_rt_period;
1601 extern int sysctl_sched_rt_runtime;
1602
1603 int sched_rt_handler(struct ctl_table *table, int write,
1604 struct file *filp, void __user *buffer, size_t *lenp,
1605 loff_t *ppos);
1606
1607 extern unsigned int sysctl_sched_compat_yield;
1608
1609 #ifdef CONFIG_RT_MUTEXES
1610 extern int rt_mutex_getprio(struct task_struct *p);
1611 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1612 extern void rt_mutex_adjust_pi(struct task_struct *p);
1613 #else
1614 static inline int rt_mutex_getprio(struct task_struct *p)
1615 {
1616 return p->normal_prio;
1617 }
1618 # define rt_mutex_adjust_pi(p) do { } while (0)
1619 #endif
1620
1621 extern void set_user_nice(struct task_struct *p, long nice);
1622 extern int task_prio(const struct task_struct *p);
1623 extern int task_nice(const struct task_struct *p);
1624 extern int can_nice(const struct task_struct *p, const int nice);
1625 extern int task_curr(const struct task_struct *p);
1626 extern int idle_cpu(int cpu);
1627 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1628 extern struct task_struct *idle_task(int cpu);
1629 extern struct task_struct *curr_task(int cpu);
1630 extern void set_curr_task(int cpu, struct task_struct *p);
1631
1632 void yield(void);
1633
1634 /*
1635 * The default (Linux) execution domain.
1636 */
1637 extern struct exec_domain default_exec_domain;
1638
1639 union thread_union {
1640 struct thread_info thread_info;
1641 unsigned long stack[THREAD_SIZE/sizeof(long)];
1642 };
1643
1644 #ifndef __HAVE_ARCH_KSTACK_END
1645 static inline int kstack_end(void *addr)
1646 {
1647 /* Reliable end of stack detection:
1648 * Some APM bios versions misalign the stack
1649 */
1650 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1651 }
1652 #endif
1653
1654 extern union thread_union init_thread_union;
1655 extern struct task_struct init_task;
1656
1657 extern struct mm_struct init_mm;
1658
1659 extern struct pid_namespace init_pid_ns;
1660
1661 /*
1662 * find a task by one of its numerical ids
1663 *
1664 * find_task_by_pid_type_ns():
1665 * it is the most generic call - it finds a task by all id,
1666 * type and namespace specified
1667 * find_task_by_pid_ns():
1668 * finds a task by its pid in the specified namespace
1669 * find_task_by_vpid():
1670 * finds a task by its virtual pid
1671 * find_task_by_pid():
1672 * finds a task by its global pid
1673 *
1674 * see also find_pid() etc in include/linux/pid.h
1675 */
1676
1677 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1678 struct pid_namespace *ns);
1679
1680 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1681 {
1682 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1683 }
1684 extern struct task_struct *find_task_by_vpid(pid_t nr);
1685 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1686 struct pid_namespace *ns);
1687
1688 extern void __set_special_pids(struct pid *pid);
1689
1690 /* per-UID process charging. */
1691 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1692 static inline struct user_struct *get_uid(struct user_struct *u)
1693 {
1694 atomic_inc(&u->__count);
1695 return u;
1696 }
1697 extern void free_uid(struct user_struct *);
1698 extern void switch_uid(struct user_struct *);
1699 extern void release_uids(struct user_namespace *ns);
1700
1701 #include <asm/current.h>
1702
1703 extern void do_timer(unsigned long ticks);
1704
1705 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1706 extern int wake_up_process(struct task_struct *tsk);
1707 extern void wake_up_new_task(struct task_struct *tsk,
1708 unsigned long clone_flags);
1709 #ifdef CONFIG_SMP
1710 extern void kick_process(struct task_struct *tsk);
1711 #else
1712 static inline void kick_process(struct task_struct *tsk) { }
1713 #endif
1714 extern void sched_fork(struct task_struct *p, int clone_flags);
1715 extern void sched_dead(struct task_struct *p);
1716
1717 extern int in_group_p(gid_t);
1718 extern int in_egroup_p(gid_t);
1719
1720 extern void proc_caches_init(void);
1721 extern void flush_signals(struct task_struct *);
1722 extern void ignore_signals(struct task_struct *);
1723 extern void flush_signal_handlers(struct task_struct *, int force_default);
1724 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1725
1726 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1727 {
1728 unsigned long flags;
1729 int ret;
1730
1731 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1732 ret = dequeue_signal(tsk, mask, info);
1733 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1734
1735 return ret;
1736 }
1737
1738 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1739 sigset_t *mask);
1740 extern void unblock_all_signals(void);
1741 extern void release_task(struct task_struct * p);
1742 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1743 extern int force_sigsegv(int, struct task_struct *);
1744 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1745 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1746 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1747 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1748 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1749 extern int kill_pid(struct pid *pid, int sig, int priv);
1750 extern int kill_proc_info(int, struct siginfo *, pid_t);
1751 extern void do_notify_parent(struct task_struct *, int);
1752 extern void force_sig(int, struct task_struct *);
1753 extern void force_sig_specific(int, struct task_struct *);
1754 extern int send_sig(int, struct task_struct *, int);
1755 extern void zap_other_threads(struct task_struct *p);
1756 extern int kill_proc(pid_t, int, int);
1757 extern struct sigqueue *sigqueue_alloc(void);
1758 extern void sigqueue_free(struct sigqueue *);
1759 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1760 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1761 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1762
1763 static inline int kill_cad_pid(int sig, int priv)
1764 {
1765 return kill_pid(cad_pid, sig, priv);
1766 }
1767
1768 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1769 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1770 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1771 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1772
1773 static inline int is_si_special(const struct siginfo *info)
1774 {
1775 return info <= SEND_SIG_FORCED;
1776 }
1777
1778 /* True if we are on the alternate signal stack. */
1779
1780 static inline int on_sig_stack(unsigned long sp)
1781 {
1782 return (sp - current->sas_ss_sp < current->sas_ss_size);
1783 }
1784
1785 static inline int sas_ss_flags(unsigned long sp)
1786 {
1787 return (current->sas_ss_size == 0 ? SS_DISABLE
1788 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1789 }
1790
1791 /*
1792 * Routines for handling mm_structs
1793 */
1794 extern struct mm_struct * mm_alloc(void);
1795
1796 /* mmdrop drops the mm and the page tables */
1797 extern void __mmdrop(struct mm_struct *);
1798 static inline void mmdrop(struct mm_struct * mm)
1799 {
1800 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1801 __mmdrop(mm);
1802 }
1803
1804 /* mmput gets rid of the mappings and all user-space */
1805 extern void mmput(struct mm_struct *);
1806 /* Grab a reference to a task's mm, if it is not already going away */
1807 extern struct mm_struct *get_task_mm(struct task_struct *task);
1808 /* Remove the current tasks stale references to the old mm_struct */
1809 extern void mm_release(struct task_struct *, struct mm_struct *);
1810 /* Allocate a new mm structure and copy contents from tsk->mm */
1811 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1812
1813 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1814 extern void flush_thread(void);
1815 extern void exit_thread(void);
1816
1817 extern void exit_files(struct task_struct *);
1818 extern void __cleanup_signal(struct signal_struct *);
1819 extern void __cleanup_sighand(struct sighand_struct *);
1820 extern void exit_itimers(struct signal_struct *);
1821
1822 extern NORET_TYPE void do_group_exit(int);
1823
1824 extern void daemonize(const char *, ...);
1825 extern int allow_signal(int);
1826 extern int disallow_signal(int);
1827
1828 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1829 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1830 struct task_struct *fork_idle(int);
1831
1832 extern void set_task_comm(struct task_struct *tsk, char *from);
1833 extern char *get_task_comm(char *to, struct task_struct *tsk);
1834
1835 #ifdef CONFIG_SMP
1836 extern void wait_task_inactive(struct task_struct * p);
1837 #else
1838 #define wait_task_inactive(p) do { } while (0)
1839 #endif
1840
1841 #define remove_parent(p) list_del_init(&(p)->sibling)
1842 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1843
1844 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1845
1846 #define for_each_process(p) \
1847 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1848
1849 /*
1850 * Careful: do_each_thread/while_each_thread is a double loop so
1851 * 'break' will not work as expected - use goto instead.
1852 */
1853 #define do_each_thread(g, t) \
1854 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1855
1856 #define while_each_thread(g, t) \
1857 while ((t = next_thread(t)) != g)
1858
1859 /* de_thread depends on thread_group_leader not being a pid based check */
1860 #define thread_group_leader(p) (p == p->group_leader)
1861
1862 /* Do to the insanities of de_thread it is possible for a process
1863 * to have the pid of the thread group leader without actually being
1864 * the thread group leader. For iteration through the pids in proc
1865 * all we care about is that we have a task with the appropriate
1866 * pid, we don't actually care if we have the right task.
1867 */
1868 static inline int has_group_leader_pid(struct task_struct *p)
1869 {
1870 return p->pid == p->tgid;
1871 }
1872
1873 static inline
1874 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1875 {
1876 return p1->tgid == p2->tgid;
1877 }
1878
1879 static inline struct task_struct *next_thread(const struct task_struct *p)
1880 {
1881 return list_entry(rcu_dereference(p->thread_group.next),
1882 struct task_struct, thread_group);
1883 }
1884
1885 static inline int thread_group_empty(struct task_struct *p)
1886 {
1887 return list_empty(&p->thread_group);
1888 }
1889
1890 #define delay_group_leader(p) \
1891 (thread_group_leader(p) && !thread_group_empty(p))
1892
1893 /*
1894 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1895 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1896 * pins the final release of task.io_context. Also protects ->cpuset and
1897 * ->cgroup.subsys[].
1898 *
1899 * Nests both inside and outside of read_lock(&tasklist_lock).
1900 * It must not be nested with write_lock_irq(&tasklist_lock),
1901 * neither inside nor outside.
1902 */
1903 static inline void task_lock(struct task_struct *p)
1904 {
1905 spin_lock(&p->alloc_lock);
1906 }
1907
1908 static inline void task_unlock(struct task_struct *p)
1909 {
1910 spin_unlock(&p->alloc_lock);
1911 }
1912
1913 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1914 unsigned long *flags);
1915
1916 static inline void unlock_task_sighand(struct task_struct *tsk,
1917 unsigned long *flags)
1918 {
1919 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1920 }
1921
1922 #ifndef __HAVE_THREAD_FUNCTIONS
1923
1924 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1925 #define task_stack_page(task) ((task)->stack)
1926
1927 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1928 {
1929 *task_thread_info(p) = *task_thread_info(org);
1930 task_thread_info(p)->task = p;
1931 }
1932
1933 static inline unsigned long *end_of_stack(struct task_struct *p)
1934 {
1935 return (unsigned long *)(task_thread_info(p) + 1);
1936 }
1937
1938 #endif
1939
1940 extern void thread_info_cache_init(void);
1941
1942 /* set thread flags in other task's structures
1943 * - see asm/thread_info.h for TIF_xxxx flags available
1944 */
1945 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1946 {
1947 set_ti_thread_flag(task_thread_info(tsk), flag);
1948 }
1949
1950 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1951 {
1952 clear_ti_thread_flag(task_thread_info(tsk), flag);
1953 }
1954
1955 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1956 {
1957 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1958 }
1959
1960 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1961 {
1962 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1963 }
1964
1965 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1966 {
1967 return test_ti_thread_flag(task_thread_info(tsk), flag);
1968 }
1969
1970 static inline void set_tsk_need_resched(struct task_struct *tsk)
1971 {
1972 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1973 }
1974
1975 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1976 {
1977 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1978 }
1979
1980 static inline int signal_pending(struct task_struct *p)
1981 {
1982 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1983 }
1984
1985 extern int __fatal_signal_pending(struct task_struct *p);
1986
1987 static inline int fatal_signal_pending(struct task_struct *p)
1988 {
1989 return signal_pending(p) && __fatal_signal_pending(p);
1990 }
1991
1992 static inline int need_resched(void)
1993 {
1994 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1995 }
1996
1997 /*
1998 * cond_resched() and cond_resched_lock(): latency reduction via
1999 * explicit rescheduling in places that are safe. The return
2000 * value indicates whether a reschedule was done in fact.
2001 * cond_resched_lock() will drop the spinlock before scheduling,
2002 * cond_resched_softirq() will enable bhs before scheduling.
2003 */
2004 #ifdef CONFIG_PREEMPT
2005 static inline int cond_resched(void)
2006 {
2007 return 0;
2008 }
2009 #else
2010 extern int _cond_resched(void);
2011 static inline int cond_resched(void)
2012 {
2013 return _cond_resched();
2014 }
2015 #endif
2016 extern int cond_resched_lock(spinlock_t * lock);
2017 extern int cond_resched_softirq(void);
2018
2019 /*
2020 * Does a critical section need to be broken due to another
2021 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2022 * but a general need for low latency)
2023 */
2024 static inline int spin_needbreak(spinlock_t *lock)
2025 {
2026 #ifdef CONFIG_PREEMPT
2027 return spin_is_contended(lock);
2028 #else
2029 return 0;
2030 #endif
2031 }
2032
2033 /*
2034 * Reevaluate whether the task has signals pending delivery.
2035 * Wake the task if so.
2036 * This is required every time the blocked sigset_t changes.
2037 * callers must hold sighand->siglock.
2038 */
2039 extern void recalc_sigpending_and_wake(struct task_struct *t);
2040 extern void recalc_sigpending(void);
2041
2042 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2043
2044 /*
2045 * Wrappers for p->thread_info->cpu access. No-op on UP.
2046 */
2047 #ifdef CONFIG_SMP
2048
2049 static inline unsigned int task_cpu(const struct task_struct *p)
2050 {
2051 return task_thread_info(p)->cpu;
2052 }
2053
2054 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2055
2056 #else
2057
2058 static inline unsigned int task_cpu(const struct task_struct *p)
2059 {
2060 return 0;
2061 }
2062
2063 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2064 {
2065 }
2066
2067 #endif /* CONFIG_SMP */
2068
2069 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2070 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2071 #else
2072 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2073 {
2074 mm->mmap_base = TASK_UNMAPPED_BASE;
2075 mm->get_unmapped_area = arch_get_unmapped_area;
2076 mm->unmap_area = arch_unmap_area;
2077 }
2078 #endif
2079
2080 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2081 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2082
2083 extern int sched_mc_power_savings, sched_smt_power_savings;
2084
2085 extern void normalize_rt_tasks(void);
2086
2087 #ifdef CONFIG_GROUP_SCHED
2088
2089 extern struct task_group init_task_group;
2090 #ifdef CONFIG_USER_SCHED
2091 extern struct task_group root_task_group;
2092 #endif
2093
2094 extern struct task_group *sched_create_group(struct task_group *parent);
2095 extern void sched_destroy_group(struct task_group *tg);
2096 extern void sched_move_task(struct task_struct *tsk);
2097 #ifdef CONFIG_FAIR_GROUP_SCHED
2098 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2099 extern unsigned long sched_group_shares(struct task_group *tg);
2100 #endif
2101 #ifdef CONFIG_RT_GROUP_SCHED
2102 extern int sched_group_set_rt_runtime(struct task_group *tg,
2103 long rt_runtime_us);
2104 extern long sched_group_rt_runtime(struct task_group *tg);
2105 extern int sched_group_set_rt_period(struct task_group *tg,
2106 long rt_period_us);
2107 extern long sched_group_rt_period(struct task_group *tg);
2108 #endif
2109 #endif
2110
2111 #ifdef CONFIG_TASK_XACCT
2112 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2113 {
2114 tsk->rchar += amt;
2115 }
2116
2117 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2118 {
2119 tsk->wchar += amt;
2120 }
2121
2122 static inline void inc_syscr(struct task_struct *tsk)
2123 {
2124 tsk->syscr++;
2125 }
2126
2127 static inline void inc_syscw(struct task_struct *tsk)
2128 {
2129 tsk->syscw++;
2130 }
2131 #else
2132 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2133 {
2134 }
2135
2136 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2137 {
2138 }
2139
2140 static inline void inc_syscr(struct task_struct *tsk)
2141 {
2142 }
2143
2144 static inline void inc_syscw(struct task_struct *tsk)
2145 {
2146 }
2147 #endif
2148
2149 #ifdef CONFIG_SMP
2150 void migration_init(void);
2151 #else
2152 static inline void migration_init(void)
2153 {
2154 }
2155 #endif
2156
2157 #ifndef TASK_SIZE_OF
2158 #define TASK_SIZE_OF(tsk) TASK_SIZE
2159 #endif
2160
2161 #ifdef CONFIG_MM_OWNER
2162 extern void mm_update_next_owner(struct mm_struct *mm);
2163 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2164 #else
2165 static inline void mm_update_next_owner(struct mm_struct *mm)
2166 {
2167 }
2168
2169 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2170 {
2171 }
2172 #endif /* CONFIG_MM_OWNER */
2173
2174 #endif /* __KERNEL__ */
2175
2176 #endif