Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56
57 /*
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
60 *
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
65 * mistake.
66 */
67
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
86
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
91
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97
98 /* get_task_state(): */
99 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116 #define __set_current_state(state_value) \
117 do { \
118 current->task_state_change = _THIS_IP_; \
119 current->state = (state_value); \
120 } while (0)
121 #define set_current_state(state_value) \
122 do { \
123 current->task_state_change = _THIS_IP_; \
124 smp_store_mb(current->state, (state_value)); \
125 } while (0)
126
127 #else
128 /*
129 * set_current_state() includes a barrier so that the write of current->state
130 * is correctly serialised wrt the caller's subsequent test of whether to
131 * actually sleep:
132 *
133 * for (;;) {
134 * set_current_state(TASK_UNINTERRUPTIBLE);
135 * if (!need_sleep)
136 * break;
137 *
138 * schedule();
139 * }
140 * __set_current_state(TASK_RUNNING);
141 *
142 * If the caller does not need such serialisation (because, for instance, the
143 * condition test and condition change and wakeup are under the same lock) then
144 * use __set_current_state().
145 *
146 * The above is typically ordered against the wakeup, which does:
147 *
148 * need_sleep = false;
149 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
150 *
151 * Where wake_up_state() (and all other wakeup primitives) imply enough
152 * barriers to order the store of the variable against wakeup.
153 *
154 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157 *
158 * This is obviously fine, since they both store the exact same value.
159 *
160 * Also see the comments of try_to_wake_up().
161 */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value) smp_store_mb(current->state, (state_value))
164 #endif
165
166 /* Task command name length: */
167 #define TASK_COMM_LEN 16
168
169 extern cpumask_var_t cpu_isolated_map;
170
171 extern void scheduler_tick(void);
172
173 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
174
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187
188 /**
189 * struct prev_cputime - snapshot of system and user cputime
190 * @utime: time spent in user mode
191 * @stime: time spent in system mode
192 * @lock: protects the above two fields
193 *
194 * Stores previous user/system time values such that we can guarantee
195 * monotonicity.
196 */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 u64 utime;
200 u64 stime;
201 raw_spinlock_t lock;
202 #endif
203 };
204
205 /**
206 * struct task_cputime - collected CPU time counts
207 * @utime: time spent in user mode, in nanoseconds
208 * @stime: time spent in kernel mode, in nanoseconds
209 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
210 *
211 * This structure groups together three kinds of CPU time that are tracked for
212 * threads and thread groups. Most things considering CPU time want to group
213 * these counts together and treat all three of them in parallel.
214 */
215 struct task_cputime {
216 u64 utime;
217 u64 stime;
218 unsigned long long sum_exec_runtime;
219 };
220
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp utime
223 #define prof_exp stime
224 #define sched_exp sum_exec_runtime
225
226 enum vtime_state {
227 /* Task is sleeping or running in a CPU with VTIME inactive: */
228 VTIME_INACTIVE = 0,
229 /* Task runs in userspace in a CPU with VTIME active: */
230 VTIME_USER,
231 /* Task runs in kernelspace in a CPU with VTIME active: */
232 VTIME_SYS,
233 };
234
235 struct vtime {
236 seqcount_t seqcount;
237 unsigned long long starttime;
238 enum vtime_state state;
239 u64 utime;
240 u64 stime;
241 u64 gtime;
242 };
243
244 struct sched_info {
245 #ifdef CONFIG_SCHED_INFO
246 /* Cumulative counters: */
247
248 /* # of times we have run on this CPU: */
249 unsigned long pcount;
250
251 /* Time spent waiting on a runqueue: */
252 unsigned long long run_delay;
253
254 /* Timestamps: */
255
256 /* When did we last run on a CPU? */
257 unsigned long long last_arrival;
258
259 /* When were we last queued to run? */
260 unsigned long long last_queued;
261
262 #endif /* CONFIG_SCHED_INFO */
263 };
264
265 /*
266 * Integer metrics need fixed point arithmetic, e.g., sched/fair
267 * has a few: load, load_avg, util_avg, freq, and capacity.
268 *
269 * We define a basic fixed point arithmetic range, and then formalize
270 * all these metrics based on that basic range.
271 */
272 # define SCHED_FIXEDPOINT_SHIFT 10
273 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
274
275 struct load_weight {
276 unsigned long weight;
277 u32 inv_weight;
278 };
279
280 /*
281 * The load_avg/util_avg accumulates an infinite geometric series
282 * (see __update_load_avg() in kernel/sched/fair.c).
283 *
284 * [load_avg definition]
285 *
286 * load_avg = runnable% * scale_load_down(load)
287 *
288 * where runnable% is the time ratio that a sched_entity is runnable.
289 * For cfs_rq, it is the aggregated load_avg of all runnable and
290 * blocked sched_entities.
291 *
292 * load_avg may also take frequency scaling into account:
293 *
294 * load_avg = runnable% * scale_load_down(load) * freq%
295 *
296 * where freq% is the CPU frequency normalized to the highest frequency.
297 *
298 * [util_avg definition]
299 *
300 * util_avg = running% * SCHED_CAPACITY_SCALE
301 *
302 * where running% is the time ratio that a sched_entity is running on
303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
304 * and blocked sched_entities.
305 *
306 * util_avg may also factor frequency scaling and CPU capacity scaling:
307 *
308 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
309 *
310 * where freq% is the same as above, and capacity% is the CPU capacity
311 * normalized to the greatest capacity (due to uarch differences, etc).
312 *
313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
314 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
315 * we therefore scale them to as large a range as necessary. This is for
316 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
317 *
318 * [Overflow issue]
319 *
320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
321 * with the highest load (=88761), always runnable on a single cfs_rq,
322 * and should not overflow as the number already hits PID_MAX_LIMIT.
323 *
324 * For all other cases (including 32-bit kernels), struct load_weight's
325 * weight will overflow first before we do, because:
326 *
327 * Max(load_avg) <= Max(load.weight)
328 *
329 * Then it is the load_weight's responsibility to consider overflow
330 * issues.
331 */
332 struct sched_avg {
333 u64 last_update_time;
334 u64 load_sum;
335 u32 util_sum;
336 u32 period_contrib;
337 unsigned long load_avg;
338 unsigned long util_avg;
339 };
340
341 struct sched_statistics {
342 #ifdef CONFIG_SCHEDSTATS
343 u64 wait_start;
344 u64 wait_max;
345 u64 wait_count;
346 u64 wait_sum;
347 u64 iowait_count;
348 u64 iowait_sum;
349
350 u64 sleep_start;
351 u64 sleep_max;
352 s64 sum_sleep_runtime;
353
354 u64 block_start;
355 u64 block_max;
356 u64 exec_max;
357 u64 slice_max;
358
359 u64 nr_migrations_cold;
360 u64 nr_failed_migrations_affine;
361 u64 nr_failed_migrations_running;
362 u64 nr_failed_migrations_hot;
363 u64 nr_forced_migrations;
364
365 u64 nr_wakeups;
366 u64 nr_wakeups_sync;
367 u64 nr_wakeups_migrate;
368 u64 nr_wakeups_local;
369 u64 nr_wakeups_remote;
370 u64 nr_wakeups_affine;
371 u64 nr_wakeups_affine_attempts;
372 u64 nr_wakeups_passive;
373 u64 nr_wakeups_idle;
374 #endif
375 };
376
377 struct sched_entity {
378 /* For load-balancing: */
379 struct load_weight load;
380 struct rb_node run_node;
381 struct list_head group_node;
382 unsigned int on_rq;
383
384 u64 exec_start;
385 u64 sum_exec_runtime;
386 u64 vruntime;
387 u64 prev_sum_exec_runtime;
388
389 u64 nr_migrations;
390
391 struct sched_statistics statistics;
392
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 int depth;
395 struct sched_entity *parent;
396 /* rq on which this entity is (to be) queued: */
397 struct cfs_rq *cfs_rq;
398 /* rq "owned" by this entity/group: */
399 struct cfs_rq *my_q;
400 #endif
401
402 #ifdef CONFIG_SMP
403 /*
404 * Per entity load average tracking.
405 *
406 * Put into separate cache line so it does not
407 * collide with read-mostly values above.
408 */
409 struct sched_avg avg ____cacheline_aligned_in_smp;
410 #endif
411 };
412
413 struct sched_rt_entity {
414 struct list_head run_list;
415 unsigned long timeout;
416 unsigned long watchdog_stamp;
417 unsigned int time_slice;
418 unsigned short on_rq;
419 unsigned short on_list;
420
421 struct sched_rt_entity *back;
422 #ifdef CONFIG_RT_GROUP_SCHED
423 struct sched_rt_entity *parent;
424 /* rq on which this entity is (to be) queued: */
425 struct rt_rq *rt_rq;
426 /* rq "owned" by this entity/group: */
427 struct rt_rq *my_q;
428 #endif
429 } __randomize_layout;
430
431 struct sched_dl_entity {
432 struct rb_node rb_node;
433
434 /*
435 * Original scheduling parameters. Copied here from sched_attr
436 * during sched_setattr(), they will remain the same until
437 * the next sched_setattr().
438 */
439 u64 dl_runtime; /* Maximum runtime for each instance */
440 u64 dl_deadline; /* Relative deadline of each instance */
441 u64 dl_period; /* Separation of two instances (period) */
442 u64 dl_bw; /* dl_runtime / dl_period */
443 u64 dl_density; /* dl_runtime / dl_deadline */
444
445 /*
446 * Actual scheduling parameters. Initialized with the values above,
447 * they are continously updated during task execution. Note that
448 * the remaining runtime could be < 0 in case we are in overrun.
449 */
450 s64 runtime; /* Remaining runtime for this instance */
451 u64 deadline; /* Absolute deadline for this instance */
452 unsigned int flags; /* Specifying the scheduler behaviour */
453
454 /*
455 * Some bool flags:
456 *
457 * @dl_throttled tells if we exhausted the runtime. If so, the
458 * task has to wait for a replenishment to be performed at the
459 * next firing of dl_timer.
460 *
461 * @dl_boosted tells if we are boosted due to DI. If so we are
462 * outside bandwidth enforcement mechanism (but only until we
463 * exit the critical section);
464 *
465 * @dl_yielded tells if task gave up the CPU before consuming
466 * all its available runtime during the last job.
467 *
468 * @dl_non_contending tells if the task is inactive while still
469 * contributing to the active utilization. In other words, it
470 * indicates if the inactive timer has been armed and its handler
471 * has not been executed yet. This flag is useful to avoid race
472 * conditions between the inactive timer handler and the wakeup
473 * code.
474 */
475 int dl_throttled;
476 int dl_boosted;
477 int dl_yielded;
478 int dl_non_contending;
479
480 /*
481 * Bandwidth enforcement timer. Each -deadline task has its
482 * own bandwidth to be enforced, thus we need one timer per task.
483 */
484 struct hrtimer dl_timer;
485
486 /*
487 * Inactive timer, responsible for decreasing the active utilization
488 * at the "0-lag time". When a -deadline task blocks, it contributes
489 * to GRUB's active utilization until the "0-lag time", hence a
490 * timer is needed to decrease the active utilization at the correct
491 * time.
492 */
493 struct hrtimer inactive_timer;
494 };
495
496 union rcu_special {
497 struct {
498 u8 blocked;
499 u8 need_qs;
500 u8 exp_need_qs;
501
502 /* Otherwise the compiler can store garbage here: */
503 u8 pad;
504 } b; /* Bits. */
505 u32 s; /* Set of bits. */
506 };
507
508 enum perf_event_task_context {
509 perf_invalid_context = -1,
510 perf_hw_context = 0,
511 perf_sw_context,
512 perf_nr_task_contexts,
513 };
514
515 struct wake_q_node {
516 struct wake_q_node *next;
517 };
518
519 struct task_struct {
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 /*
522 * For reasons of header soup (see current_thread_info()), this
523 * must be the first element of task_struct.
524 */
525 struct thread_info thread_info;
526 #endif
527 /* -1 unrunnable, 0 runnable, >0 stopped: */
528 volatile long state;
529
530 /*
531 * This begins the randomizable portion of task_struct. Only
532 * scheduling-critical items should be added above here.
533 */
534 randomized_struct_fields_start
535
536 void *stack;
537 atomic_t usage;
538 /* Per task flags (PF_*), defined further below: */
539 unsigned int flags;
540 unsigned int ptrace;
541
542 #ifdef CONFIG_SMP
543 struct llist_node wake_entry;
544 int on_cpu;
545 #ifdef CONFIG_THREAD_INFO_IN_TASK
546 /* Current CPU: */
547 unsigned int cpu;
548 #endif
549 unsigned int wakee_flips;
550 unsigned long wakee_flip_decay_ts;
551 struct task_struct *last_wakee;
552
553 int wake_cpu;
554 #endif
555 int on_rq;
556
557 int prio;
558 int static_prio;
559 int normal_prio;
560 unsigned int rt_priority;
561
562 const struct sched_class *sched_class;
563 struct sched_entity se;
564 struct sched_rt_entity rt;
565 #ifdef CONFIG_CGROUP_SCHED
566 struct task_group *sched_task_group;
567 #endif
568 struct sched_dl_entity dl;
569
570 #ifdef CONFIG_PREEMPT_NOTIFIERS
571 /* List of struct preempt_notifier: */
572 struct hlist_head preempt_notifiers;
573 #endif
574
575 #ifdef CONFIG_BLK_DEV_IO_TRACE
576 unsigned int btrace_seq;
577 #endif
578
579 unsigned int policy;
580 int nr_cpus_allowed;
581 cpumask_t cpus_allowed;
582
583 #ifdef CONFIG_PREEMPT_RCU
584 int rcu_read_lock_nesting;
585 union rcu_special rcu_read_unlock_special;
586 struct list_head rcu_node_entry;
587 struct rcu_node *rcu_blocked_node;
588 #endif /* #ifdef CONFIG_PREEMPT_RCU */
589
590 #ifdef CONFIG_TASKS_RCU
591 unsigned long rcu_tasks_nvcsw;
592 u8 rcu_tasks_holdout;
593 u8 rcu_tasks_idx;
594 int rcu_tasks_idle_cpu;
595 struct list_head rcu_tasks_holdout_list;
596 #endif /* #ifdef CONFIG_TASKS_RCU */
597
598 struct sched_info sched_info;
599
600 struct list_head tasks;
601 #ifdef CONFIG_SMP
602 struct plist_node pushable_tasks;
603 struct rb_node pushable_dl_tasks;
604 #endif
605
606 struct mm_struct *mm;
607 struct mm_struct *active_mm;
608
609 /* Per-thread vma caching: */
610 struct vmacache vmacache;
611
612 #ifdef SPLIT_RSS_COUNTING
613 struct task_rss_stat rss_stat;
614 #endif
615 int exit_state;
616 int exit_code;
617 int exit_signal;
618 /* The signal sent when the parent dies: */
619 int pdeath_signal;
620 /* JOBCTL_*, siglock protected: */
621 unsigned long jobctl;
622
623 /* Used for emulating ABI behavior of previous Linux versions: */
624 unsigned int personality;
625
626 /* Scheduler bits, serialized by scheduler locks: */
627 unsigned sched_reset_on_fork:1;
628 unsigned sched_contributes_to_load:1;
629 unsigned sched_migrated:1;
630 unsigned sched_remote_wakeup:1;
631 /* Force alignment to the next boundary: */
632 unsigned :0;
633
634 /* Unserialized, strictly 'current' */
635
636 /* Bit to tell LSMs we're in execve(): */
637 unsigned in_execve:1;
638 unsigned in_iowait:1;
639 #ifndef TIF_RESTORE_SIGMASK
640 unsigned restore_sigmask:1;
641 #endif
642 #ifdef CONFIG_MEMCG
643 unsigned memcg_may_oom:1;
644 #ifndef CONFIG_SLOB
645 unsigned memcg_kmem_skip_account:1;
646 #endif
647 #endif
648 #ifdef CONFIG_COMPAT_BRK
649 unsigned brk_randomized:1;
650 #endif
651 #ifdef CONFIG_CGROUPS
652 /* disallow userland-initiated cgroup migration */
653 unsigned no_cgroup_migration:1;
654 #endif
655
656 unsigned long atomic_flags; /* Flags requiring atomic access. */
657
658 struct restart_block restart_block;
659
660 pid_t pid;
661 pid_t tgid;
662
663 #ifdef CONFIG_CC_STACKPROTECTOR
664 /* Canary value for the -fstack-protector GCC feature: */
665 unsigned long stack_canary;
666 #endif
667 /*
668 * Pointers to the (original) parent process, youngest child, younger sibling,
669 * older sibling, respectively. (p->father can be replaced with
670 * p->real_parent->pid)
671 */
672
673 /* Real parent process: */
674 struct task_struct __rcu *real_parent;
675
676 /* Recipient of SIGCHLD, wait4() reports: */
677 struct task_struct __rcu *parent;
678
679 /*
680 * Children/sibling form the list of natural children:
681 */
682 struct list_head children;
683 struct list_head sibling;
684 struct task_struct *group_leader;
685
686 /*
687 * 'ptraced' is the list of tasks this task is using ptrace() on.
688 *
689 * This includes both natural children and PTRACE_ATTACH targets.
690 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
691 */
692 struct list_head ptraced;
693 struct list_head ptrace_entry;
694
695 /* PID/PID hash table linkage. */
696 struct pid_link pids[PIDTYPE_MAX];
697 struct list_head thread_group;
698 struct list_head thread_node;
699
700 struct completion *vfork_done;
701
702 /* CLONE_CHILD_SETTID: */
703 int __user *set_child_tid;
704
705 /* CLONE_CHILD_CLEARTID: */
706 int __user *clear_child_tid;
707
708 u64 utime;
709 u64 stime;
710 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
711 u64 utimescaled;
712 u64 stimescaled;
713 #endif
714 u64 gtime;
715 struct prev_cputime prev_cputime;
716 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
717 struct vtime vtime;
718 #endif
719
720 #ifdef CONFIG_NO_HZ_FULL
721 atomic_t tick_dep_mask;
722 #endif
723 /* Context switch counts: */
724 unsigned long nvcsw;
725 unsigned long nivcsw;
726
727 /* Monotonic time in nsecs: */
728 u64 start_time;
729
730 /* Boot based time in nsecs: */
731 u64 real_start_time;
732
733 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
734 unsigned long min_flt;
735 unsigned long maj_flt;
736
737 #ifdef CONFIG_POSIX_TIMERS
738 struct task_cputime cputime_expires;
739 struct list_head cpu_timers[3];
740 #endif
741
742 /* Process credentials: */
743
744 /* Tracer's credentials at attach: */
745 const struct cred __rcu *ptracer_cred;
746
747 /* Objective and real subjective task credentials (COW): */
748 const struct cred __rcu *real_cred;
749
750 /* Effective (overridable) subjective task credentials (COW): */
751 const struct cred __rcu *cred;
752
753 /*
754 * executable name, excluding path.
755 *
756 * - normally initialized setup_new_exec()
757 * - access it with [gs]et_task_comm()
758 * - lock it with task_lock()
759 */
760 char comm[TASK_COMM_LEN];
761
762 struct nameidata *nameidata;
763
764 #ifdef CONFIG_SYSVIPC
765 struct sysv_sem sysvsem;
766 struct sysv_shm sysvshm;
767 #endif
768 #ifdef CONFIG_DETECT_HUNG_TASK
769 unsigned long last_switch_count;
770 #endif
771 /* Filesystem information: */
772 struct fs_struct *fs;
773
774 /* Open file information: */
775 struct files_struct *files;
776
777 /* Namespaces: */
778 struct nsproxy *nsproxy;
779
780 /* Signal handlers: */
781 struct signal_struct *signal;
782 struct sighand_struct *sighand;
783 sigset_t blocked;
784 sigset_t real_blocked;
785 /* Restored if set_restore_sigmask() was used: */
786 sigset_t saved_sigmask;
787 struct sigpending pending;
788 unsigned long sas_ss_sp;
789 size_t sas_ss_size;
790 unsigned int sas_ss_flags;
791
792 struct callback_head *task_works;
793
794 struct audit_context *audit_context;
795 #ifdef CONFIG_AUDITSYSCALL
796 kuid_t loginuid;
797 unsigned int sessionid;
798 #endif
799 struct seccomp seccomp;
800
801 /* Thread group tracking: */
802 u32 parent_exec_id;
803 u32 self_exec_id;
804
805 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
806 spinlock_t alloc_lock;
807
808 /* Protection of the PI data structures: */
809 raw_spinlock_t pi_lock;
810
811 struct wake_q_node wake_q;
812
813 #ifdef CONFIG_RT_MUTEXES
814 /* PI waiters blocked on a rt_mutex held by this task: */
815 struct rb_root_cached pi_waiters;
816 /* Updated under owner's pi_lock and rq lock */
817 struct task_struct *pi_top_task;
818 /* Deadlock detection and priority inheritance handling: */
819 struct rt_mutex_waiter *pi_blocked_on;
820 #endif
821
822 #ifdef CONFIG_DEBUG_MUTEXES
823 /* Mutex deadlock detection: */
824 struct mutex_waiter *blocked_on;
825 #endif
826
827 #ifdef CONFIG_TRACE_IRQFLAGS
828 unsigned int irq_events;
829 unsigned long hardirq_enable_ip;
830 unsigned long hardirq_disable_ip;
831 unsigned int hardirq_enable_event;
832 unsigned int hardirq_disable_event;
833 int hardirqs_enabled;
834 int hardirq_context;
835 unsigned long softirq_disable_ip;
836 unsigned long softirq_enable_ip;
837 unsigned int softirq_disable_event;
838 unsigned int softirq_enable_event;
839 int softirqs_enabled;
840 int softirq_context;
841 #endif
842
843 #ifdef CONFIG_LOCKDEP
844 # define MAX_LOCK_DEPTH 48UL
845 u64 curr_chain_key;
846 int lockdep_depth;
847 unsigned int lockdep_recursion;
848 struct held_lock held_locks[MAX_LOCK_DEPTH];
849 #endif
850
851 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
852 #define MAX_XHLOCKS_NR 64UL
853 struct hist_lock *xhlocks; /* Crossrelease history locks */
854 unsigned int xhlock_idx;
855 /* For restoring at history boundaries */
856 unsigned int xhlock_idx_hist[XHLOCK_CTX_NR];
857 unsigned int hist_id;
858 /* For overwrite check at each context exit */
859 unsigned int hist_id_save[XHLOCK_CTX_NR];
860 #endif
861
862 #ifdef CONFIG_UBSAN
863 unsigned int in_ubsan;
864 #endif
865
866 /* Journalling filesystem info: */
867 void *journal_info;
868
869 /* Stacked block device info: */
870 struct bio_list *bio_list;
871
872 #ifdef CONFIG_BLOCK
873 /* Stack plugging: */
874 struct blk_plug *plug;
875 #endif
876
877 /* VM state: */
878 struct reclaim_state *reclaim_state;
879
880 struct backing_dev_info *backing_dev_info;
881
882 struct io_context *io_context;
883
884 /* Ptrace state: */
885 unsigned long ptrace_message;
886 siginfo_t *last_siginfo;
887
888 struct task_io_accounting ioac;
889 #ifdef CONFIG_TASK_XACCT
890 /* Accumulated RSS usage: */
891 u64 acct_rss_mem1;
892 /* Accumulated virtual memory usage: */
893 u64 acct_vm_mem1;
894 /* stime + utime since last update: */
895 u64 acct_timexpd;
896 #endif
897 #ifdef CONFIG_CPUSETS
898 /* Protected by ->alloc_lock: */
899 nodemask_t mems_allowed;
900 /* Seqence number to catch updates: */
901 seqcount_t mems_allowed_seq;
902 int cpuset_mem_spread_rotor;
903 int cpuset_slab_spread_rotor;
904 #endif
905 #ifdef CONFIG_CGROUPS
906 /* Control Group info protected by css_set_lock: */
907 struct css_set __rcu *cgroups;
908 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
909 struct list_head cg_list;
910 #endif
911 #ifdef CONFIG_INTEL_RDT
912 u32 closid;
913 u32 rmid;
914 #endif
915 #ifdef CONFIG_FUTEX
916 struct robust_list_head __user *robust_list;
917 #ifdef CONFIG_COMPAT
918 struct compat_robust_list_head __user *compat_robust_list;
919 #endif
920 struct list_head pi_state_list;
921 struct futex_pi_state *pi_state_cache;
922 #endif
923 #ifdef CONFIG_PERF_EVENTS
924 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
925 struct mutex perf_event_mutex;
926 struct list_head perf_event_list;
927 #endif
928 #ifdef CONFIG_DEBUG_PREEMPT
929 unsigned long preempt_disable_ip;
930 #endif
931 #ifdef CONFIG_NUMA
932 /* Protected by alloc_lock: */
933 struct mempolicy *mempolicy;
934 short il_prev;
935 short pref_node_fork;
936 #endif
937 #ifdef CONFIG_NUMA_BALANCING
938 int numa_scan_seq;
939 unsigned int numa_scan_period;
940 unsigned int numa_scan_period_max;
941 int numa_preferred_nid;
942 unsigned long numa_migrate_retry;
943 /* Migration stamp: */
944 u64 node_stamp;
945 u64 last_task_numa_placement;
946 u64 last_sum_exec_runtime;
947 struct callback_head numa_work;
948
949 struct list_head numa_entry;
950 struct numa_group *numa_group;
951
952 /*
953 * numa_faults is an array split into four regions:
954 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
955 * in this precise order.
956 *
957 * faults_memory: Exponential decaying average of faults on a per-node
958 * basis. Scheduling placement decisions are made based on these
959 * counts. The values remain static for the duration of a PTE scan.
960 * faults_cpu: Track the nodes the process was running on when a NUMA
961 * hinting fault was incurred.
962 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
963 * during the current scan window. When the scan completes, the counts
964 * in faults_memory and faults_cpu decay and these values are copied.
965 */
966 unsigned long *numa_faults;
967 unsigned long total_numa_faults;
968
969 /*
970 * numa_faults_locality tracks if faults recorded during the last
971 * scan window were remote/local or failed to migrate. The task scan
972 * period is adapted based on the locality of the faults with different
973 * weights depending on whether they were shared or private faults
974 */
975 unsigned long numa_faults_locality[3];
976
977 unsigned long numa_pages_migrated;
978 #endif /* CONFIG_NUMA_BALANCING */
979
980 struct tlbflush_unmap_batch tlb_ubc;
981
982 struct rcu_head rcu;
983
984 /* Cache last used pipe for splice(): */
985 struct pipe_inode_info *splice_pipe;
986
987 struct page_frag task_frag;
988
989 #ifdef CONFIG_TASK_DELAY_ACCT
990 struct task_delay_info *delays;
991 #endif
992
993 #ifdef CONFIG_FAULT_INJECTION
994 int make_it_fail;
995 unsigned int fail_nth;
996 #endif
997 /*
998 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
999 * balance_dirty_pages() for a dirty throttling pause:
1000 */
1001 int nr_dirtied;
1002 int nr_dirtied_pause;
1003 /* Start of a write-and-pause period: */
1004 unsigned long dirty_paused_when;
1005
1006 #ifdef CONFIG_LATENCYTOP
1007 int latency_record_count;
1008 struct latency_record latency_record[LT_SAVECOUNT];
1009 #endif
1010 /*
1011 * Time slack values; these are used to round up poll() and
1012 * select() etc timeout values. These are in nanoseconds.
1013 */
1014 u64 timer_slack_ns;
1015 u64 default_timer_slack_ns;
1016
1017 #ifdef CONFIG_KASAN
1018 unsigned int kasan_depth;
1019 #endif
1020
1021 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1022 /* Index of current stored address in ret_stack: */
1023 int curr_ret_stack;
1024
1025 /* Stack of return addresses for return function tracing: */
1026 struct ftrace_ret_stack *ret_stack;
1027
1028 /* Timestamp for last schedule: */
1029 unsigned long long ftrace_timestamp;
1030
1031 /*
1032 * Number of functions that haven't been traced
1033 * because of depth overrun:
1034 */
1035 atomic_t trace_overrun;
1036
1037 /* Pause tracing: */
1038 atomic_t tracing_graph_pause;
1039 #endif
1040
1041 #ifdef CONFIG_TRACING
1042 /* State flags for use by tracers: */
1043 unsigned long trace;
1044
1045 /* Bitmask and counter of trace recursion: */
1046 unsigned long trace_recursion;
1047 #endif /* CONFIG_TRACING */
1048
1049 #ifdef CONFIG_KCOV
1050 /* Coverage collection mode enabled for this task (0 if disabled): */
1051 enum kcov_mode kcov_mode;
1052
1053 /* Size of the kcov_area: */
1054 unsigned int kcov_size;
1055
1056 /* Buffer for coverage collection: */
1057 void *kcov_area;
1058
1059 /* KCOV descriptor wired with this task or NULL: */
1060 struct kcov *kcov;
1061 #endif
1062
1063 #ifdef CONFIG_MEMCG
1064 struct mem_cgroup *memcg_in_oom;
1065 gfp_t memcg_oom_gfp_mask;
1066 int memcg_oom_order;
1067
1068 /* Number of pages to reclaim on returning to userland: */
1069 unsigned int memcg_nr_pages_over_high;
1070 #endif
1071
1072 #ifdef CONFIG_UPROBES
1073 struct uprobe_task *utask;
1074 #endif
1075 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1076 unsigned int sequential_io;
1077 unsigned int sequential_io_avg;
1078 #endif
1079 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1080 unsigned long task_state_change;
1081 #endif
1082 int pagefault_disabled;
1083 #ifdef CONFIG_MMU
1084 struct task_struct *oom_reaper_list;
1085 #endif
1086 #ifdef CONFIG_VMAP_STACK
1087 struct vm_struct *stack_vm_area;
1088 #endif
1089 #ifdef CONFIG_THREAD_INFO_IN_TASK
1090 /* A live task holds one reference: */
1091 atomic_t stack_refcount;
1092 #endif
1093 #ifdef CONFIG_LIVEPATCH
1094 int patch_state;
1095 #endif
1096 #ifdef CONFIG_SECURITY
1097 /* Used by LSM modules for access restriction: */
1098 void *security;
1099 #endif
1100
1101 /*
1102 * New fields for task_struct should be added above here, so that
1103 * they are included in the randomized portion of task_struct.
1104 */
1105 randomized_struct_fields_end
1106
1107 /* CPU-specific state of this task: */
1108 struct thread_struct thread;
1109
1110 /*
1111 * WARNING: on x86, 'thread_struct' contains a variable-sized
1112 * structure. It *MUST* be at the end of 'task_struct'.
1113 *
1114 * Do not put anything below here!
1115 */
1116 };
1117
1118 static inline struct pid *task_pid(struct task_struct *task)
1119 {
1120 return task->pids[PIDTYPE_PID].pid;
1121 }
1122
1123 static inline struct pid *task_tgid(struct task_struct *task)
1124 {
1125 return task->group_leader->pids[PIDTYPE_PID].pid;
1126 }
1127
1128 /*
1129 * Without tasklist or RCU lock it is not safe to dereference
1130 * the result of task_pgrp/task_session even if task == current,
1131 * we can race with another thread doing sys_setsid/sys_setpgid.
1132 */
1133 static inline struct pid *task_pgrp(struct task_struct *task)
1134 {
1135 return task->group_leader->pids[PIDTYPE_PGID].pid;
1136 }
1137
1138 static inline struct pid *task_session(struct task_struct *task)
1139 {
1140 return task->group_leader->pids[PIDTYPE_SID].pid;
1141 }
1142
1143 /*
1144 * the helpers to get the task's different pids as they are seen
1145 * from various namespaces
1146 *
1147 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1148 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1149 * current.
1150 * task_xid_nr_ns() : id seen from the ns specified;
1151 *
1152 * see also pid_nr() etc in include/linux/pid.h
1153 */
1154 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1155
1156 static inline pid_t task_pid_nr(struct task_struct *tsk)
1157 {
1158 return tsk->pid;
1159 }
1160
1161 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1162 {
1163 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1164 }
1165
1166 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1167 {
1168 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1169 }
1170
1171
1172 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1173 {
1174 return tsk->tgid;
1175 }
1176
1177 /**
1178 * pid_alive - check that a task structure is not stale
1179 * @p: Task structure to be checked.
1180 *
1181 * Test if a process is not yet dead (at most zombie state)
1182 * If pid_alive fails, then pointers within the task structure
1183 * can be stale and must not be dereferenced.
1184 *
1185 * Return: 1 if the process is alive. 0 otherwise.
1186 */
1187 static inline int pid_alive(const struct task_struct *p)
1188 {
1189 return p->pids[PIDTYPE_PID].pid != NULL;
1190 }
1191
1192 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1193 {
1194 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1195 }
1196
1197 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1198 {
1199 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1200 }
1201
1202
1203 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1204 {
1205 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1206 }
1207
1208 static inline pid_t task_session_vnr(struct task_struct *tsk)
1209 {
1210 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1211 }
1212
1213 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1214 {
1215 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1216 }
1217
1218 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1219 {
1220 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1221 }
1222
1223 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1224 {
1225 pid_t pid = 0;
1226
1227 rcu_read_lock();
1228 if (pid_alive(tsk))
1229 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1230 rcu_read_unlock();
1231
1232 return pid;
1233 }
1234
1235 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1236 {
1237 return task_ppid_nr_ns(tsk, &init_pid_ns);
1238 }
1239
1240 /* Obsolete, do not use: */
1241 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1242 {
1243 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1244 }
1245
1246 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1247 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1248
1249 static inline unsigned int __get_task_state(struct task_struct *tsk)
1250 {
1251 unsigned int tsk_state = READ_ONCE(tsk->state);
1252 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1253
1254 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1255
1256 if (tsk_state == TASK_IDLE)
1257 state = TASK_REPORT_IDLE;
1258
1259 return fls(state);
1260 }
1261
1262 static inline char __task_state_to_char(unsigned int state)
1263 {
1264 static const char state_char[] = "RSDTtXZPI";
1265
1266 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1267
1268 return state_char[state];
1269 }
1270
1271 static inline char task_state_to_char(struct task_struct *tsk)
1272 {
1273 return __task_state_to_char(__get_task_state(tsk));
1274 }
1275
1276 /**
1277 * is_global_init - check if a task structure is init. Since init
1278 * is free to have sub-threads we need to check tgid.
1279 * @tsk: Task structure to be checked.
1280 *
1281 * Check if a task structure is the first user space task the kernel created.
1282 *
1283 * Return: 1 if the task structure is init. 0 otherwise.
1284 */
1285 static inline int is_global_init(struct task_struct *tsk)
1286 {
1287 return task_tgid_nr(tsk) == 1;
1288 }
1289
1290 extern struct pid *cad_pid;
1291
1292 /*
1293 * Per process flags
1294 */
1295 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1296 #define PF_EXITING 0x00000004 /* Getting shut down */
1297 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1298 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1299 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1300 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1301 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1302 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1303 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1304 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1305 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1306 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1307 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1308 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1309 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1310 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1311 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1312 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1313 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1314 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1315 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1316 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1317 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1318 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1319 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1320 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1321 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1322 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1323
1324 /*
1325 * Only the _current_ task can read/write to tsk->flags, but other
1326 * tasks can access tsk->flags in readonly mode for example
1327 * with tsk_used_math (like during threaded core dumping).
1328 * There is however an exception to this rule during ptrace
1329 * or during fork: the ptracer task is allowed to write to the
1330 * child->flags of its traced child (same goes for fork, the parent
1331 * can write to the child->flags), because we're guaranteed the
1332 * child is not running and in turn not changing child->flags
1333 * at the same time the parent does it.
1334 */
1335 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1336 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1337 #define clear_used_math() clear_stopped_child_used_math(current)
1338 #define set_used_math() set_stopped_child_used_math(current)
1339
1340 #define conditional_stopped_child_used_math(condition, child) \
1341 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1342
1343 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1344
1345 #define copy_to_stopped_child_used_math(child) \
1346 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1347
1348 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1349 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1350 #define used_math() tsk_used_math(current)
1351
1352 static inline bool is_percpu_thread(void)
1353 {
1354 #ifdef CONFIG_SMP
1355 return (current->flags & PF_NO_SETAFFINITY) &&
1356 (current->nr_cpus_allowed == 1);
1357 #else
1358 return true;
1359 #endif
1360 }
1361
1362 /* Per-process atomic flags. */
1363 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1364 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1365 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1366
1367
1368 #define TASK_PFA_TEST(name, func) \
1369 static inline bool task_##func(struct task_struct *p) \
1370 { return test_bit(PFA_##name, &p->atomic_flags); }
1371
1372 #define TASK_PFA_SET(name, func) \
1373 static inline void task_set_##func(struct task_struct *p) \
1374 { set_bit(PFA_##name, &p->atomic_flags); }
1375
1376 #define TASK_PFA_CLEAR(name, func) \
1377 static inline void task_clear_##func(struct task_struct *p) \
1378 { clear_bit(PFA_##name, &p->atomic_flags); }
1379
1380 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1381 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1382
1383 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1384 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1385 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1386
1387 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1388 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1389 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1390
1391 static inline void
1392 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1393 {
1394 current->flags &= ~flags;
1395 current->flags |= orig_flags & flags;
1396 }
1397
1398 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1399 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1400 #ifdef CONFIG_SMP
1401 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1402 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1403 #else
1404 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1405 {
1406 }
1407 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1408 {
1409 if (!cpumask_test_cpu(0, new_mask))
1410 return -EINVAL;
1411 return 0;
1412 }
1413 #endif
1414
1415 #ifndef cpu_relax_yield
1416 #define cpu_relax_yield() cpu_relax()
1417 #endif
1418
1419 extern int yield_to(struct task_struct *p, bool preempt);
1420 extern void set_user_nice(struct task_struct *p, long nice);
1421 extern int task_prio(const struct task_struct *p);
1422
1423 /**
1424 * task_nice - return the nice value of a given task.
1425 * @p: the task in question.
1426 *
1427 * Return: The nice value [ -20 ... 0 ... 19 ].
1428 */
1429 static inline int task_nice(const struct task_struct *p)
1430 {
1431 return PRIO_TO_NICE((p)->static_prio);
1432 }
1433
1434 extern int can_nice(const struct task_struct *p, const int nice);
1435 extern int task_curr(const struct task_struct *p);
1436 extern int idle_cpu(int cpu);
1437 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1438 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1439 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1440 extern struct task_struct *idle_task(int cpu);
1441
1442 /**
1443 * is_idle_task - is the specified task an idle task?
1444 * @p: the task in question.
1445 *
1446 * Return: 1 if @p is an idle task. 0 otherwise.
1447 */
1448 static inline bool is_idle_task(const struct task_struct *p)
1449 {
1450 return !!(p->flags & PF_IDLE);
1451 }
1452
1453 extern struct task_struct *curr_task(int cpu);
1454 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1455
1456 void yield(void);
1457
1458 union thread_union {
1459 #ifndef CONFIG_THREAD_INFO_IN_TASK
1460 struct thread_info thread_info;
1461 #endif
1462 unsigned long stack[THREAD_SIZE/sizeof(long)];
1463 };
1464
1465 #ifdef CONFIG_THREAD_INFO_IN_TASK
1466 static inline struct thread_info *task_thread_info(struct task_struct *task)
1467 {
1468 return &task->thread_info;
1469 }
1470 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1471 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1472 #endif
1473
1474 /*
1475 * find a task by one of its numerical ids
1476 *
1477 * find_task_by_pid_ns():
1478 * finds a task by its pid in the specified namespace
1479 * find_task_by_vpid():
1480 * finds a task by its virtual pid
1481 *
1482 * see also find_vpid() etc in include/linux/pid.h
1483 */
1484
1485 extern struct task_struct *find_task_by_vpid(pid_t nr);
1486 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1487
1488 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1489 extern int wake_up_process(struct task_struct *tsk);
1490 extern void wake_up_new_task(struct task_struct *tsk);
1491
1492 #ifdef CONFIG_SMP
1493 extern void kick_process(struct task_struct *tsk);
1494 #else
1495 static inline void kick_process(struct task_struct *tsk) { }
1496 #endif
1497
1498 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1499
1500 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1501 {
1502 __set_task_comm(tsk, from, false);
1503 }
1504
1505 extern char *get_task_comm(char *to, struct task_struct *tsk);
1506
1507 #ifdef CONFIG_SMP
1508 void scheduler_ipi(void);
1509 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1510 #else
1511 static inline void scheduler_ipi(void) { }
1512 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1513 {
1514 return 1;
1515 }
1516 #endif
1517
1518 /*
1519 * Set thread flags in other task's structures.
1520 * See asm/thread_info.h for TIF_xxxx flags available:
1521 */
1522 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1523 {
1524 set_ti_thread_flag(task_thread_info(tsk), flag);
1525 }
1526
1527 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1528 {
1529 clear_ti_thread_flag(task_thread_info(tsk), flag);
1530 }
1531
1532 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1533 {
1534 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1535 }
1536
1537 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1538 {
1539 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1540 }
1541
1542 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1543 {
1544 return test_ti_thread_flag(task_thread_info(tsk), flag);
1545 }
1546
1547 static inline void set_tsk_need_resched(struct task_struct *tsk)
1548 {
1549 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1550 }
1551
1552 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1553 {
1554 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1555 }
1556
1557 static inline int test_tsk_need_resched(struct task_struct *tsk)
1558 {
1559 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1560 }
1561
1562 /*
1563 * cond_resched() and cond_resched_lock(): latency reduction via
1564 * explicit rescheduling in places that are safe. The return
1565 * value indicates whether a reschedule was done in fact.
1566 * cond_resched_lock() will drop the spinlock before scheduling,
1567 * cond_resched_softirq() will enable bhs before scheduling.
1568 */
1569 #ifndef CONFIG_PREEMPT
1570 extern int _cond_resched(void);
1571 #else
1572 static inline int _cond_resched(void) { return 0; }
1573 #endif
1574
1575 #define cond_resched() ({ \
1576 ___might_sleep(__FILE__, __LINE__, 0); \
1577 _cond_resched(); \
1578 })
1579
1580 extern int __cond_resched_lock(spinlock_t *lock);
1581
1582 #define cond_resched_lock(lock) ({ \
1583 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1584 __cond_resched_lock(lock); \
1585 })
1586
1587 extern int __cond_resched_softirq(void);
1588
1589 #define cond_resched_softirq() ({ \
1590 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
1591 __cond_resched_softirq(); \
1592 })
1593
1594 static inline void cond_resched_rcu(void)
1595 {
1596 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1597 rcu_read_unlock();
1598 cond_resched();
1599 rcu_read_lock();
1600 #endif
1601 }
1602
1603 /*
1604 * Does a critical section need to be broken due to another
1605 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1606 * but a general need for low latency)
1607 */
1608 static inline int spin_needbreak(spinlock_t *lock)
1609 {
1610 #ifdef CONFIG_PREEMPT
1611 return spin_is_contended(lock);
1612 #else
1613 return 0;
1614 #endif
1615 }
1616
1617 static __always_inline bool need_resched(void)
1618 {
1619 return unlikely(tif_need_resched());
1620 }
1621
1622 /*
1623 * Wrappers for p->thread_info->cpu access. No-op on UP.
1624 */
1625 #ifdef CONFIG_SMP
1626
1627 static inline unsigned int task_cpu(const struct task_struct *p)
1628 {
1629 #ifdef CONFIG_THREAD_INFO_IN_TASK
1630 return p->cpu;
1631 #else
1632 return task_thread_info(p)->cpu;
1633 #endif
1634 }
1635
1636 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1637
1638 #else
1639
1640 static inline unsigned int task_cpu(const struct task_struct *p)
1641 {
1642 return 0;
1643 }
1644
1645 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1646 {
1647 }
1648
1649 #endif /* CONFIG_SMP */
1650
1651 /*
1652 * In order to reduce various lock holder preemption latencies provide an
1653 * interface to see if a vCPU is currently running or not.
1654 *
1655 * This allows us to terminate optimistic spin loops and block, analogous to
1656 * the native optimistic spin heuristic of testing if the lock owner task is
1657 * running or not.
1658 */
1659 #ifndef vcpu_is_preempted
1660 # define vcpu_is_preempted(cpu) false
1661 #endif
1662
1663 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1664 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1665
1666 #ifndef TASK_SIZE_OF
1667 #define TASK_SIZE_OF(tsk) TASK_SIZE
1668 #endif
1669
1670 #endif