Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <linux/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags.
20 */
21 enum mapping_flags {
22 AS_EIO = 0, /* IO error on async write */
23 AS_ENOSPC = 1, /* ENOSPC on async write */
24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
26 AS_EXITING = 4, /* final truncate in progress */
27 /* writeback related tags are not used */
28 AS_NO_WRITEBACK_TAGS = 5,
29 };
30
31 /**
32 * mapping_set_error - record a writeback error in the address_space
33 * @mapping - the mapping in which an error should be set
34 * @error - the error to set in the mapping
35 *
36 * When writeback fails in some way, we must record that error so that
37 * userspace can be informed when fsync and the like are called. We endeavor
38 * to report errors on any file that was open at the time of the error. Some
39 * internal callers also need to know when writeback errors have occurred.
40 *
41 * When a writeback error occurs, most filesystems will want to call
42 * mapping_set_error to record the error in the mapping so that it can be
43 * reported when the application calls fsync(2).
44 */
45 static inline void mapping_set_error(struct address_space *mapping, int error)
46 {
47 if (likely(!error))
48 return;
49
50 /* Record in wb_err for checkers using errseq_t based tracking */
51 filemap_set_wb_err(mapping, error);
52
53 /* Record it in flags for now, for legacy callers */
54 if (error == -ENOSPC)
55 set_bit(AS_ENOSPC, &mapping->flags);
56 else
57 set_bit(AS_EIO, &mapping->flags);
58 }
59
60 static inline void mapping_set_unevictable(struct address_space *mapping)
61 {
62 set_bit(AS_UNEVICTABLE, &mapping->flags);
63 }
64
65 static inline void mapping_clear_unevictable(struct address_space *mapping)
66 {
67 clear_bit(AS_UNEVICTABLE, &mapping->flags);
68 }
69
70 static inline int mapping_unevictable(struct address_space *mapping)
71 {
72 if (mapping)
73 return test_bit(AS_UNEVICTABLE, &mapping->flags);
74 return !!mapping;
75 }
76
77 static inline void mapping_set_exiting(struct address_space *mapping)
78 {
79 set_bit(AS_EXITING, &mapping->flags);
80 }
81
82 static inline int mapping_exiting(struct address_space *mapping)
83 {
84 return test_bit(AS_EXITING, &mapping->flags);
85 }
86
87 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
88 {
89 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
90 }
91
92 static inline int mapping_use_writeback_tags(struct address_space *mapping)
93 {
94 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
95 }
96
97 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
98 {
99 return mapping->gfp_mask;
100 }
101
102 /* Restricts the given gfp_mask to what the mapping allows. */
103 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
104 gfp_t gfp_mask)
105 {
106 return mapping_gfp_mask(mapping) & gfp_mask;
107 }
108
109 /*
110 * This is non-atomic. Only to be used before the mapping is activated.
111 * Probably needs a barrier...
112 */
113 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
114 {
115 m->gfp_mask = mask;
116 }
117
118 void release_pages(struct page **pages, int nr, bool cold);
119
120 /*
121 * speculatively take a reference to a page.
122 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
123 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
124 *
125 * This function must be called inside the same rcu_read_lock() section as has
126 * been used to lookup the page in the pagecache radix-tree (or page table):
127 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
128 *
129 * Unless an RCU grace period has passed, the count of all pages coming out
130 * of the allocator must be considered unstable. page_count may return higher
131 * than expected, and put_page must be able to do the right thing when the
132 * page has been finished with, no matter what it is subsequently allocated
133 * for (because put_page is what is used here to drop an invalid speculative
134 * reference).
135 *
136 * This is the interesting part of the lockless pagecache (and lockless
137 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
138 * has the following pattern:
139 * 1. find page in radix tree
140 * 2. conditionally increment refcount
141 * 3. check the page is still in pagecache (if no, goto 1)
142 *
143 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
144 * following (with tree_lock held for write):
145 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
146 * B. remove page from pagecache
147 * C. free the page
148 *
149 * There are 2 critical interleavings that matter:
150 * - 2 runs before A: in this case, A sees elevated refcount and bails out
151 * - A runs before 2: in this case, 2 sees zero refcount and retries;
152 * subsequently, B will complete and 1 will find no page, causing the
153 * lookup to return NULL.
154 *
155 * It is possible that between 1 and 2, the page is removed then the exact same
156 * page is inserted into the same position in pagecache. That's OK: the
157 * old find_get_page using tree_lock could equally have run before or after
158 * such a re-insertion, depending on order that locks are granted.
159 *
160 * Lookups racing against pagecache insertion isn't a big problem: either 1
161 * will find the page or it will not. Likewise, the old find_get_page could run
162 * either before the insertion or afterwards, depending on timing.
163 */
164 static inline int page_cache_get_speculative(struct page *page)
165 {
166 VM_BUG_ON(in_interrupt());
167
168 #ifdef CONFIG_TINY_RCU
169 # ifdef CONFIG_PREEMPT_COUNT
170 VM_BUG_ON(!in_atomic() && !irqs_disabled());
171 # endif
172 /*
173 * Preempt must be disabled here - we rely on rcu_read_lock doing
174 * this for us.
175 *
176 * Pagecache won't be truncated from interrupt context, so if we have
177 * found a page in the radix tree here, we have pinned its refcount by
178 * disabling preempt, and hence no need for the "speculative get" that
179 * SMP requires.
180 */
181 VM_BUG_ON_PAGE(page_count(page) == 0, page);
182 page_ref_inc(page);
183
184 #else
185 if (unlikely(!get_page_unless_zero(page))) {
186 /*
187 * Either the page has been freed, or will be freed.
188 * In either case, retry here and the caller should
189 * do the right thing (see comments above).
190 */
191 return 0;
192 }
193 #endif
194 VM_BUG_ON_PAGE(PageTail(page), page);
195
196 return 1;
197 }
198
199 /*
200 * Same as above, but add instead of inc (could just be merged)
201 */
202 static inline int page_cache_add_speculative(struct page *page, int count)
203 {
204 VM_BUG_ON(in_interrupt());
205
206 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
207 # ifdef CONFIG_PREEMPT_COUNT
208 VM_BUG_ON(!in_atomic() && !irqs_disabled());
209 # endif
210 VM_BUG_ON_PAGE(page_count(page) == 0, page);
211 page_ref_add(page, count);
212
213 #else
214 if (unlikely(!page_ref_add_unless(page, count, 0)))
215 return 0;
216 #endif
217 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
218
219 return 1;
220 }
221
222 #ifdef CONFIG_NUMA
223 extern struct page *__page_cache_alloc(gfp_t gfp);
224 #else
225 static inline struct page *__page_cache_alloc(gfp_t gfp)
226 {
227 return alloc_pages(gfp, 0);
228 }
229 #endif
230
231 static inline struct page *page_cache_alloc(struct address_space *x)
232 {
233 return __page_cache_alloc(mapping_gfp_mask(x));
234 }
235
236 static inline struct page *page_cache_alloc_cold(struct address_space *x)
237 {
238 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
239 }
240
241 static inline gfp_t readahead_gfp_mask(struct address_space *x)
242 {
243 return mapping_gfp_mask(x) |
244 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
245 }
246
247 typedef int filler_t(void *, struct page *);
248
249 pgoff_t page_cache_next_hole(struct address_space *mapping,
250 pgoff_t index, unsigned long max_scan);
251 pgoff_t page_cache_prev_hole(struct address_space *mapping,
252 pgoff_t index, unsigned long max_scan);
253
254 #define FGP_ACCESSED 0x00000001
255 #define FGP_LOCK 0x00000002
256 #define FGP_CREAT 0x00000004
257 #define FGP_WRITE 0x00000008
258 #define FGP_NOFS 0x00000010
259 #define FGP_NOWAIT 0x00000020
260
261 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
262 int fgp_flags, gfp_t cache_gfp_mask);
263
264 /**
265 * find_get_page - find and get a page reference
266 * @mapping: the address_space to search
267 * @offset: the page index
268 *
269 * Looks up the page cache slot at @mapping & @offset. If there is a
270 * page cache page, it is returned with an increased refcount.
271 *
272 * Otherwise, %NULL is returned.
273 */
274 static inline struct page *find_get_page(struct address_space *mapping,
275 pgoff_t offset)
276 {
277 return pagecache_get_page(mapping, offset, 0, 0);
278 }
279
280 static inline struct page *find_get_page_flags(struct address_space *mapping,
281 pgoff_t offset, int fgp_flags)
282 {
283 return pagecache_get_page(mapping, offset, fgp_flags, 0);
284 }
285
286 /**
287 * find_lock_page - locate, pin and lock a pagecache page
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset. If there is a
292 * page cache page, it is returned locked and with an increased
293 * refcount.
294 *
295 * Otherwise, %NULL is returned.
296 *
297 * find_lock_page() may sleep.
298 */
299 static inline struct page *find_lock_page(struct address_space *mapping,
300 pgoff_t offset)
301 {
302 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
303 }
304
305 /**
306 * find_or_create_page - locate or add a pagecache page
307 * @mapping: the page's address_space
308 * @index: the page's index into the mapping
309 * @gfp_mask: page allocation mode
310 *
311 * Looks up the page cache slot at @mapping & @offset. If there is a
312 * page cache page, it is returned locked and with an increased
313 * refcount.
314 *
315 * If the page is not present, a new page is allocated using @gfp_mask
316 * and added to the page cache and the VM's LRU list. The page is
317 * returned locked and with an increased refcount.
318 *
319 * On memory exhaustion, %NULL is returned.
320 *
321 * find_or_create_page() may sleep, even if @gfp_flags specifies an
322 * atomic allocation!
323 */
324 static inline struct page *find_or_create_page(struct address_space *mapping,
325 pgoff_t offset, gfp_t gfp_mask)
326 {
327 return pagecache_get_page(mapping, offset,
328 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
329 gfp_mask);
330 }
331
332 /**
333 * grab_cache_page_nowait - returns locked page at given index in given cache
334 * @mapping: target address_space
335 * @index: the page index
336 *
337 * Same as grab_cache_page(), but do not wait if the page is unavailable.
338 * This is intended for speculative data generators, where the data can
339 * be regenerated if the page couldn't be grabbed. This routine should
340 * be safe to call while holding the lock for another page.
341 *
342 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
343 * and deadlock against the caller's locked page.
344 */
345 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
346 pgoff_t index)
347 {
348 return pagecache_get_page(mapping, index,
349 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
350 mapping_gfp_mask(mapping));
351 }
352
353 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
354 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
355 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
356 unsigned int nr_entries, struct page **entries,
357 pgoff_t *indices);
358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
359 unsigned int nr_pages, struct page **pages);
360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
361 unsigned int nr_pages, struct page **pages);
362 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
363 int tag, unsigned int nr_pages, struct page **pages);
364 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
365 int tag, unsigned int nr_entries,
366 struct page **entries, pgoff_t *indices);
367
368 struct page *grab_cache_page_write_begin(struct address_space *mapping,
369 pgoff_t index, unsigned flags);
370
371 /*
372 * Returns locked page at given index in given cache, creating it if needed.
373 */
374 static inline struct page *grab_cache_page(struct address_space *mapping,
375 pgoff_t index)
376 {
377 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
378 }
379
380 extern struct page * read_cache_page(struct address_space *mapping,
381 pgoff_t index, filler_t *filler, void *data);
382 extern struct page * read_cache_page_gfp(struct address_space *mapping,
383 pgoff_t index, gfp_t gfp_mask);
384 extern int read_cache_pages(struct address_space *mapping,
385 struct list_head *pages, filler_t *filler, void *data);
386
387 static inline struct page *read_mapping_page(struct address_space *mapping,
388 pgoff_t index, void *data)
389 {
390 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
391 return read_cache_page(mapping, index, filler, data);
392 }
393
394 /*
395 * Get index of the page with in radix-tree
396 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
397 */
398 static inline pgoff_t page_to_index(struct page *page)
399 {
400 pgoff_t pgoff;
401
402 if (likely(!PageTransTail(page)))
403 return page->index;
404
405 /*
406 * We don't initialize ->index for tail pages: calculate based on
407 * head page
408 */
409 pgoff = compound_head(page)->index;
410 pgoff += page - compound_head(page);
411 return pgoff;
412 }
413
414 /*
415 * Get the offset in PAGE_SIZE.
416 * (TODO: hugepage should have ->index in PAGE_SIZE)
417 */
418 static inline pgoff_t page_to_pgoff(struct page *page)
419 {
420 if (unlikely(PageHeadHuge(page)))
421 return page->index << compound_order(page);
422
423 return page_to_index(page);
424 }
425
426 /*
427 * Return byte-offset into filesystem object for page.
428 */
429 static inline loff_t page_offset(struct page *page)
430 {
431 return ((loff_t)page->index) << PAGE_SHIFT;
432 }
433
434 static inline loff_t page_file_offset(struct page *page)
435 {
436 return ((loff_t)page_index(page)) << PAGE_SHIFT;
437 }
438
439 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
440 unsigned long address);
441
442 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
443 unsigned long address)
444 {
445 pgoff_t pgoff;
446 if (unlikely(is_vm_hugetlb_page(vma)))
447 return linear_hugepage_index(vma, address);
448 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
449 pgoff += vma->vm_pgoff;
450 return pgoff;
451 }
452
453 extern void __lock_page(struct page *page);
454 extern int __lock_page_killable(struct page *page);
455 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
456 unsigned int flags);
457 extern void unlock_page(struct page *page);
458
459 static inline int trylock_page(struct page *page)
460 {
461 page = compound_head(page);
462 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
463 }
464
465 /*
466 * lock_page may only be called if we have the page's inode pinned.
467 */
468 static inline void lock_page(struct page *page)
469 {
470 might_sleep();
471 if (!trylock_page(page))
472 __lock_page(page);
473 }
474
475 /*
476 * lock_page_killable is like lock_page but can be interrupted by fatal
477 * signals. It returns 0 if it locked the page and -EINTR if it was
478 * killed while waiting.
479 */
480 static inline int lock_page_killable(struct page *page)
481 {
482 might_sleep();
483 if (!trylock_page(page))
484 return __lock_page_killable(page);
485 return 0;
486 }
487
488 /*
489 * lock_page_or_retry - Lock the page, unless this would block and the
490 * caller indicated that it can handle a retry.
491 *
492 * Return value and mmap_sem implications depend on flags; see
493 * __lock_page_or_retry().
494 */
495 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
496 unsigned int flags)
497 {
498 might_sleep();
499 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
500 }
501
502 /*
503 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
504 * and should not be used directly.
505 */
506 extern void wait_on_page_bit(struct page *page, int bit_nr);
507 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
508
509 /*
510 * Wait for a page to be unlocked.
511 *
512 * This must be called with the caller "holding" the page,
513 * ie with increased "page->count" so that the page won't
514 * go away during the wait..
515 */
516 static inline void wait_on_page_locked(struct page *page)
517 {
518 if (PageLocked(page))
519 wait_on_page_bit(compound_head(page), PG_locked);
520 }
521
522 static inline int wait_on_page_locked_killable(struct page *page)
523 {
524 if (!PageLocked(page))
525 return 0;
526 return wait_on_page_bit_killable(compound_head(page), PG_locked);
527 }
528
529 /*
530 * Wait for a page to complete writeback
531 */
532 static inline void wait_on_page_writeback(struct page *page)
533 {
534 if (PageWriteback(page))
535 wait_on_page_bit(page, PG_writeback);
536 }
537
538 extern void end_page_writeback(struct page *page);
539 void wait_for_stable_page(struct page *page);
540
541 void page_endio(struct page *page, bool is_write, int err);
542
543 /*
544 * Add an arbitrary waiter to a page's wait queue
545 */
546 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
547
548 /*
549 * Fault everything in given userspace address range in.
550 */
551 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
552 {
553 char __user *end = uaddr + size - 1;
554
555 if (unlikely(size == 0))
556 return 0;
557
558 if (unlikely(uaddr > end))
559 return -EFAULT;
560 /*
561 * Writing zeroes into userspace here is OK, because we know that if
562 * the zero gets there, we'll be overwriting it.
563 */
564 do {
565 if (unlikely(__put_user(0, uaddr) != 0))
566 return -EFAULT;
567 uaddr += PAGE_SIZE;
568 } while (uaddr <= end);
569
570 /* Check whether the range spilled into the next page. */
571 if (((unsigned long)uaddr & PAGE_MASK) ==
572 ((unsigned long)end & PAGE_MASK))
573 return __put_user(0, end);
574
575 return 0;
576 }
577
578 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
579 {
580 volatile char c;
581 const char __user *end = uaddr + size - 1;
582
583 if (unlikely(size == 0))
584 return 0;
585
586 if (unlikely(uaddr > end))
587 return -EFAULT;
588
589 do {
590 if (unlikely(__get_user(c, uaddr) != 0))
591 return -EFAULT;
592 uaddr += PAGE_SIZE;
593 } while (uaddr <= end);
594
595 /* Check whether the range spilled into the next page. */
596 if (((unsigned long)uaddr & PAGE_MASK) ==
597 ((unsigned long)end & PAGE_MASK)) {
598 return __get_user(c, end);
599 }
600
601 (void)c;
602 return 0;
603 }
604
605 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
606 pgoff_t index, gfp_t gfp_mask);
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608 pgoff_t index, gfp_t gfp_mask);
609 extern void delete_from_page_cache(struct page *page);
610 extern void __delete_from_page_cache(struct page *page, void *shadow);
611 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
612
613 /*
614 * Like add_to_page_cache_locked, but used to add newly allocated pages:
615 * the page is new, so we can just run __SetPageLocked() against it.
616 */
617 static inline int add_to_page_cache(struct page *page,
618 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
619 {
620 int error;
621
622 __SetPageLocked(page);
623 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
624 if (unlikely(error))
625 __ClearPageLocked(page);
626 return error;
627 }
628
629 static inline unsigned long dir_pages(struct inode *inode)
630 {
631 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
632 PAGE_SHIFT;
633 }
634
635 #endif /* _LINUX_PAGEMAP_H */