Merge branch 'v3.7-samsung-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3
4 #include <linux/compiler.h> /* For unlikely. */
5 #include <linux/sched.h> /* For struct task_struct. */
6 #include <linux/err.h> /* for IS_ERR_VALUE */
7 #include <linux/bug.h> /* For BUG_ON. */
8 #include <uapi/linux/ptrace.h>
9
10 /*
11 * Ptrace flags
12 *
13 * The owner ship rules for task->ptrace which holds the ptrace
14 * flags is simple. When a task is running it owns it's task->ptrace
15 * flags. When the a task is stopped the ptracer owns task->ptrace.
16 */
17
18 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
19 #define PT_PTRACED 0x00000001
20 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
21 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
22
23 #define PT_OPT_FLAG_SHIFT 3
24 /* PT_TRACE_* event enable flags */
25 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
26 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
27 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34
35 /* single stepping state bits (used on ARM and PA-RISC) */
36 #define PT_SINGLESTEP_BIT 31
37 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
38 #define PT_BLOCKSTEP_BIT 30
39 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
40
41 extern long arch_ptrace(struct task_struct *child, long request,
42 unsigned long addr, unsigned long data);
43 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
44 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
45 extern void ptrace_disable(struct task_struct *);
46 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
47 extern int ptrace_request(struct task_struct *child, long request,
48 unsigned long addr, unsigned long data);
49 extern void ptrace_notify(int exit_code);
50 extern void __ptrace_link(struct task_struct *child,
51 struct task_struct *new_parent);
52 extern void __ptrace_unlink(struct task_struct *child);
53 extern void exit_ptrace(struct task_struct *tracer);
54 #define PTRACE_MODE_READ 0x01
55 #define PTRACE_MODE_ATTACH 0x02
56 #define PTRACE_MODE_NOAUDIT 0x04
57 /* Returns true on success, false on denial. */
58 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
59
60 static inline int ptrace_reparented(struct task_struct *child)
61 {
62 return !same_thread_group(child->real_parent, child->parent);
63 }
64
65 static inline void ptrace_unlink(struct task_struct *child)
66 {
67 if (unlikely(child->ptrace))
68 __ptrace_unlink(child);
69 }
70
71 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
72 unsigned long data);
73 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
74 unsigned long data);
75
76 /**
77 * ptrace_parent - return the task that is tracing the given task
78 * @task: task to consider
79 *
80 * Returns %NULL if no one is tracing @task, or the &struct task_struct
81 * pointer to its tracer.
82 *
83 * Must called under rcu_read_lock(). The pointer returned might be kept
84 * live only by RCU. During exec, this may be called with task_lock() held
85 * on @task, still held from when check_unsafe_exec() was called.
86 */
87 static inline struct task_struct *ptrace_parent(struct task_struct *task)
88 {
89 if (unlikely(task->ptrace))
90 return rcu_dereference(task->parent);
91 return NULL;
92 }
93
94 /**
95 * ptrace_event_enabled - test whether a ptrace event is enabled
96 * @task: ptracee of interest
97 * @event: %PTRACE_EVENT_* to test
98 *
99 * Test whether @event is enabled for ptracee @task.
100 *
101 * Returns %true if @event is enabled, %false otherwise.
102 */
103 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
104 {
105 return task->ptrace & PT_EVENT_FLAG(event);
106 }
107
108 /**
109 * ptrace_event - possibly stop for a ptrace event notification
110 * @event: %PTRACE_EVENT_* value to report
111 * @message: value for %PTRACE_GETEVENTMSG to return
112 *
113 * Check whether @event is enabled and, if so, report @event and @message
114 * to the ptrace parent.
115 *
116 * Called without locks.
117 */
118 static inline void ptrace_event(int event, unsigned long message)
119 {
120 if (unlikely(ptrace_event_enabled(current, event))) {
121 current->ptrace_message = message;
122 ptrace_notify((event << 8) | SIGTRAP);
123 } else if (event == PTRACE_EVENT_EXEC) {
124 /* legacy EXEC report via SIGTRAP */
125 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
126 send_sig(SIGTRAP, current, 0);
127 }
128 }
129
130 /**
131 * ptrace_init_task - initialize ptrace state for a new child
132 * @child: new child task
133 * @ptrace: true if child should be ptrace'd by parent's tracer
134 *
135 * This is called immediately after adding @child to its parent's children
136 * list. @ptrace is false in the normal case, and true to ptrace @child.
137 *
138 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
139 */
140 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
141 {
142 INIT_LIST_HEAD(&child->ptrace_entry);
143 INIT_LIST_HEAD(&child->ptraced);
144 #ifdef CONFIG_HAVE_HW_BREAKPOINT
145 atomic_set(&child->ptrace_bp_refcnt, 1);
146 #endif
147 child->jobctl = 0;
148 child->ptrace = 0;
149 child->parent = child->real_parent;
150
151 if (unlikely(ptrace) && current->ptrace) {
152 child->ptrace = current->ptrace;
153 __ptrace_link(child, current->parent);
154
155 if (child->ptrace & PT_SEIZED)
156 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
157 else
158 sigaddset(&child->pending.signal, SIGSTOP);
159
160 set_tsk_thread_flag(child, TIF_SIGPENDING);
161 }
162 }
163
164 /**
165 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
166 * @task: task in %EXIT_DEAD state
167 *
168 * Called with write_lock(&tasklist_lock) held.
169 */
170 static inline void ptrace_release_task(struct task_struct *task)
171 {
172 BUG_ON(!list_empty(&task->ptraced));
173 ptrace_unlink(task);
174 BUG_ON(!list_empty(&task->ptrace_entry));
175 }
176
177 #ifndef force_successful_syscall_return
178 /*
179 * System call handlers that, upon successful completion, need to return a
180 * negative value should call force_successful_syscall_return() right before
181 * returning. On architectures where the syscall convention provides for a
182 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
183 * others), this macro can be used to ensure that the error flag will not get
184 * set. On architectures which do not support a separate error flag, the macro
185 * is a no-op and the spurious error condition needs to be filtered out by some
186 * other means (e.g., in user-level, by passing an extra argument to the
187 * syscall handler, or something along those lines).
188 */
189 #define force_successful_syscall_return() do { } while (0)
190 #endif
191
192 #ifndef is_syscall_success
193 /*
194 * On most systems we can tell if a syscall is a success based on if the retval
195 * is an error value. On some systems like ia64 and powerpc they have different
196 * indicators of success/failure and must define their own.
197 */
198 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
199 #endif
200
201 /*
202 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
203 *
204 * These do-nothing inlines are used when the arch does not
205 * implement single-step. The kerneldoc comments are here
206 * to document the interface for all arch definitions.
207 */
208
209 #ifndef arch_has_single_step
210 /**
211 * arch_has_single_step - does this CPU support user-mode single-step?
212 *
213 * If this is defined, then there must be function declarations or
214 * inlines for user_enable_single_step() and user_disable_single_step().
215 * arch_has_single_step() should evaluate to nonzero iff the machine
216 * supports instruction single-step for user mode.
217 * It can be a constant or it can test a CPU feature bit.
218 */
219 #define arch_has_single_step() (0)
220
221 /**
222 * user_enable_single_step - single-step in user-mode task
223 * @task: either current or a task stopped in %TASK_TRACED
224 *
225 * This can only be called when arch_has_single_step() has returned nonzero.
226 * Set @task so that when it returns to user mode, it will trap after the
227 * next single instruction executes. If arch_has_block_step() is defined,
228 * this must clear the effects of user_enable_block_step() too.
229 */
230 static inline void user_enable_single_step(struct task_struct *task)
231 {
232 BUG(); /* This can never be called. */
233 }
234
235 /**
236 * user_disable_single_step - cancel user-mode single-step
237 * @task: either current or a task stopped in %TASK_TRACED
238 *
239 * Clear @task of the effects of user_enable_single_step() and
240 * user_enable_block_step(). This can be called whether or not either
241 * of those was ever called on @task, and even if arch_has_single_step()
242 * returned zero.
243 */
244 static inline void user_disable_single_step(struct task_struct *task)
245 {
246 }
247 #else
248 extern void user_enable_single_step(struct task_struct *);
249 extern void user_disable_single_step(struct task_struct *);
250 #endif /* arch_has_single_step */
251
252 #ifndef arch_has_block_step
253 /**
254 * arch_has_block_step - does this CPU support user-mode block-step?
255 *
256 * If this is defined, then there must be a function declaration or inline
257 * for user_enable_block_step(), and arch_has_single_step() must be defined
258 * too. arch_has_block_step() should evaluate to nonzero iff the machine
259 * supports step-until-branch for user mode. It can be a constant or it
260 * can test a CPU feature bit.
261 */
262 #define arch_has_block_step() (0)
263
264 /**
265 * user_enable_block_step - step until branch in user-mode task
266 * @task: either current or a task stopped in %TASK_TRACED
267 *
268 * This can only be called when arch_has_block_step() has returned nonzero,
269 * and will never be called when single-instruction stepping is being used.
270 * Set @task so that when it returns to user mode, it will trap after the
271 * next branch or trap taken.
272 */
273 static inline void user_enable_block_step(struct task_struct *task)
274 {
275 BUG(); /* This can never be called. */
276 }
277 #else
278 extern void user_enable_block_step(struct task_struct *);
279 #endif /* arch_has_block_step */
280
281 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
282 extern void user_single_step_siginfo(struct task_struct *tsk,
283 struct pt_regs *regs, siginfo_t *info);
284 #else
285 static inline void user_single_step_siginfo(struct task_struct *tsk,
286 struct pt_regs *regs, siginfo_t *info)
287 {
288 memset(info, 0, sizeof(*info));
289 info->si_signo = SIGTRAP;
290 }
291 #endif
292
293 #ifndef arch_ptrace_stop_needed
294 /**
295 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
296 * @code: current->exit_code value ptrace will stop with
297 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
298 *
299 * This is called with the siglock held, to decide whether or not it's
300 * necessary to release the siglock and call arch_ptrace_stop() with the
301 * same @code and @info arguments. It can be defined to a constant if
302 * arch_ptrace_stop() is never required, or always is. On machines where
303 * this makes sense, it should be defined to a quick test to optimize out
304 * calling arch_ptrace_stop() when it would be superfluous. For example,
305 * if the thread has not been back to user mode since the last stop, the
306 * thread state might indicate that nothing needs to be done.
307 */
308 #define arch_ptrace_stop_needed(code, info) (0)
309 #endif
310
311 #ifndef arch_ptrace_stop
312 /**
313 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
314 * @code: current->exit_code value ptrace will stop with
315 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
316 *
317 * This is called with no locks held when arch_ptrace_stop_needed() has
318 * just returned nonzero. It is allowed to block, e.g. for user memory
319 * access. The arch can have machine-specific work to be done before
320 * ptrace stops. On ia64, register backing store gets written back to user
321 * memory here. Since this can be costly (requires dropping the siglock),
322 * we only do it when the arch requires it for this particular stop, as
323 * indicated by arch_ptrace_stop_needed().
324 */
325 #define arch_ptrace_stop(code, info) do { } while (0)
326 #endif
327
328 #ifndef current_pt_regs
329 #define current_pt_regs() task_pt_regs(current)
330 #endif
331
332 extern int task_current_syscall(struct task_struct *target, long *callno,
333 unsigned long args[6], unsigned int maxargs,
334 unsigned long *sp, unsigned long *pc);
335
336 #ifdef CONFIG_HAVE_HW_BREAKPOINT
337 extern int ptrace_get_breakpoints(struct task_struct *tsk);
338 extern void ptrace_put_breakpoints(struct task_struct *tsk);
339 #else
340 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
341 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
342
343 #endif