timekeeping: Update tk->cycle_last in resume
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <linux/cgroup.h>
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 };
34
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58 __u64 nr;
59 __u64 ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63 u32 size;
64 void *data;
65 };
66
67 /*
68 * single taken branch record layout:
69 *
70 * from: source instruction (may not always be a branch insn)
71 * to: branch target
72 * mispred: branch target was mispredicted
73 * predicted: branch target was predicted
74 *
75 * support for mispred, predicted is optional. In case it
76 * is not supported mispred = predicted = 0.
77 */
78 struct perf_branch_entry {
79 __u64 from;
80 __u64 to;
81 __u64 mispred:1, /* target mispredicted */
82 predicted:1,/* target predicted */
83 reserved:62;
84 };
85
86 /*
87 * branch stack layout:
88 * nr: number of taken branches stored in entries[]
89 *
90 * Note that nr can vary from sample to sample
91 * branches (to, from) are stored from most recent
92 * to least recent, i.e., entries[0] contains the most
93 * recent branch.
94 */
95 struct perf_branch_stack {
96 __u64 nr;
97 struct perf_branch_entry entries[0];
98 };
99
100 struct perf_regs_user {
101 __u64 abi;
102 struct pt_regs *regs;
103 };
104
105 struct task_struct;
106
107 /*
108 * extra PMU register associated with an event
109 */
110 struct hw_perf_event_extra {
111 u64 config; /* register value */
112 unsigned int reg; /* register address or index */
113 int alloc; /* extra register already allocated */
114 int idx; /* index in shared_regs->regs[] */
115 };
116
117 /**
118 * struct hw_perf_event - performance event hardware details:
119 */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122 union {
123 struct { /* hardware */
124 u64 config;
125 u64 last_tag;
126 unsigned long config_base;
127 unsigned long event_base;
128 int event_base_rdpmc;
129 int idx;
130 int last_cpu;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 struct task_struct *tp_target;
140 /* for tp_event->class */
141 struct list_head tp_list;
142 };
143 #ifdef CONFIG_HAVE_HW_BREAKPOINT
144 struct { /* breakpoint */
145 /*
146 * Crufty hack to avoid the chicken and egg
147 * problem hw_breakpoint has with context
148 * creation and event initalization.
149 */
150 struct task_struct *bp_target;
151 struct arch_hw_breakpoint info;
152 struct list_head bp_list;
153 };
154 #endif
155 };
156 int state;
157 local64_t prev_count;
158 u64 sample_period;
159 u64 last_period;
160 local64_t period_left;
161 u64 interrupts_seq;
162 u64 interrupts;
163
164 u64 freq_time_stamp;
165 u64 freq_count_stamp;
166 #endif
167 };
168
169 /*
170 * hw_perf_event::state flags
171 */
172 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
173 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
174 #define PERF_HES_ARCH 0x04
175
176 struct perf_event;
177
178 /*
179 * Common implementation detail of pmu::{start,commit,cancel}_txn
180 */
181 #define PERF_EVENT_TXN 0x1
182
183 /**
184 * struct pmu - generic performance monitoring unit
185 */
186 struct pmu {
187 struct list_head entry;
188
189 struct device *dev;
190 const struct attribute_group **attr_groups;
191 char *name;
192 int type;
193
194 int * __percpu pmu_disable_count;
195 struct perf_cpu_context * __percpu pmu_cpu_context;
196 int task_ctx_nr;
197
198 /*
199 * Fully disable/enable this PMU, can be used to protect from the PMI
200 * as well as for lazy/batch writing of the MSRs.
201 */
202 void (*pmu_enable) (struct pmu *pmu); /* optional */
203 void (*pmu_disable) (struct pmu *pmu); /* optional */
204
205 /*
206 * Try and initialize the event for this PMU.
207 * Should return -ENOENT when the @event doesn't match this PMU.
208 */
209 int (*event_init) (struct perf_event *event);
210
211 #define PERF_EF_START 0x01 /* start the counter when adding */
212 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
213 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
214
215 /*
216 * Adds/Removes a counter to/from the PMU, can be done inside
217 * a transaction, see the ->*_txn() methods.
218 */
219 int (*add) (struct perf_event *event, int flags);
220 void (*del) (struct perf_event *event, int flags);
221
222 /*
223 * Starts/Stops a counter present on the PMU. The PMI handler
224 * should stop the counter when perf_event_overflow() returns
225 * !0. ->start() will be used to continue.
226 */
227 void (*start) (struct perf_event *event, int flags);
228 void (*stop) (struct perf_event *event, int flags);
229
230 /*
231 * Updates the counter value of the event.
232 */
233 void (*read) (struct perf_event *event);
234
235 /*
236 * Group events scheduling is treated as a transaction, add
237 * group events as a whole and perform one schedulability test.
238 * If the test fails, roll back the whole group
239 *
240 * Start the transaction, after this ->add() doesn't need to
241 * do schedulability tests.
242 */
243 void (*start_txn) (struct pmu *pmu); /* optional */
244 /*
245 * If ->start_txn() disabled the ->add() schedulability test
246 * then ->commit_txn() is required to perform one. On success
247 * the transaction is closed. On error the transaction is kept
248 * open until ->cancel_txn() is called.
249 */
250 int (*commit_txn) (struct pmu *pmu); /* optional */
251 /*
252 * Will cancel the transaction, assumes ->del() is called
253 * for each successful ->add() during the transaction.
254 */
255 void (*cancel_txn) (struct pmu *pmu); /* optional */
256
257 /*
258 * Will return the value for perf_event_mmap_page::index for this event,
259 * if no implementation is provided it will default to: event->hw.idx + 1.
260 */
261 int (*event_idx) (struct perf_event *event); /*optional */
262
263 /*
264 * flush branch stack on context-switches (needed in cpu-wide mode)
265 */
266 void (*flush_branch_stack) (void);
267 };
268
269 /**
270 * enum perf_event_active_state - the states of a event
271 */
272 enum perf_event_active_state {
273 PERF_EVENT_STATE_ERROR = -2,
274 PERF_EVENT_STATE_OFF = -1,
275 PERF_EVENT_STATE_INACTIVE = 0,
276 PERF_EVENT_STATE_ACTIVE = 1,
277 };
278
279 struct file;
280 struct perf_sample_data;
281
282 typedef void (*perf_overflow_handler_t)(struct perf_event *,
283 struct perf_sample_data *,
284 struct pt_regs *regs);
285
286 enum perf_group_flag {
287 PERF_GROUP_SOFTWARE = 0x1,
288 };
289
290 #define SWEVENT_HLIST_BITS 8
291 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
292
293 struct swevent_hlist {
294 struct hlist_head heads[SWEVENT_HLIST_SIZE];
295 struct rcu_head rcu_head;
296 };
297
298 #define PERF_ATTACH_CONTEXT 0x01
299 #define PERF_ATTACH_GROUP 0x02
300 #define PERF_ATTACH_TASK 0x04
301
302 #ifdef CONFIG_CGROUP_PERF
303 /*
304 * perf_cgroup_info keeps track of time_enabled for a cgroup.
305 * This is a per-cpu dynamically allocated data structure.
306 */
307 struct perf_cgroup_info {
308 u64 time;
309 u64 timestamp;
310 };
311
312 struct perf_cgroup {
313 struct cgroup_subsys_state css;
314 struct perf_cgroup_info *info; /* timing info, one per cpu */
315 };
316 #endif
317
318 struct ring_buffer;
319
320 /**
321 * struct perf_event - performance event kernel representation:
322 */
323 struct perf_event {
324 #ifdef CONFIG_PERF_EVENTS
325 struct list_head group_entry;
326 struct list_head event_entry;
327 struct list_head sibling_list;
328 struct hlist_node hlist_entry;
329 int nr_siblings;
330 int group_flags;
331 struct perf_event *group_leader;
332 struct pmu *pmu;
333
334 enum perf_event_active_state state;
335 unsigned int attach_state;
336 local64_t count;
337 atomic64_t child_count;
338
339 /*
340 * These are the total time in nanoseconds that the event
341 * has been enabled (i.e. eligible to run, and the task has
342 * been scheduled in, if this is a per-task event)
343 * and running (scheduled onto the CPU), respectively.
344 *
345 * They are computed from tstamp_enabled, tstamp_running and
346 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
347 */
348 u64 total_time_enabled;
349 u64 total_time_running;
350
351 /*
352 * These are timestamps used for computing total_time_enabled
353 * and total_time_running when the event is in INACTIVE or
354 * ACTIVE state, measured in nanoseconds from an arbitrary point
355 * in time.
356 * tstamp_enabled: the notional time when the event was enabled
357 * tstamp_running: the notional time when the event was scheduled on
358 * tstamp_stopped: in INACTIVE state, the notional time when the
359 * event was scheduled off.
360 */
361 u64 tstamp_enabled;
362 u64 tstamp_running;
363 u64 tstamp_stopped;
364
365 /*
366 * timestamp shadows the actual context timing but it can
367 * be safely used in NMI interrupt context. It reflects the
368 * context time as it was when the event was last scheduled in.
369 *
370 * ctx_time already accounts for ctx->timestamp. Therefore to
371 * compute ctx_time for a sample, simply add perf_clock().
372 */
373 u64 shadow_ctx_time;
374
375 struct perf_event_attr attr;
376 u16 header_size;
377 u16 id_header_size;
378 u16 read_size;
379 struct hw_perf_event hw;
380
381 struct perf_event_context *ctx;
382 atomic_long_t refcount;
383
384 /*
385 * These accumulate total time (in nanoseconds) that children
386 * events have been enabled and running, respectively.
387 */
388 atomic64_t child_total_time_enabled;
389 atomic64_t child_total_time_running;
390
391 /*
392 * Protect attach/detach and child_list:
393 */
394 struct mutex child_mutex;
395 struct list_head child_list;
396 struct perf_event *parent;
397
398 int oncpu;
399 int cpu;
400
401 struct list_head owner_entry;
402 struct task_struct *owner;
403
404 /* mmap bits */
405 struct mutex mmap_mutex;
406 atomic_t mmap_count;
407 int mmap_locked;
408 struct user_struct *mmap_user;
409 struct ring_buffer *rb;
410 struct list_head rb_entry;
411
412 /* poll related */
413 wait_queue_head_t waitq;
414 struct fasync_struct *fasync;
415
416 /* delayed work for NMIs and such */
417 int pending_wakeup;
418 int pending_kill;
419 int pending_disable;
420 struct irq_work pending;
421
422 atomic_t event_limit;
423
424 void (*destroy)(struct perf_event *);
425 struct rcu_head rcu_head;
426
427 struct pid_namespace *ns;
428 u64 id;
429
430 perf_overflow_handler_t overflow_handler;
431 void *overflow_handler_context;
432
433 #ifdef CONFIG_EVENT_TRACING
434 struct ftrace_event_call *tp_event;
435 struct event_filter *filter;
436 #ifdef CONFIG_FUNCTION_TRACER
437 struct ftrace_ops ftrace_ops;
438 #endif
439 #endif
440
441 #ifdef CONFIG_CGROUP_PERF
442 struct perf_cgroup *cgrp; /* cgroup event is attach to */
443 int cgrp_defer_enabled;
444 #endif
445
446 #endif /* CONFIG_PERF_EVENTS */
447 };
448
449 enum perf_event_context_type {
450 task_context,
451 cpu_context,
452 };
453
454 /**
455 * struct perf_event_context - event context structure
456 *
457 * Used as a container for task events and CPU events as well:
458 */
459 struct perf_event_context {
460 struct pmu *pmu;
461 enum perf_event_context_type type;
462 /*
463 * Protect the states of the events in the list,
464 * nr_active, and the list:
465 */
466 raw_spinlock_t lock;
467 /*
468 * Protect the list of events. Locking either mutex or lock
469 * is sufficient to ensure the list doesn't change; to change
470 * the list you need to lock both the mutex and the spinlock.
471 */
472 struct mutex mutex;
473
474 struct list_head pinned_groups;
475 struct list_head flexible_groups;
476 struct list_head event_list;
477 int nr_events;
478 int nr_active;
479 int is_active;
480 int nr_stat;
481 int nr_freq;
482 int rotate_disable;
483 atomic_t refcount;
484 struct task_struct *task;
485
486 /*
487 * Context clock, runs when context enabled.
488 */
489 u64 time;
490 u64 timestamp;
491
492 /*
493 * These fields let us detect when two contexts have both
494 * been cloned (inherited) from a common ancestor.
495 */
496 struct perf_event_context *parent_ctx;
497 u64 parent_gen;
498 u64 generation;
499 int pin_count;
500 int nr_cgroups; /* cgroup evts */
501 int nr_branch_stack; /* branch_stack evt */
502 struct rcu_head rcu_head;
503 };
504
505 /*
506 * Number of contexts where an event can trigger:
507 * task, softirq, hardirq, nmi.
508 */
509 #define PERF_NR_CONTEXTS 4
510
511 /**
512 * struct perf_event_cpu_context - per cpu event context structure
513 */
514 struct perf_cpu_context {
515 struct perf_event_context ctx;
516 struct perf_event_context *task_ctx;
517 int active_oncpu;
518 int exclusive;
519 struct list_head rotation_list;
520 int jiffies_interval;
521 struct pmu *unique_pmu;
522 struct perf_cgroup *cgrp;
523 };
524
525 struct perf_output_handle {
526 struct perf_event *event;
527 struct ring_buffer *rb;
528 unsigned long wakeup;
529 unsigned long size;
530 void *addr;
531 int page;
532 };
533
534 #ifdef CONFIG_PERF_EVENTS
535
536 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
537 extern void perf_pmu_unregister(struct pmu *pmu);
538
539 extern int perf_num_counters(void);
540 extern const char *perf_pmu_name(void);
541 extern void __perf_event_task_sched_in(struct task_struct *prev,
542 struct task_struct *task);
543 extern void __perf_event_task_sched_out(struct task_struct *prev,
544 struct task_struct *next);
545 extern int perf_event_init_task(struct task_struct *child);
546 extern void perf_event_exit_task(struct task_struct *child);
547 extern void perf_event_free_task(struct task_struct *task);
548 extern void perf_event_delayed_put(struct task_struct *task);
549 extern void perf_event_print_debug(void);
550 extern void perf_pmu_disable(struct pmu *pmu);
551 extern void perf_pmu_enable(struct pmu *pmu);
552 extern int perf_event_task_disable(void);
553 extern int perf_event_task_enable(void);
554 extern int perf_event_refresh(struct perf_event *event, int refresh);
555 extern void perf_event_update_userpage(struct perf_event *event);
556 extern int perf_event_release_kernel(struct perf_event *event);
557 extern struct perf_event *
558 perf_event_create_kernel_counter(struct perf_event_attr *attr,
559 int cpu,
560 struct task_struct *task,
561 perf_overflow_handler_t callback,
562 void *context);
563 extern void perf_pmu_migrate_context(struct pmu *pmu,
564 int src_cpu, int dst_cpu);
565 extern u64 perf_event_read_value(struct perf_event *event,
566 u64 *enabled, u64 *running);
567
568
569 struct perf_sample_data {
570 u64 type;
571
572 u64 ip;
573 struct {
574 u32 pid;
575 u32 tid;
576 } tid_entry;
577 u64 time;
578 u64 addr;
579 u64 id;
580 u64 stream_id;
581 struct {
582 u32 cpu;
583 u32 reserved;
584 } cpu_entry;
585 u64 period;
586 struct perf_callchain_entry *callchain;
587 struct perf_raw_record *raw;
588 struct perf_branch_stack *br_stack;
589 struct perf_regs_user regs_user;
590 u64 stack_user_size;
591 };
592
593 static inline void perf_sample_data_init(struct perf_sample_data *data,
594 u64 addr, u64 period)
595 {
596 /* remaining struct members initialized in perf_prepare_sample() */
597 data->addr = addr;
598 data->raw = NULL;
599 data->br_stack = NULL;
600 data->period = period;
601 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
602 data->regs_user.regs = NULL;
603 data->stack_user_size = 0;
604 }
605
606 extern void perf_output_sample(struct perf_output_handle *handle,
607 struct perf_event_header *header,
608 struct perf_sample_data *data,
609 struct perf_event *event);
610 extern void perf_prepare_sample(struct perf_event_header *header,
611 struct perf_sample_data *data,
612 struct perf_event *event,
613 struct pt_regs *regs);
614
615 extern int perf_event_overflow(struct perf_event *event,
616 struct perf_sample_data *data,
617 struct pt_regs *regs);
618
619 static inline bool is_sampling_event(struct perf_event *event)
620 {
621 return event->attr.sample_period != 0;
622 }
623
624 /*
625 * Return 1 for a software event, 0 for a hardware event
626 */
627 static inline int is_software_event(struct perf_event *event)
628 {
629 return event->pmu->task_ctx_nr == perf_sw_context;
630 }
631
632 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
633
634 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
635
636 #ifndef perf_arch_fetch_caller_regs
637 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
638 #endif
639
640 /*
641 * Take a snapshot of the regs. Skip ip and frame pointer to
642 * the nth caller. We only need a few of the regs:
643 * - ip for PERF_SAMPLE_IP
644 * - cs for user_mode() tests
645 * - bp for callchains
646 * - eflags, for future purposes, just in case
647 */
648 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
649 {
650 memset(regs, 0, sizeof(*regs));
651
652 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
653 }
654
655 static __always_inline void
656 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
657 {
658 struct pt_regs hot_regs;
659
660 if (static_key_false(&perf_swevent_enabled[event_id])) {
661 if (!regs) {
662 perf_fetch_caller_regs(&hot_regs);
663 regs = &hot_regs;
664 }
665 __perf_sw_event(event_id, nr, regs, addr);
666 }
667 }
668
669 extern struct static_key_deferred perf_sched_events;
670
671 static inline void perf_event_task_sched_in(struct task_struct *prev,
672 struct task_struct *task)
673 {
674 if (static_key_false(&perf_sched_events.key))
675 __perf_event_task_sched_in(prev, task);
676 }
677
678 static inline void perf_event_task_sched_out(struct task_struct *prev,
679 struct task_struct *next)
680 {
681 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
682
683 if (static_key_false(&perf_sched_events.key))
684 __perf_event_task_sched_out(prev, next);
685 }
686
687 extern void perf_event_mmap(struct vm_area_struct *vma);
688 extern struct perf_guest_info_callbacks *perf_guest_cbs;
689 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
690 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
691
692 extern void perf_event_comm(struct task_struct *tsk);
693 extern void perf_event_fork(struct task_struct *tsk);
694
695 /* Callchains */
696 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
697
698 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
699 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
700
701 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
702 {
703 if (entry->nr < PERF_MAX_STACK_DEPTH)
704 entry->ip[entry->nr++] = ip;
705 }
706
707 extern int sysctl_perf_event_paranoid;
708 extern int sysctl_perf_event_mlock;
709 extern int sysctl_perf_event_sample_rate;
710
711 extern int perf_proc_update_handler(struct ctl_table *table, int write,
712 void __user *buffer, size_t *lenp,
713 loff_t *ppos);
714
715 static inline bool perf_paranoid_tracepoint_raw(void)
716 {
717 return sysctl_perf_event_paranoid > -1;
718 }
719
720 static inline bool perf_paranoid_cpu(void)
721 {
722 return sysctl_perf_event_paranoid > 0;
723 }
724
725 static inline bool perf_paranoid_kernel(void)
726 {
727 return sysctl_perf_event_paranoid > 1;
728 }
729
730 extern void perf_event_init(void);
731 extern void perf_tp_event(u64 addr, u64 count, void *record,
732 int entry_size, struct pt_regs *regs,
733 struct hlist_head *head, int rctx,
734 struct task_struct *task);
735 extern void perf_bp_event(struct perf_event *event, void *data);
736
737 #ifndef perf_misc_flags
738 # define perf_misc_flags(regs) \
739 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
740 # define perf_instruction_pointer(regs) instruction_pointer(regs)
741 #endif
742
743 static inline bool has_branch_stack(struct perf_event *event)
744 {
745 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
746 }
747
748 extern int perf_output_begin(struct perf_output_handle *handle,
749 struct perf_event *event, unsigned int size);
750 extern void perf_output_end(struct perf_output_handle *handle);
751 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
752 const void *buf, unsigned int len);
753 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
754 unsigned int len);
755 extern int perf_swevent_get_recursion_context(void);
756 extern void perf_swevent_put_recursion_context(int rctx);
757 extern void perf_event_enable(struct perf_event *event);
758 extern void perf_event_disable(struct perf_event *event);
759 extern int __perf_event_disable(void *info);
760 extern void perf_event_task_tick(void);
761 #else
762 static inline void
763 perf_event_task_sched_in(struct task_struct *prev,
764 struct task_struct *task) { }
765 static inline void
766 perf_event_task_sched_out(struct task_struct *prev,
767 struct task_struct *next) { }
768 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
769 static inline void perf_event_exit_task(struct task_struct *child) { }
770 static inline void perf_event_free_task(struct task_struct *task) { }
771 static inline void perf_event_delayed_put(struct task_struct *task) { }
772 static inline void perf_event_print_debug(void) { }
773 static inline int perf_event_task_disable(void) { return -EINVAL; }
774 static inline int perf_event_task_enable(void) { return -EINVAL; }
775 static inline int perf_event_refresh(struct perf_event *event, int refresh)
776 {
777 return -EINVAL;
778 }
779
780 static inline void
781 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
782 static inline void
783 perf_bp_event(struct perf_event *event, void *data) { }
784
785 static inline int perf_register_guest_info_callbacks
786 (struct perf_guest_info_callbacks *callbacks) { return 0; }
787 static inline int perf_unregister_guest_info_callbacks
788 (struct perf_guest_info_callbacks *callbacks) { return 0; }
789
790 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
791 static inline void perf_event_comm(struct task_struct *tsk) { }
792 static inline void perf_event_fork(struct task_struct *tsk) { }
793 static inline void perf_event_init(void) { }
794 static inline int perf_swevent_get_recursion_context(void) { return -1; }
795 static inline void perf_swevent_put_recursion_context(int rctx) { }
796 static inline void perf_event_enable(struct perf_event *event) { }
797 static inline void perf_event_disable(struct perf_event *event) { }
798 static inline int __perf_event_disable(void *info) { return -1; }
799 static inline void perf_event_task_tick(void) { }
800 #endif
801
802 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
803
804 /*
805 * This has to have a higher priority than migration_notifier in sched.c.
806 */
807 #define perf_cpu_notifier(fn) \
808 do { \
809 static struct notifier_block fn##_nb __cpuinitdata = \
810 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
811 unsigned long cpu = smp_processor_id(); \
812 unsigned long flags; \
813 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
814 (void *)(unsigned long)cpu); \
815 local_irq_save(flags); \
816 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
817 (void *)(unsigned long)cpu); \
818 local_irq_restore(flags); \
819 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
820 (void *)(unsigned long)cpu); \
821 register_cpu_notifier(&fn##_nb); \
822 } while (0)
823
824
825 struct perf_pmu_events_attr {
826 struct device_attribute attr;
827 u64 id;
828 };
829
830 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
831 static struct perf_pmu_events_attr _var = { \
832 .attr = __ATTR(_name, 0444, _show, NULL), \
833 .id = _id, \
834 };
835
836 #define PMU_FORMAT_ATTR(_name, _format) \
837 static ssize_t \
838 _name##_show(struct device *dev, \
839 struct device_attribute *attr, \
840 char *page) \
841 { \
842 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
843 return sprintf(page, _format "\n"); \
844 } \
845 \
846 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
847
848 #endif /* _LINUX_PERF_EVENT_H */