Merge branch 'pm-qos'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57 #else
58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71
72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77 /* Exported common interfaces */
78
79 #ifdef CONFIG_PREEMPT_RCU
80
81 /**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 */
94 extern void call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *head));
96
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define call_rcu call_rcu_sched
101
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103
104 /**
105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106 * @head: structure to be used for queueing the RCU updates.
107 * @func: actual callback function to be invoked after the grace period
108 *
109 * The callback function will be invoked some time after a full grace
110 * period elapses, in other words after all currently executing RCU
111 * read-side critical sections have completed. call_rcu_bh() assumes
112 * that the read-side critical sections end on completion of a softirq
113 * handler. This means that read-side critical sections in process
114 * context must not be interrupted by softirqs. This interface is to be
115 * used when most of the read-side critical sections are in softirq context.
116 * RCU read-side critical sections are delimited by :
117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
118 * OR
119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120 * These may be nested.
121 */
122 extern void call_rcu_bh(struct rcu_head *head,
123 void (*func)(struct rcu_head *head));
124
125 /**
126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127 * @head: structure to be used for queueing the RCU updates.
128 * @func: actual callback function to be invoked after the grace period
129 *
130 * The callback function will be invoked some time after a full grace
131 * period elapses, in other words after all currently executing RCU
132 * read-side critical sections have completed. call_rcu_sched() assumes
133 * that the read-side critical sections end on enabling of preemption
134 * or on voluntary preemption.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
137 * OR
138 * anything that disables preemption.
139 * These may be nested.
140 */
141 extern void call_rcu_sched(struct rcu_head *head,
142 void (*func)(struct rcu_head *rcu));
143
144 extern void synchronize_sched(void);
145
146 #ifdef CONFIG_PREEMPT_RCU
147
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 void synchronize_rcu(void);
151
152 /*
153 * Defined as a macro as it is a very low level header included from
154 * areas that don't even know about current. This gives the rcu_read_lock()
155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
157 */
158 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
159
160 #else /* #ifdef CONFIG_PREEMPT_RCU */
161
162 static inline void __rcu_read_lock(void)
163 {
164 preempt_disable();
165 }
166
167 static inline void __rcu_read_unlock(void)
168 {
169 preempt_enable();
170 }
171
172 static inline void synchronize_rcu(void)
173 {
174 synchronize_sched();
175 }
176
177 static inline int rcu_preempt_depth(void)
178 {
179 return 0;
180 }
181
182 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
183
184 /* Internal to kernel */
185 extern void rcu_sched_qs(int cpu);
186 extern void rcu_bh_qs(int cpu);
187 extern void rcu_check_callbacks(int cpu, int user);
188 struct notifier_block;
189 extern void rcu_idle_enter(void);
190 extern void rcu_idle_exit(void);
191 extern void rcu_irq_enter(void);
192 extern void rcu_irq_exit(void);
193 extern void exit_rcu(void);
194
195 /**
196 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
197 * @a: Code that RCU needs to pay attention to.
198 *
199 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
200 * in the inner idle loop, that is, between the rcu_idle_enter() and
201 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
202 * critical sections. However, things like powertop need tracepoints
203 * in the inner idle loop.
204 *
205 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
206 * will tell RCU that it needs to pay attending, invoke its argument
207 * (in this example, a call to the do_something_with_RCU() function),
208 * and then tell RCU to go back to ignoring this CPU. It is permissible
209 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
210 * quite limited. If deeper nesting is required, it will be necessary
211 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
212 *
213 * This macro may be used from process-level code only.
214 */
215 #define RCU_NONIDLE(a) \
216 do { \
217 rcu_idle_exit(); \
218 do { a; } while (0); \
219 rcu_idle_enter(); \
220 } while (0)
221
222 /*
223 * Infrastructure to implement the synchronize_() primitives in
224 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
225 */
226
227 typedef void call_rcu_func_t(struct rcu_head *head,
228 void (*func)(struct rcu_head *head));
229 void wait_rcu_gp(call_rcu_func_t crf);
230
231 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
232 #include <linux/rcutree.h>
233 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
234 #include <linux/rcutiny.h>
235 #else
236 #error "Unknown RCU implementation specified to kernel configuration"
237 #endif
238
239 /*
240 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
241 * initialization and destruction of rcu_head on the stack. rcu_head structures
242 * allocated dynamically in the heap or defined statically don't need any
243 * initialization.
244 */
245 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
246 extern void init_rcu_head_on_stack(struct rcu_head *head);
247 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
248 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
249 static inline void init_rcu_head_on_stack(struct rcu_head *head)
250 {
251 }
252
253 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
254 {
255 }
256 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
257
258 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
259 bool rcu_lockdep_current_cpu_online(void);
260 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
261 static inline bool rcu_lockdep_current_cpu_online(void)
262 {
263 return 1;
264 }
265 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
266
267 #ifdef CONFIG_DEBUG_LOCK_ALLOC
268
269 #ifdef CONFIG_PROVE_RCU
270 extern int rcu_is_cpu_idle(void);
271 #else /* !CONFIG_PROVE_RCU */
272 static inline int rcu_is_cpu_idle(void)
273 {
274 return 0;
275 }
276 #endif /* else !CONFIG_PROVE_RCU */
277
278 static inline void rcu_lock_acquire(struct lockdep_map *map)
279 {
280 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
281 }
282
283 static inline void rcu_lock_release(struct lockdep_map *map)
284 {
285 lock_release(map, 1, _THIS_IP_);
286 }
287
288 extern struct lockdep_map rcu_lock_map;
289 extern struct lockdep_map rcu_bh_lock_map;
290 extern struct lockdep_map rcu_sched_lock_map;
291 extern int debug_lockdep_rcu_enabled(void);
292
293 /**
294 * rcu_read_lock_held() - might we be in RCU read-side critical section?
295 *
296 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
297 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
298 * this assumes we are in an RCU read-side critical section unless it can
299 * prove otherwise. This is useful for debug checks in functions that
300 * require that they be called within an RCU read-side critical section.
301 *
302 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
303 * and while lockdep is disabled.
304 *
305 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
306 * occur in the same context, for example, it is illegal to invoke
307 * rcu_read_unlock() in process context if the matching rcu_read_lock()
308 * was invoked from within an irq handler.
309 *
310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
311 * offline from an RCU perspective, so check for those as well.
312 */
313 static inline int rcu_read_lock_held(void)
314 {
315 if (!debug_lockdep_rcu_enabled())
316 return 1;
317 if (rcu_is_cpu_idle())
318 return 0;
319 if (!rcu_lockdep_current_cpu_online())
320 return 0;
321 return lock_is_held(&rcu_lock_map);
322 }
323
324 /*
325 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
326 * hell.
327 */
328 extern int rcu_read_lock_bh_held(void);
329
330 /**
331 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
332 *
333 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
334 * RCU-sched read-side critical section. In absence of
335 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
336 * critical section unless it can prove otherwise. Note that disabling
337 * of preemption (including disabling irqs) counts as an RCU-sched
338 * read-side critical section. This is useful for debug checks in functions
339 * that required that they be called within an RCU-sched read-side
340 * critical section.
341 *
342 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
343 * and while lockdep is disabled.
344 *
345 * Note that if the CPU is in the idle loop from an RCU point of
346 * view (ie: that we are in the section between rcu_idle_enter() and
347 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
348 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
349 * that are in such a section, considering these as in extended quiescent
350 * state, so such a CPU is effectively never in an RCU read-side critical
351 * section regardless of what RCU primitives it invokes. This state of
352 * affairs is required --- we need to keep an RCU-free window in idle
353 * where the CPU may possibly enter into low power mode. This way we can
354 * notice an extended quiescent state to other CPUs that started a grace
355 * period. Otherwise we would delay any grace period as long as we run in
356 * the idle task.
357 *
358 * Similarly, we avoid claiming an SRCU read lock held if the current
359 * CPU is offline.
360 */
361 #ifdef CONFIG_PREEMPT_COUNT
362 static inline int rcu_read_lock_sched_held(void)
363 {
364 int lockdep_opinion = 0;
365
366 if (!debug_lockdep_rcu_enabled())
367 return 1;
368 if (rcu_is_cpu_idle())
369 return 0;
370 if (!rcu_lockdep_current_cpu_online())
371 return 0;
372 if (debug_locks)
373 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
374 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
375 }
376 #else /* #ifdef CONFIG_PREEMPT_COUNT */
377 static inline int rcu_read_lock_sched_held(void)
378 {
379 return 1;
380 }
381 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
382
383 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
384
385 # define rcu_lock_acquire(a) do { } while (0)
386 # define rcu_lock_release(a) do { } while (0)
387
388 static inline int rcu_read_lock_held(void)
389 {
390 return 1;
391 }
392
393 static inline int rcu_read_lock_bh_held(void)
394 {
395 return 1;
396 }
397
398 #ifdef CONFIG_PREEMPT_COUNT
399 static inline int rcu_read_lock_sched_held(void)
400 {
401 return preempt_count() != 0 || irqs_disabled();
402 }
403 #else /* #ifdef CONFIG_PREEMPT_COUNT */
404 static inline int rcu_read_lock_sched_held(void)
405 {
406 return 1;
407 }
408 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
409
410 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
411
412 #ifdef CONFIG_PROVE_RCU
413
414 extern int rcu_my_thread_group_empty(void);
415
416 /**
417 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
418 * @c: condition to check
419 * @s: informative message
420 */
421 #define rcu_lockdep_assert(c, s) \
422 do { \
423 static bool __section(.data.unlikely) __warned; \
424 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
425 __warned = true; \
426 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
427 } \
428 } while (0)
429
430 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
431 static inline void rcu_preempt_sleep_check(void)
432 {
433 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
434 "Illegal context switch in RCU read-side "
435 "critical section");
436 }
437 #else /* #ifdef CONFIG_PROVE_RCU */
438 static inline void rcu_preempt_sleep_check(void)
439 {
440 }
441 #endif /* #else #ifdef CONFIG_PROVE_RCU */
442
443 #define rcu_sleep_check() \
444 do { \
445 rcu_preempt_sleep_check(); \
446 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
447 "Illegal context switch in RCU-bh" \
448 " read-side critical section"); \
449 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
450 "Illegal context switch in RCU-sched"\
451 " read-side critical section"); \
452 } while (0)
453
454 #else /* #ifdef CONFIG_PROVE_RCU */
455
456 #define rcu_lockdep_assert(c, s) do { } while (0)
457 #define rcu_sleep_check() do { } while (0)
458
459 #endif /* #else #ifdef CONFIG_PROVE_RCU */
460
461 /*
462 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
463 * and rcu_assign_pointer(). Some of these could be folded into their
464 * callers, but they are left separate in order to ease introduction of
465 * multiple flavors of pointers to match the multiple flavors of RCU
466 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
467 * the future.
468 */
469
470 #ifdef __CHECKER__
471 #define rcu_dereference_sparse(p, space) \
472 ((void)(((typeof(*p) space *)p) == p))
473 #else /* #ifdef __CHECKER__ */
474 #define rcu_dereference_sparse(p, space)
475 #endif /* #else #ifdef __CHECKER__ */
476
477 #define __rcu_access_pointer(p, space) \
478 ({ \
479 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
480 rcu_dereference_sparse(p, space); \
481 ((typeof(*p) __force __kernel *)(_________p1)); \
482 })
483 #define __rcu_dereference_check(p, c, space) \
484 ({ \
485 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
486 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
487 " usage"); \
488 rcu_dereference_sparse(p, space); \
489 smp_read_barrier_depends(); \
490 ((typeof(*p) __force __kernel *)(_________p1)); \
491 })
492 #define __rcu_dereference_protected(p, c, space) \
493 ({ \
494 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
495 " usage"); \
496 rcu_dereference_sparse(p, space); \
497 ((typeof(*p) __force __kernel *)(p)); \
498 })
499
500 #define __rcu_access_index(p, space) \
501 ({ \
502 typeof(p) _________p1 = ACCESS_ONCE(p); \
503 rcu_dereference_sparse(p, space); \
504 (_________p1); \
505 })
506 #define __rcu_dereference_index_check(p, c) \
507 ({ \
508 typeof(p) _________p1 = ACCESS_ONCE(p); \
509 rcu_lockdep_assert(c, \
510 "suspicious rcu_dereference_index_check()" \
511 " usage"); \
512 smp_read_barrier_depends(); \
513 (_________p1); \
514 })
515 #define __rcu_assign_pointer(p, v, space) \
516 ({ \
517 smp_wmb(); \
518 (p) = (typeof(*v) __force space *)(v); \
519 })
520
521
522 /**
523 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
524 * @p: The pointer to read
525 *
526 * Return the value of the specified RCU-protected pointer, but omit the
527 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
528 * when the value of this pointer is accessed, but the pointer is not
529 * dereferenced, for example, when testing an RCU-protected pointer against
530 * NULL. Although rcu_access_pointer() may also be used in cases where
531 * update-side locks prevent the value of the pointer from changing, you
532 * should instead use rcu_dereference_protected() for this use case.
533 *
534 * It is also permissible to use rcu_access_pointer() when read-side
535 * access to the pointer was removed at least one grace period ago, as
536 * is the case in the context of the RCU callback that is freeing up
537 * the data, or after a synchronize_rcu() returns. This can be useful
538 * when tearing down multi-linked structures after a grace period
539 * has elapsed.
540 */
541 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
542
543 /**
544 * rcu_dereference_check() - rcu_dereference with debug checking
545 * @p: The pointer to read, prior to dereferencing
546 * @c: The conditions under which the dereference will take place
547 *
548 * Do an rcu_dereference(), but check that the conditions under which the
549 * dereference will take place are correct. Typically the conditions
550 * indicate the various locking conditions that should be held at that
551 * point. The check should return true if the conditions are satisfied.
552 * An implicit check for being in an RCU read-side critical section
553 * (rcu_read_lock()) is included.
554 *
555 * For example:
556 *
557 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
558 *
559 * could be used to indicate to lockdep that foo->bar may only be dereferenced
560 * if either rcu_read_lock() is held, or that the lock required to replace
561 * the bar struct at foo->bar is held.
562 *
563 * Note that the list of conditions may also include indications of when a lock
564 * need not be held, for example during initialisation or destruction of the
565 * target struct:
566 *
567 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
568 * atomic_read(&foo->usage) == 0);
569 *
570 * Inserts memory barriers on architectures that require them
571 * (currently only the Alpha), prevents the compiler from refetching
572 * (and from merging fetches), and, more importantly, documents exactly
573 * which pointers are protected by RCU and checks that the pointer is
574 * annotated as __rcu.
575 */
576 #define rcu_dereference_check(p, c) \
577 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
578
579 /**
580 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
581 * @p: The pointer to read, prior to dereferencing
582 * @c: The conditions under which the dereference will take place
583 *
584 * This is the RCU-bh counterpart to rcu_dereference_check().
585 */
586 #define rcu_dereference_bh_check(p, c) \
587 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
588
589 /**
590 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
591 * @p: The pointer to read, prior to dereferencing
592 * @c: The conditions under which the dereference will take place
593 *
594 * This is the RCU-sched counterpart to rcu_dereference_check().
595 */
596 #define rcu_dereference_sched_check(p, c) \
597 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
598 __rcu)
599
600 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
601
602 /**
603 * rcu_access_index() - fetch RCU index with no dereferencing
604 * @p: The index to read
605 *
606 * Return the value of the specified RCU-protected index, but omit the
607 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
608 * when the value of this index is accessed, but the index is not
609 * dereferenced, for example, when testing an RCU-protected index against
610 * -1. Although rcu_access_index() may also be used in cases where
611 * update-side locks prevent the value of the index from changing, you
612 * should instead use rcu_dereference_index_protected() for this use case.
613 */
614 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
615
616 /**
617 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
618 * @p: The pointer to read, prior to dereferencing
619 * @c: The conditions under which the dereference will take place
620 *
621 * Similar to rcu_dereference_check(), but omits the sparse checking.
622 * This allows rcu_dereference_index_check() to be used on integers,
623 * which can then be used as array indices. Attempting to use
624 * rcu_dereference_check() on an integer will give compiler warnings
625 * because the sparse address-space mechanism relies on dereferencing
626 * the RCU-protected pointer. Dereferencing integers is not something
627 * that even gcc will put up with.
628 *
629 * Note that this function does not implicitly check for RCU read-side
630 * critical sections. If this function gains lots of uses, it might
631 * make sense to provide versions for each flavor of RCU, but it does
632 * not make sense as of early 2010.
633 */
634 #define rcu_dereference_index_check(p, c) \
635 __rcu_dereference_index_check((p), (c))
636
637 /**
638 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
639 * @p: The pointer to read, prior to dereferencing
640 * @c: The conditions under which the dereference will take place
641 *
642 * Return the value of the specified RCU-protected pointer, but omit
643 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
644 * is useful in cases where update-side locks prevent the value of the
645 * pointer from changing. Please note that this primitive does -not-
646 * prevent the compiler from repeating this reference or combining it
647 * with other references, so it should not be used without protection
648 * of appropriate locks.
649 *
650 * This function is only for update-side use. Using this function
651 * when protected only by rcu_read_lock() will result in infrequent
652 * but very ugly failures.
653 */
654 #define rcu_dereference_protected(p, c) \
655 __rcu_dereference_protected((p), (c), __rcu)
656
657
658 /**
659 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
660 * @p: The pointer to read, prior to dereferencing
661 *
662 * This is a simple wrapper around rcu_dereference_check().
663 */
664 #define rcu_dereference(p) rcu_dereference_check(p, 0)
665
666 /**
667 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
668 * @p: The pointer to read, prior to dereferencing
669 *
670 * Makes rcu_dereference_check() do the dirty work.
671 */
672 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
673
674 /**
675 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
676 * @p: The pointer to read, prior to dereferencing
677 *
678 * Makes rcu_dereference_check() do the dirty work.
679 */
680 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
681
682 /**
683 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
684 *
685 * When synchronize_rcu() is invoked on one CPU while other CPUs
686 * are within RCU read-side critical sections, then the
687 * synchronize_rcu() is guaranteed to block until after all the other
688 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
689 * on one CPU while other CPUs are within RCU read-side critical
690 * sections, invocation of the corresponding RCU callback is deferred
691 * until after the all the other CPUs exit their critical sections.
692 *
693 * Note, however, that RCU callbacks are permitted to run concurrently
694 * with new RCU read-side critical sections. One way that this can happen
695 * is via the following sequence of events: (1) CPU 0 enters an RCU
696 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
697 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
698 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
699 * callback is invoked. This is legal, because the RCU read-side critical
700 * section that was running concurrently with the call_rcu() (and which
701 * therefore might be referencing something that the corresponding RCU
702 * callback would free up) has completed before the corresponding
703 * RCU callback is invoked.
704 *
705 * RCU read-side critical sections may be nested. Any deferred actions
706 * will be deferred until the outermost RCU read-side critical section
707 * completes.
708 *
709 * You can avoid reading and understanding the next paragraph by
710 * following this rule: don't put anything in an rcu_read_lock() RCU
711 * read-side critical section that would block in a !PREEMPT kernel.
712 * But if you want the full story, read on!
713 *
714 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
715 * is illegal to block while in an RCU read-side critical section. In
716 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
717 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
718 * be preempted, but explicit blocking is illegal. Finally, in preemptible
719 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
720 * RCU read-side critical sections may be preempted and they may also
721 * block, but only when acquiring spinlocks that are subject to priority
722 * inheritance.
723 */
724 static inline void rcu_read_lock(void)
725 {
726 __rcu_read_lock();
727 __acquire(RCU);
728 rcu_lock_acquire(&rcu_lock_map);
729 rcu_lockdep_assert(!rcu_is_cpu_idle(),
730 "rcu_read_lock() used illegally while idle");
731 }
732
733 /*
734 * So where is rcu_write_lock()? It does not exist, as there is no
735 * way for writers to lock out RCU readers. This is a feature, not
736 * a bug -- this property is what provides RCU's performance benefits.
737 * Of course, writers must coordinate with each other. The normal
738 * spinlock primitives work well for this, but any other technique may be
739 * used as well. RCU does not care how the writers keep out of each
740 * others' way, as long as they do so.
741 */
742
743 /**
744 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
745 *
746 * See rcu_read_lock() for more information.
747 */
748 static inline void rcu_read_unlock(void)
749 {
750 rcu_lockdep_assert(!rcu_is_cpu_idle(),
751 "rcu_read_unlock() used illegally while idle");
752 rcu_lock_release(&rcu_lock_map);
753 __release(RCU);
754 __rcu_read_unlock();
755 }
756
757 /**
758 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
759 *
760 * This is equivalent of rcu_read_lock(), but to be used when updates
761 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
762 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
763 * softirq handler to be a quiescent state, a process in RCU read-side
764 * critical section must be protected by disabling softirqs. Read-side
765 * critical sections in interrupt context can use just rcu_read_lock(),
766 * though this should at least be commented to avoid confusing people
767 * reading the code.
768 *
769 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
770 * must occur in the same context, for example, it is illegal to invoke
771 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
772 * was invoked from some other task.
773 */
774 static inline void rcu_read_lock_bh(void)
775 {
776 local_bh_disable();
777 __acquire(RCU_BH);
778 rcu_lock_acquire(&rcu_bh_lock_map);
779 rcu_lockdep_assert(!rcu_is_cpu_idle(),
780 "rcu_read_lock_bh() used illegally while idle");
781 }
782
783 /*
784 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
785 *
786 * See rcu_read_lock_bh() for more information.
787 */
788 static inline void rcu_read_unlock_bh(void)
789 {
790 rcu_lockdep_assert(!rcu_is_cpu_idle(),
791 "rcu_read_unlock_bh() used illegally while idle");
792 rcu_lock_release(&rcu_bh_lock_map);
793 __release(RCU_BH);
794 local_bh_enable();
795 }
796
797 /**
798 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
799 *
800 * This is equivalent of rcu_read_lock(), but to be used when updates
801 * are being done using call_rcu_sched() or synchronize_rcu_sched().
802 * Read-side critical sections can also be introduced by anything that
803 * disables preemption, including local_irq_disable() and friends.
804 *
805 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
806 * must occur in the same context, for example, it is illegal to invoke
807 * rcu_read_unlock_sched() from process context if the matching
808 * rcu_read_lock_sched() was invoked from an NMI handler.
809 */
810 static inline void rcu_read_lock_sched(void)
811 {
812 preempt_disable();
813 __acquire(RCU_SCHED);
814 rcu_lock_acquire(&rcu_sched_lock_map);
815 rcu_lockdep_assert(!rcu_is_cpu_idle(),
816 "rcu_read_lock_sched() used illegally while idle");
817 }
818
819 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
820 static inline notrace void rcu_read_lock_sched_notrace(void)
821 {
822 preempt_disable_notrace();
823 __acquire(RCU_SCHED);
824 }
825
826 /*
827 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
828 *
829 * See rcu_read_lock_sched for more information.
830 */
831 static inline void rcu_read_unlock_sched(void)
832 {
833 rcu_lockdep_assert(!rcu_is_cpu_idle(),
834 "rcu_read_unlock_sched() used illegally while idle");
835 rcu_lock_release(&rcu_sched_lock_map);
836 __release(RCU_SCHED);
837 preempt_enable();
838 }
839
840 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
841 static inline notrace void rcu_read_unlock_sched_notrace(void)
842 {
843 __release(RCU_SCHED);
844 preempt_enable_notrace();
845 }
846
847 /**
848 * rcu_assign_pointer() - assign to RCU-protected pointer
849 * @p: pointer to assign to
850 * @v: value to assign (publish)
851 *
852 * Assigns the specified value to the specified RCU-protected
853 * pointer, ensuring that any concurrent RCU readers will see
854 * any prior initialization. Returns the value assigned.
855 *
856 * Inserts memory barriers on architectures that require them
857 * (which is most of them), and also prevents the compiler from
858 * reordering the code that initializes the structure after the pointer
859 * assignment. More importantly, this call documents which pointers
860 * will be dereferenced by RCU read-side code.
861 *
862 * In some special cases, you may use RCU_INIT_POINTER() instead
863 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
864 * to the fact that it does not constrain either the CPU or the compiler.
865 * That said, using RCU_INIT_POINTER() when you should have used
866 * rcu_assign_pointer() is a very bad thing that results in
867 * impossible-to-diagnose memory corruption. So please be careful.
868 * See the RCU_INIT_POINTER() comment header for details.
869 */
870 #define rcu_assign_pointer(p, v) \
871 __rcu_assign_pointer((p), (v), __rcu)
872
873 /**
874 * RCU_INIT_POINTER() - initialize an RCU protected pointer
875 *
876 * Initialize an RCU-protected pointer in special cases where readers
877 * do not need ordering constraints on the CPU or the compiler. These
878 * special cases are:
879 *
880 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
881 * 2. The caller has taken whatever steps are required to prevent
882 * RCU readers from concurrently accessing this pointer -or-
883 * 3. The referenced data structure has already been exposed to
884 * readers either at compile time or via rcu_assign_pointer() -and-
885 * a. You have not made -any- reader-visible changes to
886 * this structure since then -or-
887 * b. It is OK for readers accessing this structure from its
888 * new location to see the old state of the structure. (For
889 * example, the changes were to statistical counters or to
890 * other state where exact synchronization is not required.)
891 *
892 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
893 * result in impossible-to-diagnose memory corruption. As in the structures
894 * will look OK in crash dumps, but any concurrent RCU readers might
895 * see pre-initialized values of the referenced data structure. So
896 * please be very careful how you use RCU_INIT_POINTER()!!!
897 *
898 * If you are creating an RCU-protected linked structure that is accessed
899 * by a single external-to-structure RCU-protected pointer, then you may
900 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
901 * pointers, but you must use rcu_assign_pointer() to initialize the
902 * external-to-structure pointer -after- you have completely initialized
903 * the reader-accessible portions of the linked structure.
904 */
905 #define RCU_INIT_POINTER(p, v) \
906 p = (typeof(*v) __force __rcu *)(v)
907
908 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
909 {
910 return offset < 4096;
911 }
912
913 static __always_inline
914 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
915 {
916 typedef void (*rcu_callback)(struct rcu_head *);
917
918 BUILD_BUG_ON(!__builtin_constant_p(offset));
919
920 /* See the kfree_rcu() header comment. */
921 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
922
923 kfree_call_rcu(head, (rcu_callback)offset);
924 }
925
926 /*
927 * Does the specified offset indicate that the corresponding rcu_head
928 * structure can be handled by kfree_rcu()?
929 */
930 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
931
932 /*
933 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
934 */
935 #define __kfree_rcu(head, offset) \
936 do { \
937 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
938 call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
939 } while (0)
940
941 /**
942 * kfree_rcu() - kfree an object after a grace period.
943 * @ptr: pointer to kfree
944 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
945 *
946 * Many rcu callbacks functions just call kfree() on the base structure.
947 * These functions are trivial, but their size adds up, and furthermore
948 * when they are used in a kernel module, that module must invoke the
949 * high-latency rcu_barrier() function at module-unload time.
950 *
951 * The kfree_rcu() function handles this issue. Rather than encoding a
952 * function address in the embedded rcu_head structure, kfree_rcu() instead
953 * encodes the offset of the rcu_head structure within the base structure.
954 * Because the functions are not allowed in the low-order 4096 bytes of
955 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
956 * If the offset is larger than 4095 bytes, a compile-time error will
957 * be generated in __kfree_rcu(). If this error is triggered, you can
958 * either fall back to use of call_rcu() or rearrange the structure to
959 * position the rcu_head structure into the first 4096 bytes.
960 *
961 * Note that the allowable offset might decrease in the future, for example,
962 * to allow something like kmem_cache_free_rcu().
963 *
964 * The BUILD_BUG_ON check must not involve any function calls, hence the
965 * checks are done in macros here.
966 */
967 #define kfree_rcu(ptr, rcu_head) \
968 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
969
970 #endif /* __LINUX_RCUPDATE_H */