53f97eb8dbc7660195f0ebc27893bf68c65cdff6
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt_mask.h>
26
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56
57 #include <asm/processor.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106
107
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110
111 extern unsigned long get_parent_ip(unsigned long addr);
112
113 extern void dump_cpu_task(int cpu);
114
115 struct seq_file;
116 struct cfs_rq;
117 struct task_group;
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
121 extern void
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123 #endif
124
125 /*
126 * Task state bitmask. NOTE! These bits are also
127 * encoded in fs/proc/array.c: get_task_state().
128 *
129 * We have two separate sets of flags: task->state
130 * is about runnability, while task->exit_state are
131 * about the task exiting. Confusing, but this way
132 * modifying one set can't modify the other one by
133 * mistake.
134 */
135 #define TASK_RUNNING 0
136 #define TASK_INTERRUPTIBLE 1
137 #define TASK_UNINTERRUPTIBLE 2
138 #define __TASK_STOPPED 4
139 #define __TASK_TRACED 8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE 16
142 #define EXIT_DEAD 32
143 /* in tsk->state again */
144 #define TASK_DEAD 64
145 #define TASK_WAKEKILL 128
146 #define TASK_WAKING 256
147 #define TASK_PARKED 512
148 #define TASK_STATE_MAX 1024
149
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152 extern char ___assert_task_state[1 - 2*!!(
153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
159
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164 /* get_task_state() */
165 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167 __TASK_TRACED)
168
169 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task) ((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task) \
173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task) \
175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176 (task->flags & PF_FROZEN) == 0)
177
178 #define __set_task_state(tsk, state_value) \
179 do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value) \
181 set_mb((tsk)->state, (state_value))
182
183 /*
184 * set_current_state() includes a barrier so that the write of current->state
185 * is correctly serialised wrt the caller's subsequent test of whether to
186 * actually sleep:
187 *
188 * set_current_state(TASK_UNINTERRUPTIBLE);
189 * if (do_i_need_to_sleep())
190 * schedule();
191 *
192 * If the caller does not need such serialisation then use __set_current_state()
193 */
194 #define __set_current_state(state_value) \
195 do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value) \
197 set_mb(current->state, (state_value))
198
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
201
202 #include <linux/spinlock.h>
203
204 /*
205 * This serializes "schedule()" and also protects
206 * the run-queue from deletions/modifications (but
207 * _adding_ to the beginning of the run-queue has
208 * a separate lock).
209 */
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
212
213 struct task_struct;
214
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
218
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
224
225 extern int runqueue_is_locked(int cpu);
226
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
231 #else
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
234 #endif
235
236 /*
237 * Only dump TASK_* tasks. (0 for all tasks)
238 */
239 extern void show_state_filter(unsigned long state_filter);
240
241 static inline void show_state(void)
242 {
243 show_state_filter(0);
244 }
245
246 extern void show_regs(struct pt_regs *);
247
248 /*
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
252 */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
262
263 extern void sched_show_task(struct task_struct *p);
264
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270 void __user *buffer,
271 size_t *lenp, loff_t *ppos);
272 extern unsigned int softlockup_panic;
273 void lockup_detector_init(void);
274 #else
275 static inline void touch_softlockup_watchdog(void)
276 {
277 }
278 static inline void touch_softlockup_watchdog_sync(void)
279 {
280 }
281 static inline void touch_all_softlockup_watchdogs(void)
282 {
283 }
284 static inline void lockup_detector_init(void)
285 {
286 }
287 #endif
288
289 #ifdef CONFIG_DETECT_HUNG_TASK
290 void reset_hung_task_detector(void);
291 #else
292 static inline void reset_hung_task_detector(void)
293 {
294 }
295 #endif
296
297 /* Attach to any functions which should be ignored in wchan output. */
298 #define __sched __attribute__((__section__(".sched.text")))
299
300 /* Linker adds these: start and end of __sched functions */
301 extern char __sched_text_start[], __sched_text_end[];
302
303 /* Is this address in the __sched functions? */
304 extern int in_sched_functions(unsigned long addr);
305
306 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
307 extern signed long schedule_timeout(signed long timeout);
308 extern signed long schedule_timeout_interruptible(signed long timeout);
309 extern signed long schedule_timeout_killable(signed long timeout);
310 extern signed long schedule_timeout_uninterruptible(signed long timeout);
311 asmlinkage void schedule(void);
312 extern void schedule_preempt_disabled(void);
313
314 struct nsproxy;
315 struct user_namespace;
316
317 #ifdef CONFIG_MMU
318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
319 extern unsigned long
320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321 unsigned long, unsigned long);
322 extern unsigned long
323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324 unsigned long len, unsigned long pgoff,
325 unsigned long flags);
326 #else
327 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
328 #endif
329
330
331 extern void set_dumpable(struct mm_struct *mm, int value);
332 extern int get_dumpable(struct mm_struct *mm);
333
334 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
335 #define SUID_DUMP_USER 1 /* Dump as user of process */
336 #define SUID_DUMP_ROOT 2 /* Dump as root */
337
338 /* mm flags */
339 /* dumpable bits */
340 #define MMF_DUMPABLE 0 /* core dump is permitted */
341 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
342
343 #define MMF_DUMPABLE_BITS 2
344 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
345
346 /* coredump filter bits */
347 #define MMF_DUMP_ANON_PRIVATE 2
348 #define MMF_DUMP_ANON_SHARED 3
349 #define MMF_DUMP_MAPPED_PRIVATE 4
350 #define MMF_DUMP_MAPPED_SHARED 5
351 #define MMF_DUMP_ELF_HEADERS 6
352 #define MMF_DUMP_HUGETLB_PRIVATE 7
353 #define MMF_DUMP_HUGETLB_SHARED 8
354
355 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
356 #define MMF_DUMP_FILTER_BITS 7
357 #define MMF_DUMP_FILTER_MASK \
358 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
359 #define MMF_DUMP_FILTER_DEFAULT \
360 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
361 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
362
363 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
364 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
365 #else
366 # define MMF_DUMP_MASK_DEFAULT_ELF 0
367 #endif
368 /* leave room for more dump flags */
369 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
370 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
371 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
372
373 #define MMF_HAS_UPROBES 19 /* has uprobes */
374 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
375
376 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
377
378 struct sighand_struct {
379 atomic_t count;
380 struct k_sigaction action[_NSIG];
381 spinlock_t siglock;
382 wait_queue_head_t signalfd_wqh;
383 };
384
385 struct pacct_struct {
386 int ac_flag;
387 long ac_exitcode;
388 unsigned long ac_mem;
389 cputime_t ac_utime, ac_stime;
390 unsigned long ac_minflt, ac_majflt;
391 };
392
393 struct cpu_itimer {
394 cputime_t expires;
395 cputime_t incr;
396 u32 error;
397 u32 incr_error;
398 };
399
400 /**
401 * struct cputime - snaphsot of system and user cputime
402 * @utime: time spent in user mode
403 * @stime: time spent in system mode
404 *
405 * Gathers a generic snapshot of user and system time.
406 */
407 struct cputime {
408 cputime_t utime;
409 cputime_t stime;
410 };
411
412 /**
413 * struct task_cputime - collected CPU time counts
414 * @utime: time spent in user mode, in &cputime_t units
415 * @stime: time spent in kernel mode, in &cputime_t units
416 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
417 *
418 * This is an extension of struct cputime that includes the total runtime
419 * spent by the task from the scheduler point of view.
420 *
421 * As a result, this structure groups together three kinds of CPU time
422 * that are tracked for threads and thread groups. Most things considering
423 * CPU time want to group these counts together and treat all three
424 * of them in parallel.
425 */
426 struct task_cputime {
427 cputime_t utime;
428 cputime_t stime;
429 unsigned long long sum_exec_runtime;
430 };
431 /* Alternate field names when used to cache expirations. */
432 #define prof_exp stime
433 #define virt_exp utime
434 #define sched_exp sum_exec_runtime
435
436 #define INIT_CPUTIME \
437 (struct task_cputime) { \
438 .utime = 0, \
439 .stime = 0, \
440 .sum_exec_runtime = 0, \
441 }
442
443 #ifdef CONFIG_PREEMPT_COUNT
444 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
445 #else
446 #define PREEMPT_DISABLED PREEMPT_ENABLED
447 #endif
448
449 /*
450 * Disable preemption until the scheduler is running.
451 * Reset by start_kernel()->sched_init()->init_idle().
452 *
453 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
454 * before the scheduler is active -- see should_resched().
455 */
456 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
457
458 /**
459 * struct thread_group_cputimer - thread group interval timer counts
460 * @cputime: thread group interval timers.
461 * @running: non-zero when there are timers running and
462 * @cputime receives updates.
463 * @lock: lock for fields in this struct.
464 *
465 * This structure contains the version of task_cputime, above, that is
466 * used for thread group CPU timer calculations.
467 */
468 struct thread_group_cputimer {
469 struct task_cputime cputime;
470 int running;
471 raw_spinlock_t lock;
472 };
473
474 #include <linux/rwsem.h>
475 struct autogroup;
476
477 /*
478 * NOTE! "signal_struct" does not have its own
479 * locking, because a shared signal_struct always
480 * implies a shared sighand_struct, so locking
481 * sighand_struct is always a proper superset of
482 * the locking of signal_struct.
483 */
484 struct signal_struct {
485 atomic_t sigcnt;
486 atomic_t live;
487 int nr_threads;
488
489 wait_queue_head_t wait_chldexit; /* for wait4() */
490
491 /* current thread group signal load-balancing target: */
492 struct task_struct *curr_target;
493
494 /* shared signal handling: */
495 struct sigpending shared_pending;
496
497 /* thread group exit support */
498 int group_exit_code;
499 /* overloaded:
500 * - notify group_exit_task when ->count is equal to notify_count
501 * - everyone except group_exit_task is stopped during signal delivery
502 * of fatal signals, group_exit_task processes the signal.
503 */
504 int notify_count;
505 struct task_struct *group_exit_task;
506
507 /* thread group stop support, overloads group_exit_code too */
508 int group_stop_count;
509 unsigned int flags; /* see SIGNAL_* flags below */
510
511 /*
512 * PR_SET_CHILD_SUBREAPER marks a process, like a service
513 * manager, to re-parent orphan (double-forking) child processes
514 * to this process instead of 'init'. The service manager is
515 * able to receive SIGCHLD signals and is able to investigate
516 * the process until it calls wait(). All children of this
517 * process will inherit a flag if they should look for a
518 * child_subreaper process at exit.
519 */
520 unsigned int is_child_subreaper:1;
521 unsigned int has_child_subreaper:1;
522
523 /* POSIX.1b Interval Timers */
524 int posix_timer_id;
525 struct list_head posix_timers;
526
527 /* ITIMER_REAL timer for the process */
528 struct hrtimer real_timer;
529 struct pid *leader_pid;
530 ktime_t it_real_incr;
531
532 /*
533 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
534 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
535 * values are defined to 0 and 1 respectively
536 */
537 struct cpu_itimer it[2];
538
539 /*
540 * Thread group totals for process CPU timers.
541 * See thread_group_cputimer(), et al, for details.
542 */
543 struct thread_group_cputimer cputimer;
544
545 /* Earliest-expiration cache. */
546 struct task_cputime cputime_expires;
547
548 struct list_head cpu_timers[3];
549
550 struct pid *tty_old_pgrp;
551
552 /* boolean value for session group leader */
553 int leader;
554
555 struct tty_struct *tty; /* NULL if no tty */
556
557 #ifdef CONFIG_SCHED_AUTOGROUP
558 struct autogroup *autogroup;
559 #endif
560 /*
561 * Cumulative resource counters for dead threads in the group,
562 * and for reaped dead child processes forked by this group.
563 * Live threads maintain their own counters and add to these
564 * in __exit_signal, except for the group leader.
565 */
566 cputime_t utime, stime, cutime, cstime;
567 cputime_t gtime;
568 cputime_t cgtime;
569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
570 struct cputime prev_cputime;
571 #endif
572 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
573 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
574 unsigned long inblock, oublock, cinblock, coublock;
575 unsigned long maxrss, cmaxrss;
576 struct task_io_accounting ioac;
577
578 /*
579 * Cumulative ns of schedule CPU time fo dead threads in the
580 * group, not including a zombie group leader, (This only differs
581 * from jiffies_to_ns(utime + stime) if sched_clock uses something
582 * other than jiffies.)
583 */
584 unsigned long long sum_sched_runtime;
585
586 /*
587 * We don't bother to synchronize most readers of this at all,
588 * because there is no reader checking a limit that actually needs
589 * to get both rlim_cur and rlim_max atomically, and either one
590 * alone is a single word that can safely be read normally.
591 * getrlimit/setrlimit use task_lock(current->group_leader) to
592 * protect this instead of the siglock, because they really
593 * have no need to disable irqs.
594 */
595 struct rlimit rlim[RLIM_NLIMITS];
596
597 #ifdef CONFIG_BSD_PROCESS_ACCT
598 struct pacct_struct pacct; /* per-process accounting information */
599 #endif
600 #ifdef CONFIG_TASKSTATS
601 struct taskstats *stats;
602 #endif
603 #ifdef CONFIG_AUDIT
604 unsigned audit_tty;
605 unsigned audit_tty_log_passwd;
606 struct tty_audit_buf *tty_audit_buf;
607 #endif
608 #ifdef CONFIG_CGROUPS
609 /*
610 * group_rwsem prevents new tasks from entering the threadgroup and
611 * member tasks from exiting,a more specifically, setting of
612 * PF_EXITING. fork and exit paths are protected with this rwsem
613 * using threadgroup_change_begin/end(). Users which require
614 * threadgroup to remain stable should use threadgroup_[un]lock()
615 * which also takes care of exec path. Currently, cgroup is the
616 * only user.
617 */
618 struct rw_semaphore group_rwsem;
619 #endif
620
621 oom_flags_t oom_flags;
622 short oom_score_adj; /* OOM kill score adjustment */
623 short oom_score_adj_min; /* OOM kill score adjustment min value.
624 * Only settable by CAP_SYS_RESOURCE. */
625
626 struct mutex cred_guard_mutex; /* guard against foreign influences on
627 * credential calculations
628 * (notably. ptrace) */
629 };
630
631 /*
632 * Bits in flags field of signal_struct.
633 */
634 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
635 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
636 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
637 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
638 /*
639 * Pending notifications to parent.
640 */
641 #define SIGNAL_CLD_STOPPED 0x00000010
642 #define SIGNAL_CLD_CONTINUED 0x00000020
643 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
644
645 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
646
647 /* If true, all threads except ->group_exit_task have pending SIGKILL */
648 static inline int signal_group_exit(const struct signal_struct *sig)
649 {
650 return (sig->flags & SIGNAL_GROUP_EXIT) ||
651 (sig->group_exit_task != NULL);
652 }
653
654 /*
655 * Some day this will be a full-fledged user tracking system..
656 */
657 struct user_struct {
658 atomic_t __count; /* reference count */
659 atomic_t processes; /* How many processes does this user have? */
660 atomic_t files; /* How many open files does this user have? */
661 atomic_t sigpending; /* How many pending signals does this user have? */
662 #ifdef CONFIG_INOTIFY_USER
663 atomic_t inotify_watches; /* How many inotify watches does this user have? */
664 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
665 #endif
666 #ifdef CONFIG_FANOTIFY
667 atomic_t fanotify_listeners;
668 #endif
669 #ifdef CONFIG_EPOLL
670 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
671 #endif
672 #ifdef CONFIG_POSIX_MQUEUE
673 /* protected by mq_lock */
674 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
675 #endif
676 unsigned long locked_shm; /* How many pages of mlocked shm ? */
677
678 #ifdef CONFIG_KEYS
679 struct key *uid_keyring; /* UID specific keyring */
680 struct key *session_keyring; /* UID's default session keyring */
681 #endif
682
683 /* Hash table maintenance information */
684 struct hlist_node uidhash_node;
685 kuid_t uid;
686
687 #ifdef CONFIG_PERF_EVENTS
688 atomic_long_t locked_vm;
689 #endif
690 };
691
692 extern int uids_sysfs_init(void);
693
694 extern struct user_struct *find_user(kuid_t);
695
696 extern struct user_struct root_user;
697 #define INIT_USER (&root_user)
698
699
700 struct backing_dev_info;
701 struct reclaim_state;
702
703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704 struct sched_info {
705 /* cumulative counters */
706 unsigned long pcount; /* # of times run on this cpu */
707 unsigned long long run_delay; /* time spent waiting on a runqueue */
708
709 /* timestamps */
710 unsigned long long last_arrival,/* when we last ran on a cpu */
711 last_queued; /* when we were last queued to run */
712 };
713 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
714
715 #ifdef CONFIG_TASK_DELAY_ACCT
716 struct task_delay_info {
717 spinlock_t lock;
718 unsigned int flags; /* Private per-task flags */
719
720 /* For each stat XXX, add following, aligned appropriately
721 *
722 * struct timespec XXX_start, XXX_end;
723 * u64 XXX_delay;
724 * u32 XXX_count;
725 *
726 * Atomicity of updates to XXX_delay, XXX_count protected by
727 * single lock above (split into XXX_lock if contention is an issue).
728 */
729
730 /*
731 * XXX_count is incremented on every XXX operation, the delay
732 * associated with the operation is added to XXX_delay.
733 * XXX_delay contains the accumulated delay time in nanoseconds.
734 */
735 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
736 u64 blkio_delay; /* wait for sync block io completion */
737 u64 swapin_delay; /* wait for swapin block io completion */
738 u32 blkio_count; /* total count of the number of sync block */
739 /* io operations performed */
740 u32 swapin_count; /* total count of the number of swapin block */
741 /* io operations performed */
742
743 struct timespec freepages_start, freepages_end;
744 u64 freepages_delay; /* wait for memory reclaim */
745 u32 freepages_count; /* total count of memory reclaim */
746 };
747 #endif /* CONFIG_TASK_DELAY_ACCT */
748
749 static inline int sched_info_on(void)
750 {
751 #ifdef CONFIG_SCHEDSTATS
752 return 1;
753 #elif defined(CONFIG_TASK_DELAY_ACCT)
754 extern int delayacct_on;
755 return delayacct_on;
756 #else
757 return 0;
758 #endif
759 }
760
761 enum cpu_idle_type {
762 CPU_IDLE,
763 CPU_NOT_IDLE,
764 CPU_NEWLY_IDLE,
765 CPU_MAX_IDLE_TYPES
766 };
767
768 /*
769 * Increase resolution of cpu_power calculations
770 */
771 #define SCHED_POWER_SHIFT 10
772 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
773
774 /*
775 * sched-domains (multiprocessor balancing) declarations:
776 */
777 #ifdef CONFIG_SMP
778 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
779 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
780 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
781 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
782 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
783 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
784 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
785 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
786 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
787 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
788 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
789 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
790 #define SD_NUMA 0x4000 /* cross-node balancing */
791
792 extern int __weak arch_sd_sibiling_asym_packing(void);
793
794 struct sched_domain_attr {
795 int relax_domain_level;
796 };
797
798 #define SD_ATTR_INIT (struct sched_domain_attr) { \
799 .relax_domain_level = -1, \
800 }
801
802 extern int sched_domain_level_max;
803
804 struct sched_group;
805
806 struct sched_domain {
807 /* These fields must be setup */
808 struct sched_domain *parent; /* top domain must be null terminated */
809 struct sched_domain *child; /* bottom domain must be null terminated */
810 struct sched_group *groups; /* the balancing groups of the domain */
811 unsigned long min_interval; /* Minimum balance interval ms */
812 unsigned long max_interval; /* Maximum balance interval ms */
813 unsigned int busy_factor; /* less balancing by factor if busy */
814 unsigned int imbalance_pct; /* No balance until over watermark */
815 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
816 unsigned int busy_idx;
817 unsigned int idle_idx;
818 unsigned int newidle_idx;
819 unsigned int wake_idx;
820 unsigned int forkexec_idx;
821 unsigned int smt_gain;
822
823 int nohz_idle; /* NOHZ IDLE status */
824 int flags; /* See SD_* */
825 int level;
826
827 /* Runtime fields. */
828 unsigned long last_balance; /* init to jiffies. units in jiffies */
829 unsigned int balance_interval; /* initialise to 1. units in ms. */
830 unsigned int nr_balance_failed; /* initialise to 0 */
831
832 /* idle_balance() stats */
833 u64 max_newidle_lb_cost;
834 unsigned long next_decay_max_lb_cost;
835
836 #ifdef CONFIG_SCHEDSTATS
837 /* load_balance() stats */
838 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
840 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
841 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
842 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
846
847 /* Active load balancing */
848 unsigned int alb_count;
849 unsigned int alb_failed;
850 unsigned int alb_pushed;
851
852 /* SD_BALANCE_EXEC stats */
853 unsigned int sbe_count;
854 unsigned int sbe_balanced;
855 unsigned int sbe_pushed;
856
857 /* SD_BALANCE_FORK stats */
858 unsigned int sbf_count;
859 unsigned int sbf_balanced;
860 unsigned int sbf_pushed;
861
862 /* try_to_wake_up() stats */
863 unsigned int ttwu_wake_remote;
864 unsigned int ttwu_move_affine;
865 unsigned int ttwu_move_balance;
866 #endif
867 #ifdef CONFIG_SCHED_DEBUG
868 char *name;
869 #endif
870 union {
871 void *private; /* used during construction */
872 struct rcu_head rcu; /* used during destruction */
873 };
874
875 unsigned int span_weight;
876 /*
877 * Span of all CPUs in this domain.
878 *
879 * NOTE: this field is variable length. (Allocated dynamically
880 * by attaching extra space to the end of the structure,
881 * depending on how many CPUs the kernel has booted up with)
882 */
883 unsigned long span[0];
884 };
885
886 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
887 {
888 return to_cpumask(sd->span);
889 }
890
891 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
892 struct sched_domain_attr *dattr_new);
893
894 /* Allocate an array of sched domains, for partition_sched_domains(). */
895 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
896 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
897
898 bool cpus_share_cache(int this_cpu, int that_cpu);
899
900 #else /* CONFIG_SMP */
901
902 struct sched_domain_attr;
903
904 static inline void
905 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
906 struct sched_domain_attr *dattr_new)
907 {
908 }
909
910 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
911 {
912 return true;
913 }
914
915 #endif /* !CONFIG_SMP */
916
917
918 struct io_context; /* See blkdev.h */
919
920
921 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
922 extern void prefetch_stack(struct task_struct *t);
923 #else
924 static inline void prefetch_stack(struct task_struct *t) { }
925 #endif
926
927 struct audit_context; /* See audit.c */
928 struct mempolicy;
929 struct pipe_inode_info;
930 struct uts_namespace;
931
932 struct load_weight {
933 unsigned long weight;
934 u32 inv_weight;
935 };
936
937 struct sched_avg {
938 /*
939 * These sums represent an infinite geometric series and so are bound
940 * above by 1024/(1-y). Thus we only need a u32 to store them for all
941 * choices of y < 1-2^(-32)*1024.
942 */
943 u32 runnable_avg_sum, runnable_avg_period;
944 u64 last_runnable_update;
945 s64 decay_count;
946 unsigned long load_avg_contrib;
947 };
948
949 #ifdef CONFIG_SCHEDSTATS
950 struct sched_statistics {
951 u64 wait_start;
952 u64 wait_max;
953 u64 wait_count;
954 u64 wait_sum;
955 u64 iowait_count;
956 u64 iowait_sum;
957
958 u64 sleep_start;
959 u64 sleep_max;
960 s64 sum_sleep_runtime;
961
962 u64 block_start;
963 u64 block_max;
964 u64 exec_max;
965 u64 slice_max;
966
967 u64 nr_migrations_cold;
968 u64 nr_failed_migrations_affine;
969 u64 nr_failed_migrations_running;
970 u64 nr_failed_migrations_hot;
971 u64 nr_forced_migrations;
972
973 u64 nr_wakeups;
974 u64 nr_wakeups_sync;
975 u64 nr_wakeups_migrate;
976 u64 nr_wakeups_local;
977 u64 nr_wakeups_remote;
978 u64 nr_wakeups_affine;
979 u64 nr_wakeups_affine_attempts;
980 u64 nr_wakeups_passive;
981 u64 nr_wakeups_idle;
982 };
983 #endif
984
985 struct sched_entity {
986 struct load_weight load; /* for load-balancing */
987 struct rb_node run_node;
988 struct list_head group_node;
989 unsigned int on_rq;
990
991 u64 exec_start;
992 u64 sum_exec_runtime;
993 u64 vruntime;
994 u64 prev_sum_exec_runtime;
995
996 u64 nr_migrations;
997
998 #ifdef CONFIG_SCHEDSTATS
999 struct sched_statistics statistics;
1000 #endif
1001
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 struct sched_entity *parent;
1004 /* rq on which this entity is (to be) queued: */
1005 struct cfs_rq *cfs_rq;
1006 /* rq "owned" by this entity/group: */
1007 struct cfs_rq *my_q;
1008 #endif
1009
1010 #ifdef CONFIG_SMP
1011 /* Per-entity load-tracking */
1012 struct sched_avg avg;
1013 #endif
1014 };
1015
1016 struct sched_rt_entity {
1017 struct list_head run_list;
1018 unsigned long timeout;
1019 unsigned long watchdog_stamp;
1020 unsigned int time_slice;
1021
1022 struct sched_rt_entity *back;
1023 #ifdef CONFIG_RT_GROUP_SCHED
1024 struct sched_rt_entity *parent;
1025 /* rq on which this entity is (to be) queued: */
1026 struct rt_rq *rt_rq;
1027 /* rq "owned" by this entity/group: */
1028 struct rt_rq *my_q;
1029 #endif
1030 };
1031
1032
1033 struct rcu_node;
1034
1035 enum perf_event_task_context {
1036 perf_invalid_context = -1,
1037 perf_hw_context = 0,
1038 perf_sw_context,
1039 perf_nr_task_contexts,
1040 };
1041
1042 struct task_struct {
1043 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1044 void *stack;
1045 atomic_t usage;
1046 unsigned int flags; /* per process flags, defined below */
1047 unsigned int ptrace;
1048
1049 #ifdef CONFIG_SMP
1050 struct llist_node wake_entry;
1051 int on_cpu;
1052 struct task_struct *last_wakee;
1053 unsigned long wakee_flips;
1054 unsigned long wakee_flip_decay_ts;
1055
1056 int wake_cpu;
1057 #endif
1058 int on_rq;
1059
1060 int prio, static_prio, normal_prio;
1061 unsigned int rt_priority;
1062 const struct sched_class *sched_class;
1063 struct sched_entity se;
1064 struct sched_rt_entity rt;
1065 #ifdef CONFIG_CGROUP_SCHED
1066 struct task_group *sched_task_group;
1067 #endif
1068
1069 #ifdef CONFIG_PREEMPT_NOTIFIERS
1070 /* list of struct preempt_notifier: */
1071 struct hlist_head preempt_notifiers;
1072 #endif
1073
1074 #ifdef CONFIG_BLK_DEV_IO_TRACE
1075 unsigned int btrace_seq;
1076 #endif
1077
1078 unsigned int policy;
1079 int nr_cpus_allowed;
1080 cpumask_t cpus_allowed;
1081
1082 #ifdef CONFIG_PREEMPT_RCU
1083 int rcu_read_lock_nesting;
1084 char rcu_read_unlock_special;
1085 struct list_head rcu_node_entry;
1086 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1087 #ifdef CONFIG_TREE_PREEMPT_RCU
1088 struct rcu_node *rcu_blocked_node;
1089 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1090 #ifdef CONFIG_RCU_BOOST
1091 struct rt_mutex *rcu_boost_mutex;
1092 #endif /* #ifdef CONFIG_RCU_BOOST */
1093
1094 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1095 struct sched_info sched_info;
1096 #endif
1097
1098 struct list_head tasks;
1099 #ifdef CONFIG_SMP
1100 struct plist_node pushable_tasks;
1101 #endif
1102
1103 struct mm_struct *mm, *active_mm;
1104 #ifdef CONFIG_COMPAT_BRK
1105 unsigned brk_randomized:1;
1106 #endif
1107 #if defined(SPLIT_RSS_COUNTING)
1108 struct task_rss_stat rss_stat;
1109 #endif
1110 /* task state */
1111 int exit_state;
1112 int exit_code, exit_signal;
1113 int pdeath_signal; /* The signal sent when the parent dies */
1114 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1115
1116 /* Used for emulating ABI behavior of previous Linux versions */
1117 unsigned int personality;
1118
1119 unsigned did_exec:1;
1120 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1121 * execve */
1122 unsigned in_iowait:1;
1123
1124 /* task may not gain privileges */
1125 unsigned no_new_privs:1;
1126
1127 /* Revert to default priority/policy when forking */
1128 unsigned sched_reset_on_fork:1;
1129 unsigned sched_contributes_to_load:1;
1130
1131 pid_t pid;
1132 pid_t tgid;
1133
1134 #ifdef CONFIG_CC_STACKPROTECTOR
1135 /* Canary value for the -fstack-protector gcc feature */
1136 unsigned long stack_canary;
1137 #endif
1138 /*
1139 * pointers to (original) parent process, youngest child, younger sibling,
1140 * older sibling, respectively. (p->father can be replaced with
1141 * p->real_parent->pid)
1142 */
1143 struct task_struct __rcu *real_parent; /* real parent process */
1144 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1145 /*
1146 * children/sibling forms the list of my natural children
1147 */
1148 struct list_head children; /* list of my children */
1149 struct list_head sibling; /* linkage in my parent's children list */
1150 struct task_struct *group_leader; /* threadgroup leader */
1151
1152 /*
1153 * ptraced is the list of tasks this task is using ptrace on.
1154 * This includes both natural children and PTRACE_ATTACH targets.
1155 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1156 */
1157 struct list_head ptraced;
1158 struct list_head ptrace_entry;
1159
1160 /* PID/PID hash table linkage. */
1161 struct pid_link pids[PIDTYPE_MAX];
1162 struct list_head thread_group;
1163
1164 struct completion *vfork_done; /* for vfork() */
1165 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1166 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1167
1168 cputime_t utime, stime, utimescaled, stimescaled;
1169 cputime_t gtime;
1170 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1171 struct cputime prev_cputime;
1172 #endif
1173 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1174 seqlock_t vtime_seqlock;
1175 unsigned long long vtime_snap;
1176 enum {
1177 VTIME_SLEEPING = 0,
1178 VTIME_USER,
1179 VTIME_SYS,
1180 } vtime_snap_whence;
1181 #endif
1182 unsigned long nvcsw, nivcsw; /* context switch counts */
1183 struct timespec start_time; /* monotonic time */
1184 struct timespec real_start_time; /* boot based time */
1185 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1186 unsigned long min_flt, maj_flt;
1187
1188 struct task_cputime cputime_expires;
1189 struct list_head cpu_timers[3];
1190
1191 /* process credentials */
1192 const struct cred __rcu *real_cred; /* objective and real subjective task
1193 * credentials (COW) */
1194 const struct cred __rcu *cred; /* effective (overridable) subjective task
1195 * credentials (COW) */
1196 char comm[TASK_COMM_LEN]; /* executable name excluding path
1197 - access with [gs]et_task_comm (which lock
1198 it with task_lock())
1199 - initialized normally by setup_new_exec */
1200 /* file system info */
1201 int link_count, total_link_count;
1202 #ifdef CONFIG_SYSVIPC
1203 /* ipc stuff */
1204 struct sysv_sem sysvsem;
1205 #endif
1206 #ifdef CONFIG_DETECT_HUNG_TASK
1207 /* hung task detection */
1208 unsigned long last_switch_count;
1209 #endif
1210 /* CPU-specific state of this task */
1211 struct thread_struct thread;
1212 /* filesystem information */
1213 struct fs_struct *fs;
1214 /* open file information */
1215 struct files_struct *files;
1216 /* namespaces */
1217 struct nsproxy *nsproxy;
1218 /* signal handlers */
1219 struct signal_struct *signal;
1220 struct sighand_struct *sighand;
1221
1222 sigset_t blocked, real_blocked;
1223 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1224 struct sigpending pending;
1225
1226 unsigned long sas_ss_sp;
1227 size_t sas_ss_size;
1228 int (*notifier)(void *priv);
1229 void *notifier_data;
1230 sigset_t *notifier_mask;
1231 struct callback_head *task_works;
1232
1233 struct audit_context *audit_context;
1234 #ifdef CONFIG_AUDITSYSCALL
1235 kuid_t loginuid;
1236 unsigned int sessionid;
1237 #endif
1238 struct seccomp seccomp;
1239
1240 /* Thread group tracking */
1241 u32 parent_exec_id;
1242 u32 self_exec_id;
1243 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1244 * mempolicy */
1245 spinlock_t alloc_lock;
1246
1247 /* Protection of the PI data structures: */
1248 raw_spinlock_t pi_lock;
1249
1250 #ifdef CONFIG_RT_MUTEXES
1251 /* PI waiters blocked on a rt_mutex held by this task */
1252 struct plist_head pi_waiters;
1253 /* Deadlock detection and priority inheritance handling */
1254 struct rt_mutex_waiter *pi_blocked_on;
1255 #endif
1256
1257 #ifdef CONFIG_DEBUG_MUTEXES
1258 /* mutex deadlock detection */
1259 struct mutex_waiter *blocked_on;
1260 #endif
1261 #ifdef CONFIG_TRACE_IRQFLAGS
1262 unsigned int irq_events;
1263 unsigned long hardirq_enable_ip;
1264 unsigned long hardirq_disable_ip;
1265 unsigned int hardirq_enable_event;
1266 unsigned int hardirq_disable_event;
1267 int hardirqs_enabled;
1268 int hardirq_context;
1269 unsigned long softirq_disable_ip;
1270 unsigned long softirq_enable_ip;
1271 unsigned int softirq_disable_event;
1272 unsigned int softirq_enable_event;
1273 int softirqs_enabled;
1274 int softirq_context;
1275 #endif
1276 #ifdef CONFIG_LOCKDEP
1277 # define MAX_LOCK_DEPTH 48UL
1278 u64 curr_chain_key;
1279 int lockdep_depth;
1280 unsigned int lockdep_recursion;
1281 struct held_lock held_locks[MAX_LOCK_DEPTH];
1282 gfp_t lockdep_reclaim_gfp;
1283 #endif
1284
1285 /* journalling filesystem info */
1286 void *journal_info;
1287
1288 /* stacked block device info */
1289 struct bio_list *bio_list;
1290
1291 #ifdef CONFIG_BLOCK
1292 /* stack plugging */
1293 struct blk_plug *plug;
1294 #endif
1295
1296 /* VM state */
1297 struct reclaim_state *reclaim_state;
1298
1299 struct backing_dev_info *backing_dev_info;
1300
1301 struct io_context *io_context;
1302
1303 unsigned long ptrace_message;
1304 siginfo_t *last_siginfo; /* For ptrace use. */
1305 struct task_io_accounting ioac;
1306 #if defined(CONFIG_TASK_XACCT)
1307 u64 acct_rss_mem1; /* accumulated rss usage */
1308 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1309 cputime_t acct_timexpd; /* stime + utime since last update */
1310 #endif
1311 #ifdef CONFIG_CPUSETS
1312 nodemask_t mems_allowed; /* Protected by alloc_lock */
1313 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1314 int cpuset_mem_spread_rotor;
1315 int cpuset_slab_spread_rotor;
1316 #endif
1317 #ifdef CONFIG_CGROUPS
1318 /* Control Group info protected by css_set_lock */
1319 struct css_set __rcu *cgroups;
1320 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1321 struct list_head cg_list;
1322 #endif
1323 #ifdef CONFIG_FUTEX
1324 struct robust_list_head __user *robust_list;
1325 #ifdef CONFIG_COMPAT
1326 struct compat_robust_list_head __user *compat_robust_list;
1327 #endif
1328 struct list_head pi_state_list;
1329 struct futex_pi_state *pi_state_cache;
1330 #endif
1331 #ifdef CONFIG_PERF_EVENTS
1332 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1333 struct mutex perf_event_mutex;
1334 struct list_head perf_event_list;
1335 #endif
1336 #ifdef CONFIG_NUMA
1337 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1338 short il_next;
1339 short pref_node_fork;
1340 #endif
1341 #ifdef CONFIG_NUMA_BALANCING
1342 int numa_scan_seq;
1343 unsigned int numa_scan_period;
1344 unsigned int numa_scan_period_max;
1345 int numa_preferred_nid;
1346 int numa_migrate_deferred;
1347 unsigned long numa_migrate_retry;
1348 u64 node_stamp; /* migration stamp */
1349 struct callback_head numa_work;
1350
1351 struct list_head numa_entry;
1352 struct numa_group *numa_group;
1353
1354 /*
1355 * Exponential decaying average of faults on a per-node basis.
1356 * Scheduling placement decisions are made based on the these counts.
1357 * The values remain static for the duration of a PTE scan
1358 */
1359 unsigned long *numa_faults;
1360 unsigned long total_numa_faults;
1361
1362 /*
1363 * numa_faults_buffer records faults per node during the current
1364 * scan window. When the scan completes, the counts in numa_faults
1365 * decay and these values are copied.
1366 */
1367 unsigned long *numa_faults_buffer;
1368
1369 /*
1370 * numa_faults_locality tracks if faults recorded during the last
1371 * scan window were remote/local. The task scan period is adapted
1372 * based on the locality of the faults with different weights
1373 * depending on whether they were shared or private faults
1374 */
1375 unsigned long numa_faults_locality[2];
1376
1377 unsigned long numa_pages_migrated;
1378 #endif /* CONFIG_NUMA_BALANCING */
1379
1380 struct rcu_head rcu;
1381
1382 /*
1383 * cache last used pipe for splice
1384 */
1385 struct pipe_inode_info *splice_pipe;
1386
1387 struct page_frag task_frag;
1388
1389 #ifdef CONFIG_TASK_DELAY_ACCT
1390 struct task_delay_info *delays;
1391 #endif
1392 #ifdef CONFIG_FAULT_INJECTION
1393 int make_it_fail;
1394 #endif
1395 /*
1396 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1397 * balance_dirty_pages() for some dirty throttling pause
1398 */
1399 int nr_dirtied;
1400 int nr_dirtied_pause;
1401 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1402
1403 #ifdef CONFIG_LATENCYTOP
1404 int latency_record_count;
1405 struct latency_record latency_record[LT_SAVECOUNT];
1406 #endif
1407 /*
1408 * time slack values; these are used to round up poll() and
1409 * select() etc timeout values. These are in nanoseconds.
1410 */
1411 unsigned long timer_slack_ns;
1412 unsigned long default_timer_slack_ns;
1413
1414 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1415 /* Index of current stored address in ret_stack */
1416 int curr_ret_stack;
1417 /* Stack of return addresses for return function tracing */
1418 struct ftrace_ret_stack *ret_stack;
1419 /* time stamp for last schedule */
1420 unsigned long long ftrace_timestamp;
1421 /*
1422 * Number of functions that haven't been traced
1423 * because of depth overrun.
1424 */
1425 atomic_t trace_overrun;
1426 /* Pause for the tracing */
1427 atomic_t tracing_graph_pause;
1428 #endif
1429 #ifdef CONFIG_TRACING
1430 /* state flags for use by tracers */
1431 unsigned long trace;
1432 /* bitmask and counter of trace recursion */
1433 unsigned long trace_recursion;
1434 #endif /* CONFIG_TRACING */
1435 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1436 struct memcg_batch_info {
1437 int do_batch; /* incremented when batch uncharge started */
1438 struct mem_cgroup *memcg; /* target memcg of uncharge */
1439 unsigned long nr_pages; /* uncharged usage */
1440 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1441 } memcg_batch;
1442 unsigned int memcg_kmem_skip_account;
1443 struct memcg_oom_info {
1444 struct mem_cgroup *memcg;
1445 gfp_t gfp_mask;
1446 int order;
1447 unsigned int may_oom:1;
1448 } memcg_oom;
1449 #endif
1450 #ifdef CONFIG_UPROBES
1451 struct uprobe_task *utask;
1452 #endif
1453 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1454 unsigned int sequential_io;
1455 unsigned int sequential_io_avg;
1456 #endif
1457 };
1458
1459 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1460 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1461
1462 #define TNF_MIGRATED 0x01
1463 #define TNF_NO_GROUP 0x02
1464 #define TNF_SHARED 0x04
1465 #define TNF_FAULT_LOCAL 0x08
1466
1467 #ifdef CONFIG_NUMA_BALANCING
1468 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1469 extern pid_t task_numa_group_id(struct task_struct *p);
1470 extern void set_numabalancing_state(bool enabled);
1471 extern void task_numa_free(struct task_struct *p);
1472
1473 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1474 #else
1475 static inline void task_numa_fault(int last_node, int node, int pages,
1476 int flags)
1477 {
1478 }
1479 static inline pid_t task_numa_group_id(struct task_struct *p)
1480 {
1481 return 0;
1482 }
1483 static inline void set_numabalancing_state(bool enabled)
1484 {
1485 }
1486 static inline void task_numa_free(struct task_struct *p)
1487 {
1488 }
1489 #endif
1490
1491 static inline struct pid *task_pid(struct task_struct *task)
1492 {
1493 return task->pids[PIDTYPE_PID].pid;
1494 }
1495
1496 static inline struct pid *task_tgid(struct task_struct *task)
1497 {
1498 return task->group_leader->pids[PIDTYPE_PID].pid;
1499 }
1500
1501 /*
1502 * Without tasklist or rcu lock it is not safe to dereference
1503 * the result of task_pgrp/task_session even if task == current,
1504 * we can race with another thread doing sys_setsid/sys_setpgid.
1505 */
1506 static inline struct pid *task_pgrp(struct task_struct *task)
1507 {
1508 return task->group_leader->pids[PIDTYPE_PGID].pid;
1509 }
1510
1511 static inline struct pid *task_session(struct task_struct *task)
1512 {
1513 return task->group_leader->pids[PIDTYPE_SID].pid;
1514 }
1515
1516 struct pid_namespace;
1517
1518 /*
1519 * the helpers to get the task's different pids as they are seen
1520 * from various namespaces
1521 *
1522 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1523 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1524 * current.
1525 * task_xid_nr_ns() : id seen from the ns specified;
1526 *
1527 * set_task_vxid() : assigns a virtual id to a task;
1528 *
1529 * see also pid_nr() etc in include/linux/pid.h
1530 */
1531 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1532 struct pid_namespace *ns);
1533
1534 static inline pid_t task_pid_nr(struct task_struct *tsk)
1535 {
1536 return tsk->pid;
1537 }
1538
1539 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1540 struct pid_namespace *ns)
1541 {
1542 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1543 }
1544
1545 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1546 {
1547 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1548 }
1549
1550
1551 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1552 {
1553 return tsk->tgid;
1554 }
1555
1556 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1557
1558 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1559 {
1560 return pid_vnr(task_tgid(tsk));
1561 }
1562
1563
1564 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1565 struct pid_namespace *ns)
1566 {
1567 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1568 }
1569
1570 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1571 {
1572 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1573 }
1574
1575
1576 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1577 struct pid_namespace *ns)
1578 {
1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1580 }
1581
1582 static inline pid_t task_session_vnr(struct task_struct *tsk)
1583 {
1584 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1585 }
1586
1587 /* obsolete, do not use */
1588 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1589 {
1590 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1591 }
1592
1593 /**
1594 * pid_alive - check that a task structure is not stale
1595 * @p: Task structure to be checked.
1596 *
1597 * Test if a process is not yet dead (at most zombie state)
1598 * If pid_alive fails, then pointers within the task structure
1599 * can be stale and must not be dereferenced.
1600 *
1601 * Return: 1 if the process is alive. 0 otherwise.
1602 */
1603 static inline int pid_alive(struct task_struct *p)
1604 {
1605 return p->pids[PIDTYPE_PID].pid != NULL;
1606 }
1607
1608 /**
1609 * is_global_init - check if a task structure is init
1610 * @tsk: Task structure to be checked.
1611 *
1612 * Check if a task structure is the first user space task the kernel created.
1613 *
1614 * Return: 1 if the task structure is init. 0 otherwise.
1615 */
1616 static inline int is_global_init(struct task_struct *tsk)
1617 {
1618 return tsk->pid == 1;
1619 }
1620
1621 extern struct pid *cad_pid;
1622
1623 extern void free_task(struct task_struct *tsk);
1624 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1625
1626 extern void __put_task_struct(struct task_struct *t);
1627
1628 static inline void put_task_struct(struct task_struct *t)
1629 {
1630 if (atomic_dec_and_test(&t->usage))
1631 __put_task_struct(t);
1632 }
1633
1634 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1635 extern void task_cputime(struct task_struct *t,
1636 cputime_t *utime, cputime_t *stime);
1637 extern void task_cputime_scaled(struct task_struct *t,
1638 cputime_t *utimescaled, cputime_t *stimescaled);
1639 extern cputime_t task_gtime(struct task_struct *t);
1640 #else
1641 static inline void task_cputime(struct task_struct *t,
1642 cputime_t *utime, cputime_t *stime)
1643 {
1644 if (utime)
1645 *utime = t->utime;
1646 if (stime)
1647 *stime = t->stime;
1648 }
1649
1650 static inline void task_cputime_scaled(struct task_struct *t,
1651 cputime_t *utimescaled,
1652 cputime_t *stimescaled)
1653 {
1654 if (utimescaled)
1655 *utimescaled = t->utimescaled;
1656 if (stimescaled)
1657 *stimescaled = t->stimescaled;
1658 }
1659
1660 static inline cputime_t task_gtime(struct task_struct *t)
1661 {
1662 return t->gtime;
1663 }
1664 #endif
1665 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1666 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1667
1668 /*
1669 * Per process flags
1670 */
1671 #define PF_EXITING 0x00000004 /* getting shut down */
1672 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1673 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1674 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1675 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1676 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1677 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1678 #define PF_DUMPCORE 0x00000200 /* dumped core */
1679 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1680 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1681 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1682 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1683 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1684 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1685 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1686 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1687 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1688 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1689 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1690 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1691 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1692 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1693 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1694 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1695 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1696 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1697 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1698 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1699 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1700 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1701
1702 /*
1703 * Only the _current_ task can read/write to tsk->flags, but other
1704 * tasks can access tsk->flags in readonly mode for example
1705 * with tsk_used_math (like during threaded core dumping).
1706 * There is however an exception to this rule during ptrace
1707 * or during fork: the ptracer task is allowed to write to the
1708 * child->flags of its traced child (same goes for fork, the parent
1709 * can write to the child->flags), because we're guaranteed the
1710 * child is not running and in turn not changing child->flags
1711 * at the same time the parent does it.
1712 */
1713 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1714 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1715 #define clear_used_math() clear_stopped_child_used_math(current)
1716 #define set_used_math() set_stopped_child_used_math(current)
1717 #define conditional_stopped_child_used_math(condition, child) \
1718 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1719 #define conditional_used_math(condition) \
1720 conditional_stopped_child_used_math(condition, current)
1721 #define copy_to_stopped_child_used_math(child) \
1722 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725 #define used_math() tsk_used_math(current)
1726
1727 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1728 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1729 {
1730 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1731 flags &= ~__GFP_IO;
1732 return flags;
1733 }
1734
1735 static inline unsigned int memalloc_noio_save(void)
1736 {
1737 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1738 current->flags |= PF_MEMALLOC_NOIO;
1739 return flags;
1740 }
1741
1742 static inline void memalloc_noio_restore(unsigned int flags)
1743 {
1744 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1745 }
1746
1747 /*
1748 * task->jobctl flags
1749 */
1750 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1751
1752 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1753 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1754 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1755 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1756 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1757 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1758 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1759
1760 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1761 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1762 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1763 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1764 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1765 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1766 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1767
1768 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1769 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1770
1771 extern bool task_set_jobctl_pending(struct task_struct *task,
1772 unsigned int mask);
1773 extern void task_clear_jobctl_trapping(struct task_struct *task);
1774 extern void task_clear_jobctl_pending(struct task_struct *task,
1775 unsigned int mask);
1776
1777 #ifdef CONFIG_PREEMPT_RCU
1778
1779 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1780 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1781
1782 static inline void rcu_copy_process(struct task_struct *p)
1783 {
1784 p->rcu_read_lock_nesting = 0;
1785 p->rcu_read_unlock_special = 0;
1786 #ifdef CONFIG_TREE_PREEMPT_RCU
1787 p->rcu_blocked_node = NULL;
1788 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1789 #ifdef CONFIG_RCU_BOOST
1790 p->rcu_boost_mutex = NULL;
1791 #endif /* #ifdef CONFIG_RCU_BOOST */
1792 INIT_LIST_HEAD(&p->rcu_node_entry);
1793 }
1794
1795 #else
1796
1797 static inline void rcu_copy_process(struct task_struct *p)
1798 {
1799 }
1800
1801 #endif
1802
1803 static inline void tsk_restore_flags(struct task_struct *task,
1804 unsigned long orig_flags, unsigned long flags)
1805 {
1806 task->flags &= ~flags;
1807 task->flags |= orig_flags & flags;
1808 }
1809
1810 #ifdef CONFIG_SMP
1811 extern void do_set_cpus_allowed(struct task_struct *p,
1812 const struct cpumask *new_mask);
1813
1814 extern int set_cpus_allowed_ptr(struct task_struct *p,
1815 const struct cpumask *new_mask);
1816 #else
1817 static inline void do_set_cpus_allowed(struct task_struct *p,
1818 const struct cpumask *new_mask)
1819 {
1820 }
1821 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1822 const struct cpumask *new_mask)
1823 {
1824 if (!cpumask_test_cpu(0, new_mask))
1825 return -EINVAL;
1826 return 0;
1827 }
1828 #endif
1829
1830 #ifdef CONFIG_NO_HZ_COMMON
1831 void calc_load_enter_idle(void);
1832 void calc_load_exit_idle(void);
1833 #else
1834 static inline void calc_load_enter_idle(void) { }
1835 static inline void calc_load_exit_idle(void) { }
1836 #endif /* CONFIG_NO_HZ_COMMON */
1837
1838 #ifndef CONFIG_CPUMASK_OFFSTACK
1839 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1840 {
1841 return set_cpus_allowed_ptr(p, &new_mask);
1842 }
1843 #endif
1844
1845 /*
1846 * Do not use outside of architecture code which knows its limitations.
1847 *
1848 * sched_clock() has no promise of monotonicity or bounded drift between
1849 * CPUs, use (which you should not) requires disabling IRQs.
1850 *
1851 * Please use one of the three interfaces below.
1852 */
1853 extern unsigned long long notrace sched_clock(void);
1854 /*
1855 * See the comment in kernel/sched/clock.c
1856 */
1857 extern u64 cpu_clock(int cpu);
1858 extern u64 local_clock(void);
1859 extern u64 sched_clock_cpu(int cpu);
1860
1861
1862 extern void sched_clock_init(void);
1863
1864 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1865 static inline void sched_clock_tick(void)
1866 {
1867 }
1868
1869 static inline void sched_clock_idle_sleep_event(void)
1870 {
1871 }
1872
1873 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1874 {
1875 }
1876 #else
1877 /*
1878 * Architectures can set this to 1 if they have specified
1879 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1880 * but then during bootup it turns out that sched_clock()
1881 * is reliable after all:
1882 */
1883 extern int sched_clock_stable;
1884
1885 extern void sched_clock_tick(void);
1886 extern void sched_clock_idle_sleep_event(void);
1887 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1888 #endif
1889
1890 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1891 /*
1892 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1893 * The reason for this explicit opt-in is not to have perf penalty with
1894 * slow sched_clocks.
1895 */
1896 extern void enable_sched_clock_irqtime(void);
1897 extern void disable_sched_clock_irqtime(void);
1898 #else
1899 static inline void enable_sched_clock_irqtime(void) {}
1900 static inline void disable_sched_clock_irqtime(void) {}
1901 #endif
1902
1903 extern unsigned long long
1904 task_sched_runtime(struct task_struct *task);
1905
1906 /* sched_exec is called by processes performing an exec */
1907 #ifdef CONFIG_SMP
1908 extern void sched_exec(void);
1909 #else
1910 #define sched_exec() {}
1911 #endif
1912
1913 extern void sched_clock_idle_sleep_event(void);
1914 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1915
1916 #ifdef CONFIG_HOTPLUG_CPU
1917 extern void idle_task_exit(void);
1918 #else
1919 static inline void idle_task_exit(void) {}
1920 #endif
1921
1922 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1923 extern void wake_up_nohz_cpu(int cpu);
1924 #else
1925 static inline void wake_up_nohz_cpu(int cpu) { }
1926 #endif
1927
1928 #ifdef CONFIG_NO_HZ_FULL
1929 extern bool sched_can_stop_tick(void);
1930 extern u64 scheduler_tick_max_deferment(void);
1931 #else
1932 static inline bool sched_can_stop_tick(void) { return false; }
1933 #endif
1934
1935 #ifdef CONFIG_SCHED_AUTOGROUP
1936 extern void sched_autogroup_create_attach(struct task_struct *p);
1937 extern void sched_autogroup_detach(struct task_struct *p);
1938 extern void sched_autogroup_fork(struct signal_struct *sig);
1939 extern void sched_autogroup_exit(struct signal_struct *sig);
1940 #ifdef CONFIG_PROC_FS
1941 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1942 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1943 #endif
1944 #else
1945 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1946 static inline void sched_autogroup_detach(struct task_struct *p) { }
1947 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1948 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1949 #endif
1950
1951 extern bool yield_to(struct task_struct *p, bool preempt);
1952 extern void set_user_nice(struct task_struct *p, long nice);
1953 extern int task_prio(const struct task_struct *p);
1954 extern int task_nice(const struct task_struct *p);
1955 extern int can_nice(const struct task_struct *p, const int nice);
1956 extern int task_curr(const struct task_struct *p);
1957 extern int idle_cpu(int cpu);
1958 extern int sched_setscheduler(struct task_struct *, int,
1959 const struct sched_param *);
1960 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1961 const struct sched_param *);
1962 extern struct task_struct *idle_task(int cpu);
1963 /**
1964 * is_idle_task - is the specified task an idle task?
1965 * @p: the task in question.
1966 *
1967 * Return: 1 if @p is an idle task. 0 otherwise.
1968 */
1969 static inline bool is_idle_task(const struct task_struct *p)
1970 {
1971 return p->pid == 0;
1972 }
1973 extern struct task_struct *curr_task(int cpu);
1974 extern void set_curr_task(int cpu, struct task_struct *p);
1975
1976 void yield(void);
1977
1978 /*
1979 * The default (Linux) execution domain.
1980 */
1981 extern struct exec_domain default_exec_domain;
1982
1983 union thread_union {
1984 struct thread_info thread_info;
1985 unsigned long stack[THREAD_SIZE/sizeof(long)];
1986 };
1987
1988 #ifndef __HAVE_ARCH_KSTACK_END
1989 static inline int kstack_end(void *addr)
1990 {
1991 /* Reliable end of stack detection:
1992 * Some APM bios versions misalign the stack
1993 */
1994 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1995 }
1996 #endif
1997
1998 extern union thread_union init_thread_union;
1999 extern struct task_struct init_task;
2000
2001 extern struct mm_struct init_mm;
2002
2003 extern struct pid_namespace init_pid_ns;
2004
2005 /*
2006 * find a task by one of its numerical ids
2007 *
2008 * find_task_by_pid_ns():
2009 * finds a task by its pid in the specified namespace
2010 * find_task_by_vpid():
2011 * finds a task by its virtual pid
2012 *
2013 * see also find_vpid() etc in include/linux/pid.h
2014 */
2015
2016 extern struct task_struct *find_task_by_vpid(pid_t nr);
2017 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2018 struct pid_namespace *ns);
2019
2020 /* per-UID process charging. */
2021 extern struct user_struct * alloc_uid(kuid_t);
2022 static inline struct user_struct *get_uid(struct user_struct *u)
2023 {
2024 atomic_inc(&u->__count);
2025 return u;
2026 }
2027 extern void free_uid(struct user_struct *);
2028
2029 #include <asm/current.h>
2030
2031 extern void xtime_update(unsigned long ticks);
2032
2033 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2034 extern int wake_up_process(struct task_struct *tsk);
2035 extern void wake_up_new_task(struct task_struct *tsk);
2036 #ifdef CONFIG_SMP
2037 extern void kick_process(struct task_struct *tsk);
2038 #else
2039 static inline void kick_process(struct task_struct *tsk) { }
2040 #endif
2041 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2042 extern void sched_dead(struct task_struct *p);
2043
2044 extern void proc_caches_init(void);
2045 extern void flush_signals(struct task_struct *);
2046 extern void __flush_signals(struct task_struct *);
2047 extern void ignore_signals(struct task_struct *);
2048 extern void flush_signal_handlers(struct task_struct *, int force_default);
2049 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2050
2051 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2052 {
2053 unsigned long flags;
2054 int ret;
2055
2056 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2057 ret = dequeue_signal(tsk, mask, info);
2058 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2059
2060 return ret;
2061 }
2062
2063 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2064 sigset_t *mask);
2065 extern void unblock_all_signals(void);
2066 extern void release_task(struct task_struct * p);
2067 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2068 extern int force_sigsegv(int, struct task_struct *);
2069 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2070 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2071 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2072 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2073 const struct cred *, u32);
2074 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2075 extern int kill_pid(struct pid *pid, int sig, int priv);
2076 extern int kill_proc_info(int, struct siginfo *, pid_t);
2077 extern __must_check bool do_notify_parent(struct task_struct *, int);
2078 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2079 extern void force_sig(int, struct task_struct *);
2080 extern int send_sig(int, struct task_struct *, int);
2081 extern int zap_other_threads(struct task_struct *p);
2082 extern struct sigqueue *sigqueue_alloc(void);
2083 extern void sigqueue_free(struct sigqueue *);
2084 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2085 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2086
2087 static inline void restore_saved_sigmask(void)
2088 {
2089 if (test_and_clear_restore_sigmask())
2090 __set_current_blocked(&current->saved_sigmask);
2091 }
2092
2093 static inline sigset_t *sigmask_to_save(void)
2094 {
2095 sigset_t *res = &current->blocked;
2096 if (unlikely(test_restore_sigmask()))
2097 res = &current->saved_sigmask;
2098 return res;
2099 }
2100
2101 static inline int kill_cad_pid(int sig, int priv)
2102 {
2103 return kill_pid(cad_pid, sig, priv);
2104 }
2105
2106 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2107 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2108 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2109 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2110
2111 /*
2112 * True if we are on the alternate signal stack.
2113 */
2114 static inline int on_sig_stack(unsigned long sp)
2115 {
2116 #ifdef CONFIG_STACK_GROWSUP
2117 return sp >= current->sas_ss_sp &&
2118 sp - current->sas_ss_sp < current->sas_ss_size;
2119 #else
2120 return sp > current->sas_ss_sp &&
2121 sp - current->sas_ss_sp <= current->sas_ss_size;
2122 #endif
2123 }
2124
2125 static inline int sas_ss_flags(unsigned long sp)
2126 {
2127 return (current->sas_ss_size == 0 ? SS_DISABLE
2128 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2129 }
2130
2131 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2132 {
2133 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2134 #ifdef CONFIG_STACK_GROWSUP
2135 return current->sas_ss_sp;
2136 #else
2137 return current->sas_ss_sp + current->sas_ss_size;
2138 #endif
2139 return sp;
2140 }
2141
2142 /*
2143 * Routines for handling mm_structs
2144 */
2145 extern struct mm_struct * mm_alloc(void);
2146
2147 /* mmdrop drops the mm and the page tables */
2148 extern void __mmdrop(struct mm_struct *);
2149 static inline void mmdrop(struct mm_struct * mm)
2150 {
2151 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2152 __mmdrop(mm);
2153 }
2154
2155 /* mmput gets rid of the mappings and all user-space */
2156 extern void mmput(struct mm_struct *);
2157 /* Grab a reference to a task's mm, if it is not already going away */
2158 extern struct mm_struct *get_task_mm(struct task_struct *task);
2159 /*
2160 * Grab a reference to a task's mm, if it is not already going away
2161 * and ptrace_may_access with the mode parameter passed to it
2162 * succeeds.
2163 */
2164 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2165 /* Remove the current tasks stale references to the old mm_struct */
2166 extern void mm_release(struct task_struct *, struct mm_struct *);
2167 /* Allocate a new mm structure and copy contents from tsk->mm */
2168 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2169
2170 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2171 struct task_struct *);
2172 extern void flush_thread(void);
2173 extern void exit_thread(void);
2174
2175 extern void exit_files(struct task_struct *);
2176 extern void __cleanup_sighand(struct sighand_struct *);
2177
2178 extern void exit_itimers(struct signal_struct *);
2179 extern void flush_itimer_signals(void);
2180
2181 extern void do_group_exit(int);
2182
2183 extern int allow_signal(int);
2184 extern int disallow_signal(int);
2185
2186 extern int do_execve(const char *,
2187 const char __user * const __user *,
2188 const char __user * const __user *);
2189 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2190 struct task_struct *fork_idle(int);
2191 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2192
2193 extern void set_task_comm(struct task_struct *tsk, char *from);
2194 extern char *get_task_comm(char *to, struct task_struct *tsk);
2195
2196 #ifdef CONFIG_SMP
2197 void scheduler_ipi(void);
2198 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2199 #else
2200 static inline void scheduler_ipi(void) { }
2201 static inline unsigned long wait_task_inactive(struct task_struct *p,
2202 long match_state)
2203 {
2204 return 1;
2205 }
2206 #endif
2207
2208 #define next_task(p) \
2209 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2210
2211 #define for_each_process(p) \
2212 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2213
2214 extern bool current_is_single_threaded(void);
2215
2216 /*
2217 * Careful: do_each_thread/while_each_thread is a double loop so
2218 * 'break' will not work as expected - use goto instead.
2219 */
2220 #define do_each_thread(g, t) \
2221 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2222
2223 #define while_each_thread(g, t) \
2224 while ((t = next_thread(t)) != g)
2225
2226 static inline int get_nr_threads(struct task_struct *tsk)
2227 {
2228 return tsk->signal->nr_threads;
2229 }
2230
2231 static inline bool thread_group_leader(struct task_struct *p)
2232 {
2233 return p->exit_signal >= 0;
2234 }
2235
2236 /* Do to the insanities of de_thread it is possible for a process
2237 * to have the pid of the thread group leader without actually being
2238 * the thread group leader. For iteration through the pids in proc
2239 * all we care about is that we have a task with the appropriate
2240 * pid, we don't actually care if we have the right task.
2241 */
2242 static inline bool has_group_leader_pid(struct task_struct *p)
2243 {
2244 return task_pid(p) == p->signal->leader_pid;
2245 }
2246
2247 static inline
2248 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2249 {
2250 return p1->signal == p2->signal;
2251 }
2252
2253 static inline struct task_struct *next_thread(const struct task_struct *p)
2254 {
2255 return list_entry_rcu(p->thread_group.next,
2256 struct task_struct, thread_group);
2257 }
2258
2259 static inline int thread_group_empty(struct task_struct *p)
2260 {
2261 return list_empty(&p->thread_group);
2262 }
2263
2264 #define delay_group_leader(p) \
2265 (thread_group_leader(p) && !thread_group_empty(p))
2266
2267 /*
2268 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2269 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2270 * pins the final release of task.io_context. Also protects ->cpuset and
2271 * ->cgroup.subsys[]. And ->vfork_done.
2272 *
2273 * Nests both inside and outside of read_lock(&tasklist_lock).
2274 * It must not be nested with write_lock_irq(&tasklist_lock),
2275 * neither inside nor outside.
2276 */
2277 static inline void task_lock(struct task_struct *p)
2278 {
2279 spin_lock(&p->alloc_lock);
2280 }
2281
2282 static inline void task_unlock(struct task_struct *p)
2283 {
2284 spin_unlock(&p->alloc_lock);
2285 }
2286
2287 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2288 unsigned long *flags);
2289
2290 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2291 unsigned long *flags)
2292 {
2293 struct sighand_struct *ret;
2294
2295 ret = __lock_task_sighand(tsk, flags);
2296 (void)__cond_lock(&tsk->sighand->siglock, ret);
2297 return ret;
2298 }
2299
2300 static inline void unlock_task_sighand(struct task_struct *tsk,
2301 unsigned long *flags)
2302 {
2303 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2304 }
2305
2306 #ifdef CONFIG_CGROUPS
2307 static inline void threadgroup_change_begin(struct task_struct *tsk)
2308 {
2309 down_read(&tsk->signal->group_rwsem);
2310 }
2311 static inline void threadgroup_change_end(struct task_struct *tsk)
2312 {
2313 up_read(&tsk->signal->group_rwsem);
2314 }
2315
2316 /**
2317 * threadgroup_lock - lock threadgroup
2318 * @tsk: member task of the threadgroup to lock
2319 *
2320 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2321 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2322 * change ->group_leader/pid. This is useful for cases where the threadgroup
2323 * needs to stay stable across blockable operations.
2324 *
2325 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2326 * synchronization. While held, no new task will be added to threadgroup
2327 * and no existing live task will have its PF_EXITING set.
2328 *
2329 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2330 * sub-thread becomes a new leader.
2331 */
2332 static inline void threadgroup_lock(struct task_struct *tsk)
2333 {
2334 down_write(&tsk->signal->group_rwsem);
2335 }
2336
2337 /**
2338 * threadgroup_unlock - unlock threadgroup
2339 * @tsk: member task of the threadgroup to unlock
2340 *
2341 * Reverse threadgroup_lock().
2342 */
2343 static inline void threadgroup_unlock(struct task_struct *tsk)
2344 {
2345 up_write(&tsk->signal->group_rwsem);
2346 }
2347 #else
2348 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2349 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2350 static inline void threadgroup_lock(struct task_struct *tsk) {}
2351 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2352 #endif
2353
2354 #ifndef __HAVE_THREAD_FUNCTIONS
2355
2356 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2357 #define task_stack_page(task) ((task)->stack)
2358
2359 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2360 {
2361 *task_thread_info(p) = *task_thread_info(org);
2362 task_thread_info(p)->task = p;
2363 }
2364
2365 static inline unsigned long *end_of_stack(struct task_struct *p)
2366 {
2367 return (unsigned long *)(task_thread_info(p) + 1);
2368 }
2369
2370 #endif
2371
2372 static inline int object_is_on_stack(void *obj)
2373 {
2374 void *stack = task_stack_page(current);
2375
2376 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2377 }
2378
2379 extern void thread_info_cache_init(void);
2380
2381 #ifdef CONFIG_DEBUG_STACK_USAGE
2382 static inline unsigned long stack_not_used(struct task_struct *p)
2383 {
2384 unsigned long *n = end_of_stack(p);
2385
2386 do { /* Skip over canary */
2387 n++;
2388 } while (!*n);
2389
2390 return (unsigned long)n - (unsigned long)end_of_stack(p);
2391 }
2392 #endif
2393
2394 /* set thread flags in other task's structures
2395 * - see asm/thread_info.h for TIF_xxxx flags available
2396 */
2397 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2398 {
2399 set_ti_thread_flag(task_thread_info(tsk), flag);
2400 }
2401
2402 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2403 {
2404 clear_ti_thread_flag(task_thread_info(tsk), flag);
2405 }
2406
2407 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2408 {
2409 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2410 }
2411
2412 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2413 {
2414 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2415 }
2416
2417 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2418 {
2419 return test_ti_thread_flag(task_thread_info(tsk), flag);
2420 }
2421
2422 static inline void set_tsk_need_resched(struct task_struct *tsk)
2423 {
2424 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2425 }
2426
2427 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2428 {
2429 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2430 }
2431
2432 static inline int test_tsk_need_resched(struct task_struct *tsk)
2433 {
2434 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2435 }
2436
2437 static inline int restart_syscall(void)
2438 {
2439 set_tsk_thread_flag(current, TIF_SIGPENDING);
2440 return -ERESTARTNOINTR;
2441 }
2442
2443 static inline int signal_pending(struct task_struct *p)
2444 {
2445 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2446 }
2447
2448 static inline int __fatal_signal_pending(struct task_struct *p)
2449 {
2450 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2451 }
2452
2453 static inline int fatal_signal_pending(struct task_struct *p)
2454 {
2455 return signal_pending(p) && __fatal_signal_pending(p);
2456 }
2457
2458 static inline int signal_pending_state(long state, struct task_struct *p)
2459 {
2460 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2461 return 0;
2462 if (!signal_pending(p))
2463 return 0;
2464
2465 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2466 }
2467
2468 /*
2469 * cond_resched() and cond_resched_lock(): latency reduction via
2470 * explicit rescheduling in places that are safe. The return
2471 * value indicates whether a reschedule was done in fact.
2472 * cond_resched_lock() will drop the spinlock before scheduling,
2473 * cond_resched_softirq() will enable bhs before scheduling.
2474 */
2475 extern int _cond_resched(void);
2476
2477 #define cond_resched() ({ \
2478 __might_sleep(__FILE__, __LINE__, 0); \
2479 _cond_resched(); \
2480 })
2481
2482 extern int __cond_resched_lock(spinlock_t *lock);
2483
2484 #ifdef CONFIG_PREEMPT_COUNT
2485 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2486 #else
2487 #define PREEMPT_LOCK_OFFSET 0
2488 #endif
2489
2490 #define cond_resched_lock(lock) ({ \
2491 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2492 __cond_resched_lock(lock); \
2493 })
2494
2495 extern int __cond_resched_softirq(void);
2496
2497 #define cond_resched_softirq() ({ \
2498 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2499 __cond_resched_softirq(); \
2500 })
2501
2502 static inline void cond_resched_rcu(void)
2503 {
2504 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2505 rcu_read_unlock();
2506 cond_resched();
2507 rcu_read_lock();
2508 #endif
2509 }
2510
2511 /*
2512 * Does a critical section need to be broken due to another
2513 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2514 * but a general need for low latency)
2515 */
2516 static inline int spin_needbreak(spinlock_t *lock)
2517 {
2518 #ifdef CONFIG_PREEMPT
2519 return spin_is_contended(lock);
2520 #else
2521 return 0;
2522 #endif
2523 }
2524
2525 /*
2526 * Idle thread specific functions to determine the need_resched
2527 * polling state. We have two versions, one based on TS_POLLING in
2528 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2529 * thread_info.flags
2530 */
2531 #ifdef TS_POLLING
2532 static inline int tsk_is_polling(struct task_struct *p)
2533 {
2534 return task_thread_info(p)->status & TS_POLLING;
2535 }
2536 static inline void __current_set_polling(void)
2537 {
2538 current_thread_info()->status |= TS_POLLING;
2539 }
2540
2541 static inline bool __must_check current_set_polling_and_test(void)
2542 {
2543 __current_set_polling();
2544
2545 /*
2546 * Polling state must be visible before we test NEED_RESCHED,
2547 * paired by resched_task()
2548 */
2549 smp_mb();
2550
2551 return unlikely(tif_need_resched());
2552 }
2553
2554 static inline void __current_clr_polling(void)
2555 {
2556 current_thread_info()->status &= ~TS_POLLING;
2557 }
2558
2559 static inline bool __must_check current_clr_polling_and_test(void)
2560 {
2561 __current_clr_polling();
2562
2563 /*
2564 * Polling state must be visible before we test NEED_RESCHED,
2565 * paired by resched_task()
2566 */
2567 smp_mb();
2568
2569 return unlikely(tif_need_resched());
2570 }
2571 #elif defined(TIF_POLLING_NRFLAG)
2572 static inline int tsk_is_polling(struct task_struct *p)
2573 {
2574 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2575 }
2576
2577 static inline void __current_set_polling(void)
2578 {
2579 set_thread_flag(TIF_POLLING_NRFLAG);
2580 }
2581
2582 static inline bool __must_check current_set_polling_and_test(void)
2583 {
2584 __current_set_polling();
2585
2586 /*
2587 * Polling state must be visible before we test NEED_RESCHED,
2588 * paired by resched_task()
2589 *
2590 * XXX: assumes set/clear bit are identical barrier wise.
2591 */
2592 smp_mb__after_clear_bit();
2593
2594 return unlikely(tif_need_resched());
2595 }
2596
2597 static inline void __current_clr_polling(void)
2598 {
2599 clear_thread_flag(TIF_POLLING_NRFLAG);
2600 }
2601
2602 static inline bool __must_check current_clr_polling_and_test(void)
2603 {
2604 __current_clr_polling();
2605
2606 /*
2607 * Polling state must be visible before we test NEED_RESCHED,
2608 * paired by resched_task()
2609 */
2610 smp_mb__after_clear_bit();
2611
2612 return unlikely(tif_need_resched());
2613 }
2614
2615 #else
2616 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2617 static inline void __current_set_polling(void) { }
2618 static inline void __current_clr_polling(void) { }
2619
2620 static inline bool __must_check current_set_polling_and_test(void)
2621 {
2622 return unlikely(tif_need_resched());
2623 }
2624 static inline bool __must_check current_clr_polling_and_test(void)
2625 {
2626 return unlikely(tif_need_resched());
2627 }
2628 #endif
2629
2630 static __always_inline bool need_resched(void)
2631 {
2632 return unlikely(tif_need_resched());
2633 }
2634
2635 /*
2636 * Thread group CPU time accounting.
2637 */
2638 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2639 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2640
2641 static inline void thread_group_cputime_init(struct signal_struct *sig)
2642 {
2643 raw_spin_lock_init(&sig->cputimer.lock);
2644 }
2645
2646 /*
2647 * Reevaluate whether the task has signals pending delivery.
2648 * Wake the task if so.
2649 * This is required every time the blocked sigset_t changes.
2650 * callers must hold sighand->siglock.
2651 */
2652 extern void recalc_sigpending_and_wake(struct task_struct *t);
2653 extern void recalc_sigpending(void);
2654
2655 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2656
2657 static inline void signal_wake_up(struct task_struct *t, bool resume)
2658 {
2659 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2660 }
2661 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2662 {
2663 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2664 }
2665
2666 /*
2667 * Wrappers for p->thread_info->cpu access. No-op on UP.
2668 */
2669 #ifdef CONFIG_SMP
2670
2671 static inline unsigned int task_cpu(const struct task_struct *p)
2672 {
2673 return task_thread_info(p)->cpu;
2674 }
2675
2676 static inline int task_node(const struct task_struct *p)
2677 {
2678 return cpu_to_node(task_cpu(p));
2679 }
2680
2681 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2682
2683 #else
2684
2685 static inline unsigned int task_cpu(const struct task_struct *p)
2686 {
2687 return 0;
2688 }
2689
2690 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2691 {
2692 }
2693
2694 #endif /* CONFIG_SMP */
2695
2696 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2697 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2698
2699 #ifdef CONFIG_CGROUP_SCHED
2700 extern struct task_group root_task_group;
2701 #endif /* CONFIG_CGROUP_SCHED */
2702
2703 extern int task_can_switch_user(struct user_struct *up,
2704 struct task_struct *tsk);
2705
2706 #ifdef CONFIG_TASK_XACCT
2707 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2708 {
2709 tsk->ioac.rchar += amt;
2710 }
2711
2712 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2713 {
2714 tsk->ioac.wchar += amt;
2715 }
2716
2717 static inline void inc_syscr(struct task_struct *tsk)
2718 {
2719 tsk->ioac.syscr++;
2720 }
2721
2722 static inline void inc_syscw(struct task_struct *tsk)
2723 {
2724 tsk->ioac.syscw++;
2725 }
2726 #else
2727 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2728 {
2729 }
2730
2731 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2732 {
2733 }
2734
2735 static inline void inc_syscr(struct task_struct *tsk)
2736 {
2737 }
2738
2739 static inline void inc_syscw(struct task_struct *tsk)
2740 {
2741 }
2742 #endif
2743
2744 #ifndef TASK_SIZE_OF
2745 #define TASK_SIZE_OF(tsk) TASK_SIZE
2746 #endif
2747
2748 #ifdef CONFIG_MM_OWNER
2749 extern void mm_update_next_owner(struct mm_struct *mm);
2750 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2751 #else
2752 static inline void mm_update_next_owner(struct mm_struct *mm)
2753 {
2754 }
2755
2756 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2757 {
2758 }
2759 #endif /* CONFIG_MM_OWNER */
2760
2761 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2762 unsigned int limit)
2763 {
2764 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2765 }
2766
2767 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2768 unsigned int limit)
2769 {
2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2771 }
2772
2773 static inline unsigned long rlimit(unsigned int limit)
2774 {
2775 return task_rlimit(current, limit);
2776 }
2777
2778 static inline unsigned long rlimit_max(unsigned int limit)
2779 {
2780 return task_rlimit_max(current, limit);
2781 }
2782
2783 #endif