[PATCH] knfsd: allow sockets to be passed to nfsd via 'portlist'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / pid.h
1 #ifndef _LINUX_PID_H
2 #define _LINUX_PID_H
3
4 #include <linux/rcupdate.h>
5
6 enum pid_type
7 {
8 PIDTYPE_PID,
9 PIDTYPE_PGID,
10 PIDTYPE_SID,
11 PIDTYPE_MAX
12 };
13
14 /*
15 * What is struct pid?
16 *
17 * A struct pid is the kernel's internal notion of a process identifier.
18 * It refers to individual tasks, process groups, and sessions. While
19 * there are processes attached to it the struct pid lives in a hash
20 * table, so it and then the processes that it refers to can be found
21 * quickly from the numeric pid value. The attached processes may be
22 * quickly accessed by following pointers from struct pid.
23 *
24 * Storing pid_t values in the kernel and refering to them later has a
25 * problem. The process originally with that pid may have exited and the
26 * pid allocator wrapped, and another process could have come along
27 * and been assigned that pid.
28 *
29 * Referring to user space processes by holding a reference to struct
30 * task_struct has a problem. When the user space process exits
31 * the now useless task_struct is still kept. A task_struct plus a
32 * stack consumes around 10K of low kernel memory. More precisely
33 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
34 * a struct pid is about 64 bytes.
35 *
36 * Holding a reference to struct pid solves both of these problems.
37 * It is small so holding a reference does not consume a lot of
38 * resources, and since a new struct pid is allocated when the numeric
39 * pid value is reused we don't mistakenly refer to new processes.
40 */
41
42 struct pid
43 {
44 atomic_t count;
45 /* Try to keep pid_chain in the same cacheline as nr for find_pid */
46 int nr;
47 struct hlist_node pid_chain;
48 /* lists of tasks that use this pid */
49 struct hlist_head tasks[PIDTYPE_MAX];
50 struct rcu_head rcu;
51 };
52
53 struct pid_link
54 {
55 struct hlist_node node;
56 struct pid *pid;
57 };
58
59 static inline struct pid *get_pid(struct pid *pid)
60 {
61 if (pid)
62 atomic_inc(&pid->count);
63 return pid;
64 }
65
66 extern void FASTCALL(put_pid(struct pid *pid));
67 extern struct task_struct *FASTCALL(pid_task(struct pid *pid, enum pid_type));
68 extern struct task_struct *FASTCALL(get_pid_task(struct pid *pid,
69 enum pid_type));
70
71 /*
72 * attach_pid() and detach_pid() must be called with the tasklist_lock
73 * write-held.
74 */
75 extern int FASTCALL(attach_pid(struct task_struct *task,
76 enum pid_type type, int nr));
77
78 extern void FASTCALL(detach_pid(struct task_struct *task, enum pid_type));
79 extern void FASTCALL(transfer_pid(struct task_struct *old,
80 struct task_struct *new, enum pid_type));
81
82 /*
83 * look up a PID in the hash table. Must be called with the tasklist_lock
84 * or rcu_read_lock() held.
85 */
86 extern struct pid *FASTCALL(find_pid(int nr));
87
88 /*
89 * Lookup a PID in the hash table, and return with it's count elevated.
90 */
91 extern struct pid *find_get_pid(int nr);
92 extern struct pid *find_ge_pid(int nr);
93
94 extern struct pid *alloc_pid(void);
95 extern void FASTCALL(free_pid(struct pid *pid));
96
97 static inline pid_t pid_nr(struct pid *pid)
98 {
99 pid_t nr = 0;
100 if (pid)
101 nr = pid->nr;
102 return nr;
103 }
104
105
106 #define do_each_task_pid(who, type, task) \
107 do { \
108 struct hlist_node *pos___; \
109 struct pid *pid___ = find_pid(who); \
110 if (pid___ != NULL) \
111 hlist_for_each_entry_rcu((task), pos___, \
112 &pid___->tasks[type], pids[type].node) {
113
114 #define while_each_task_pid(who, type, task) \
115 } \
116 } while (0)
117
118
119 #define do_each_pid_task(pid, type, task) \
120 do { \
121 struct hlist_node *pos___; \
122 if (pid != NULL) \
123 hlist_for_each_entry_rcu((task), pos___, \
124 &pid->tasks[type], pids[type].node) {
125
126 #define while_each_pid_task(pid, type, task) \
127 } \
128 } while (0)
129
130 #endif /* _LINUX_PID_H */