Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
64 functions are available. */
65 #define HAVE_FREE_NETDEV /* free_netdev() */
66 #define HAVE_NETDEV_PRIV /* netdev_priv() */
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 #endif
132
133 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
134
135 #ifdef __KERNEL__
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
148 # define LL_MAX_HEADER 48
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152
153 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
154 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
155 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
156 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
157 #define MAX_HEADER LL_MAX_HEADER
158 #else
159 #define MAX_HEADER (LL_MAX_HEADER + 48)
160 #endif
161
162 /*
163 * Old network device statistics. Fields are native words
164 * (unsigned long) so they can be read and written atomically.
165 * Each field is padded to 64 bits for compatibility with
166 * rtnl_link_stats64.
167 */
168
169 #if BITS_PER_LONG == 64
170 #define NET_DEVICE_STATS_DEFINE(name) unsigned long name
171 #elif defined(__LITTLE_ENDIAN)
172 #define NET_DEVICE_STATS_DEFINE(name) unsigned long name, pad_ ## name
173 #else
174 #define NET_DEVICE_STATS_DEFINE(name) unsigned long pad_ ## name, name
175 #endif
176
177 struct net_device_stats {
178 NET_DEVICE_STATS_DEFINE(rx_packets);
179 NET_DEVICE_STATS_DEFINE(tx_packets);
180 NET_DEVICE_STATS_DEFINE(rx_bytes);
181 NET_DEVICE_STATS_DEFINE(tx_bytes);
182 NET_DEVICE_STATS_DEFINE(rx_errors);
183 NET_DEVICE_STATS_DEFINE(tx_errors);
184 NET_DEVICE_STATS_DEFINE(rx_dropped);
185 NET_DEVICE_STATS_DEFINE(tx_dropped);
186 NET_DEVICE_STATS_DEFINE(multicast);
187 NET_DEVICE_STATS_DEFINE(collisions);
188 NET_DEVICE_STATS_DEFINE(rx_length_errors);
189 NET_DEVICE_STATS_DEFINE(rx_over_errors);
190 NET_DEVICE_STATS_DEFINE(rx_crc_errors);
191 NET_DEVICE_STATS_DEFINE(rx_frame_errors);
192 NET_DEVICE_STATS_DEFINE(rx_fifo_errors);
193 NET_DEVICE_STATS_DEFINE(rx_missed_errors);
194 NET_DEVICE_STATS_DEFINE(tx_aborted_errors);
195 NET_DEVICE_STATS_DEFINE(tx_carrier_errors);
196 NET_DEVICE_STATS_DEFINE(tx_fifo_errors);
197 NET_DEVICE_STATS_DEFINE(tx_heartbeat_errors);
198 NET_DEVICE_STATS_DEFINE(tx_window_errors);
199 NET_DEVICE_STATS_DEFINE(rx_compressed);
200 NET_DEVICE_STATS_DEFINE(tx_compressed);
201 };
202
203 #endif /* __KERNEL__ */
204
205
206 /* Media selection options. */
207 enum {
208 IF_PORT_UNKNOWN = 0,
209 IF_PORT_10BASE2,
210 IF_PORT_10BASET,
211 IF_PORT_AUI,
212 IF_PORT_100BASET,
213 IF_PORT_100BASETX,
214 IF_PORT_100BASEFX
215 };
216
217 #ifdef __KERNEL__
218
219 #include <linux/cache.h>
220 #include <linux/skbuff.h>
221
222 struct neighbour;
223 struct neigh_parms;
224 struct sk_buff;
225
226 struct netdev_hw_addr {
227 struct list_head list;
228 unsigned char addr[MAX_ADDR_LEN];
229 unsigned char type;
230 #define NETDEV_HW_ADDR_T_LAN 1
231 #define NETDEV_HW_ADDR_T_SAN 2
232 #define NETDEV_HW_ADDR_T_SLAVE 3
233 #define NETDEV_HW_ADDR_T_UNICAST 4
234 #define NETDEV_HW_ADDR_T_MULTICAST 5
235 int refcount;
236 bool synced;
237 bool global_use;
238 struct rcu_head rcu_head;
239 };
240
241 struct netdev_hw_addr_list {
242 struct list_head list;
243 int count;
244 };
245
246 #define netdev_hw_addr_list_count(l) ((l)->count)
247 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
248 #define netdev_hw_addr_list_for_each(ha, l) \
249 list_for_each_entry(ha, &(l)->list, list)
250
251 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
252 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
253 #define netdev_for_each_uc_addr(ha, dev) \
254 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
255
256 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
257 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
258 #define netdev_for_each_mc_addr(ha, dev) \
259 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
260
261 struct hh_cache {
262 struct hh_cache *hh_next; /* Next entry */
263 atomic_t hh_refcnt; /* number of users */
264 /*
265 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
266 * cache line on SMP.
267 * They are mostly read, but hh_refcnt may be changed quite frequently,
268 * incurring cache line ping pongs.
269 */
270 __be16 hh_type ____cacheline_aligned_in_smp;
271 /* protocol identifier, f.e ETH_P_IP
272 * NOTE: For VLANs, this will be the
273 * encapuslated type. --BLG
274 */
275 u16 hh_len; /* length of header */
276 int (*hh_output)(struct sk_buff *skb);
277 seqlock_t hh_lock;
278
279 /* cached hardware header; allow for machine alignment needs. */
280 #define HH_DATA_MOD 16
281 #define HH_DATA_OFF(__len) \
282 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
283 #define HH_DATA_ALIGN(__len) \
284 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
285 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
286 };
287
288 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
289 * Alternative is:
290 * dev->hard_header_len ? (dev->hard_header_len +
291 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
292 *
293 * We could use other alignment values, but we must maintain the
294 * relationship HH alignment <= LL alignment.
295 *
296 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
297 * may need.
298 */
299 #define LL_RESERVED_SPACE(dev) \
300 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
302 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
303 #define LL_ALLOCATED_SPACE(dev) \
304 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
305
306 struct header_ops {
307 int (*create) (struct sk_buff *skb, struct net_device *dev,
308 unsigned short type, const void *daddr,
309 const void *saddr, unsigned len);
310 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
311 int (*rebuild)(struct sk_buff *skb);
312 #define HAVE_HEADER_CACHE
313 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
314 void (*cache_update)(struct hh_cache *hh,
315 const struct net_device *dev,
316 const unsigned char *haddr);
317 };
318
319 /* These flag bits are private to the generic network queueing
320 * layer, they may not be explicitly referenced by any other
321 * code.
322 */
323
324 enum netdev_state_t {
325 __LINK_STATE_START,
326 __LINK_STATE_PRESENT,
327 __LINK_STATE_NOCARRIER,
328 __LINK_STATE_LINKWATCH_PENDING,
329 __LINK_STATE_DORMANT,
330 };
331
332
333 /*
334 * This structure holds at boot time configured netdevice settings. They
335 * are then used in the device probing.
336 */
337 struct netdev_boot_setup {
338 char name[IFNAMSIZ];
339 struct ifmap map;
340 };
341 #define NETDEV_BOOT_SETUP_MAX 8
342
343 extern int __init netdev_boot_setup(char *str);
344
345 /*
346 * Structure for NAPI scheduling similar to tasklet but with weighting
347 */
348 struct napi_struct {
349 /* The poll_list must only be managed by the entity which
350 * changes the state of the NAPI_STATE_SCHED bit. This means
351 * whoever atomically sets that bit can add this napi_struct
352 * to the per-cpu poll_list, and whoever clears that bit
353 * can remove from the list right before clearing the bit.
354 */
355 struct list_head poll_list;
356
357 unsigned long state;
358 int weight;
359 int (*poll)(struct napi_struct *, int);
360 #ifdef CONFIG_NETPOLL
361 spinlock_t poll_lock;
362 int poll_owner;
363 #endif
364
365 unsigned int gro_count;
366
367 struct net_device *dev;
368 struct list_head dev_list;
369 struct sk_buff *gro_list;
370 struct sk_buff *skb;
371 };
372
373 enum {
374 NAPI_STATE_SCHED, /* Poll is scheduled */
375 NAPI_STATE_DISABLE, /* Disable pending */
376 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
377 };
378
379 enum gro_result {
380 GRO_MERGED,
381 GRO_MERGED_FREE,
382 GRO_HELD,
383 GRO_NORMAL,
384 GRO_DROP,
385 };
386 typedef enum gro_result gro_result_t;
387
388 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
389
390 extern void __napi_schedule(struct napi_struct *n);
391
392 static inline int napi_disable_pending(struct napi_struct *n)
393 {
394 return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396
397 /**
398 * napi_schedule_prep - check if napi can be scheduled
399 * @n: napi context
400 *
401 * Test if NAPI routine is already running, and if not mark
402 * it as running. This is used as a condition variable
403 * insure only one NAPI poll instance runs. We also make
404 * sure there is no pending NAPI disable.
405 */
406 static inline int napi_schedule_prep(struct napi_struct *n)
407 {
408 return !napi_disable_pending(n) &&
409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411
412 /**
413 * napi_schedule - schedule NAPI poll
414 * @n: napi context
415 *
416 * Schedule NAPI poll routine to be called if it is not already
417 * running.
418 */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 if (napi_schedule_prep(n))
422 __napi_schedule(n);
423 }
424
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
426 static inline int napi_reschedule(struct napi_struct *napi)
427 {
428 if (napi_schedule_prep(napi)) {
429 __napi_schedule(napi);
430 return 1;
431 }
432 return 0;
433 }
434
435 /**
436 * napi_complete - NAPI processing complete
437 * @n: napi context
438 *
439 * Mark NAPI processing as complete.
440 */
441 extern void __napi_complete(struct napi_struct *n);
442 extern void napi_complete(struct napi_struct *n);
443
444 /**
445 * napi_disable - prevent NAPI from scheduling
446 * @n: napi context
447 *
448 * Stop NAPI from being scheduled on this context.
449 * Waits till any outstanding processing completes.
450 */
451 static inline void napi_disable(struct napi_struct *n)
452 {
453 set_bit(NAPI_STATE_DISABLE, &n->state);
454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
455 msleep(1);
456 clear_bit(NAPI_STATE_DISABLE, &n->state);
457 }
458
459 /**
460 * napi_enable - enable NAPI scheduling
461 * @n: napi context
462 *
463 * Resume NAPI from being scheduled on this context.
464 * Must be paired with napi_disable.
465 */
466 static inline void napi_enable(struct napi_struct *n)
467 {
468 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
469 smp_mb__before_clear_bit();
470 clear_bit(NAPI_STATE_SCHED, &n->state);
471 }
472
473 #ifdef CONFIG_SMP
474 /**
475 * napi_synchronize - wait until NAPI is not running
476 * @n: napi context
477 *
478 * Wait until NAPI is done being scheduled on this context.
479 * Waits till any outstanding processing completes but
480 * does not disable future activations.
481 */
482 static inline void napi_synchronize(const struct napi_struct *n)
483 {
484 while (test_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 }
487 #else
488 # define napi_synchronize(n) barrier()
489 #endif
490
491 enum netdev_queue_state_t {
492 __QUEUE_STATE_XOFF,
493 __QUEUE_STATE_FROZEN,
494 };
495
496 struct netdev_queue {
497 /*
498 * read mostly part
499 */
500 struct net_device *dev;
501 struct Qdisc *qdisc;
502 unsigned long state;
503 struct Qdisc *qdisc_sleeping;
504 /*
505 * write mostly part
506 */
507 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
508 int xmit_lock_owner;
509 /*
510 * please use this field instead of dev->trans_start
511 */
512 unsigned long trans_start;
513 unsigned long tx_bytes;
514 unsigned long tx_packets;
515 unsigned long tx_dropped;
516 } ____cacheline_aligned_in_smp;
517
518 #ifdef CONFIG_RPS
519 /*
520 * This structure holds an RPS map which can be of variable length. The
521 * map is an array of CPUs.
522 */
523 struct rps_map {
524 unsigned int len;
525 struct rcu_head rcu;
526 u16 cpus[0];
527 };
528 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
529
530 /*
531 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
532 * tail pointer for that CPU's input queue at the time of last enqueue.
533 */
534 struct rps_dev_flow {
535 u16 cpu;
536 u16 fill;
537 unsigned int last_qtail;
538 };
539
540 /*
541 * The rps_dev_flow_table structure contains a table of flow mappings.
542 */
543 struct rps_dev_flow_table {
544 unsigned int mask;
545 struct rcu_head rcu;
546 struct work_struct free_work;
547 struct rps_dev_flow flows[0];
548 };
549 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
550 (_num * sizeof(struct rps_dev_flow)))
551
552 /*
553 * The rps_sock_flow_table contains mappings of flows to the last CPU
554 * on which they were processed by the application (set in recvmsg).
555 */
556 struct rps_sock_flow_table {
557 unsigned int mask;
558 u16 ents[0];
559 };
560 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
561 (_num * sizeof(u16)))
562
563 #define RPS_NO_CPU 0xffff
564
565 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
566 u32 hash)
567 {
568 if (table && hash) {
569 unsigned int cpu, index = hash & table->mask;
570
571 /* We only give a hint, preemption can change cpu under us */
572 cpu = raw_smp_processor_id();
573
574 if (table->ents[index] != cpu)
575 table->ents[index] = cpu;
576 }
577 }
578
579 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
580 u32 hash)
581 {
582 if (table && hash)
583 table->ents[hash & table->mask] = RPS_NO_CPU;
584 }
585
586 extern struct rps_sock_flow_table *rps_sock_flow_table;
587
588 /* This structure contains an instance of an RX queue. */
589 struct netdev_rx_queue {
590 struct rps_map *rps_map;
591 struct rps_dev_flow_table *rps_flow_table;
592 struct kobject kobj;
593 struct netdev_rx_queue *first;
594 atomic_t count;
595 } ____cacheline_aligned_in_smp;
596 #endif /* CONFIG_RPS */
597
598 /*
599 * This structure defines the management hooks for network devices.
600 * The following hooks can be defined; unless noted otherwise, they are
601 * optional and can be filled with a null pointer.
602 *
603 * int (*ndo_init)(struct net_device *dev);
604 * This function is called once when network device is registered.
605 * The network device can use this to any late stage initializaton
606 * or semantic validattion. It can fail with an error code which will
607 * be propogated back to register_netdev
608 *
609 * void (*ndo_uninit)(struct net_device *dev);
610 * This function is called when device is unregistered or when registration
611 * fails. It is not called if init fails.
612 *
613 * int (*ndo_open)(struct net_device *dev);
614 * This function is called when network device transistions to the up
615 * state.
616 *
617 * int (*ndo_stop)(struct net_device *dev);
618 * This function is called when network device transistions to the down
619 * state.
620 *
621 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
622 * struct net_device *dev);
623 * Called when a packet needs to be transmitted.
624 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
625 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
626 * Required can not be NULL.
627 *
628 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
629 * Called to decide which queue to when device supports multiple
630 * transmit queues.
631 *
632 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
633 * This function is called to allow device receiver to make
634 * changes to configuration when multicast or promiscious is enabled.
635 *
636 * void (*ndo_set_rx_mode)(struct net_device *dev);
637 * This function is called device changes address list filtering.
638 *
639 * void (*ndo_set_multicast_list)(struct net_device *dev);
640 * This function is called when the multicast address list changes.
641 *
642 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
643 * This function is called when the Media Access Control address
644 * needs to be changed. If this interface is not defined, the
645 * mac address can not be changed.
646 *
647 * int (*ndo_validate_addr)(struct net_device *dev);
648 * Test if Media Access Control address is valid for the device.
649 *
650 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
651 * Called when a user request an ioctl which can't be handled by
652 * the generic interface code. If not defined ioctl's return
653 * not supported error code.
654 *
655 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
656 * Used to set network devices bus interface parameters. This interface
657 * is retained for legacy reason, new devices should use the bus
658 * interface (PCI) for low level management.
659 *
660 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
661 * Called when a user wants to change the Maximum Transfer Unit
662 * of a device. If not defined, any request to change MTU will
663 * will return an error.
664 *
665 * void (*ndo_tx_timeout)(struct net_device *dev);
666 * Callback uses when the transmitter has not made any progress
667 * for dev->watchdog ticks.
668 *
669 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev);
670 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
671 * Called when a user wants to get the network device usage
672 * statistics. Drivers must do one of the following:
673 * 1. Define @ndo_get_stats64 to update a rtnl_link_stats64 structure
674 * (which should normally be dev->stats64) and return a ponter to
675 * it. The structure must not be changed asynchronously.
676 * 2. Define @ndo_get_stats to update a net_device_stats structure
677 * (which should normally be dev->stats) and return a pointer to
678 * it. The structure may be changed asynchronously only if each
679 * field is written atomically.
680 * 3. Update dev->stats asynchronously and atomically, and define
681 * neither operation.
682 *
683 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
684 * If device support VLAN receive accleration
685 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
686 * when vlan groups for the device changes. Note: grp is NULL
687 * if no vlan's groups are being used.
688 *
689 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
690 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
691 * this function is called when a VLAN id is registered.
692 *
693 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
694 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
695 * this function is called when a VLAN id is unregistered.
696 *
697 * void (*ndo_poll_controller)(struct net_device *dev);
698 *
699 * SR-IOV management functions.
700 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
701 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
702 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
703 * int (*ndo_get_vf_config)(struct net_device *dev,
704 * int vf, struct ifla_vf_info *ivf);
705 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
706 * struct nlattr *port[]);
707 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
708 */
709 #define HAVE_NET_DEVICE_OPS
710 struct net_device_ops {
711 int (*ndo_init)(struct net_device *dev);
712 void (*ndo_uninit)(struct net_device *dev);
713 int (*ndo_open)(struct net_device *dev);
714 int (*ndo_stop)(struct net_device *dev);
715 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
716 struct net_device *dev);
717 u16 (*ndo_select_queue)(struct net_device *dev,
718 struct sk_buff *skb);
719 void (*ndo_change_rx_flags)(struct net_device *dev,
720 int flags);
721 void (*ndo_set_rx_mode)(struct net_device *dev);
722 void (*ndo_set_multicast_list)(struct net_device *dev);
723 int (*ndo_set_mac_address)(struct net_device *dev,
724 void *addr);
725 int (*ndo_validate_addr)(struct net_device *dev);
726 int (*ndo_do_ioctl)(struct net_device *dev,
727 struct ifreq *ifr, int cmd);
728 int (*ndo_set_config)(struct net_device *dev,
729 struct ifmap *map);
730 int (*ndo_change_mtu)(struct net_device *dev,
731 int new_mtu);
732 int (*ndo_neigh_setup)(struct net_device *dev,
733 struct neigh_parms *);
734 void (*ndo_tx_timeout) (struct net_device *dev);
735
736 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev);
737 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
738
739 void (*ndo_vlan_rx_register)(struct net_device *dev,
740 struct vlan_group *grp);
741 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
742 unsigned short vid);
743 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
744 unsigned short vid);
745 #ifdef CONFIG_NET_POLL_CONTROLLER
746 void (*ndo_poll_controller)(struct net_device *dev);
747 int (*ndo_netpoll_setup)(struct net_device *dev,
748 struct netpoll_info *info);
749 void (*ndo_netpoll_cleanup)(struct net_device *dev);
750 #endif
751 int (*ndo_set_vf_mac)(struct net_device *dev,
752 int queue, u8 *mac);
753 int (*ndo_set_vf_vlan)(struct net_device *dev,
754 int queue, u16 vlan, u8 qos);
755 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
756 int vf, int rate);
757 int (*ndo_get_vf_config)(struct net_device *dev,
758 int vf,
759 struct ifla_vf_info *ivf);
760 int (*ndo_set_vf_port)(struct net_device *dev,
761 int vf,
762 struct nlattr *port[]);
763 int (*ndo_get_vf_port)(struct net_device *dev,
764 int vf, struct sk_buff *skb);
765 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
766 int (*ndo_fcoe_enable)(struct net_device *dev);
767 int (*ndo_fcoe_disable)(struct net_device *dev);
768 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
769 u16 xid,
770 struct scatterlist *sgl,
771 unsigned int sgc);
772 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
773 u16 xid);
774 #define NETDEV_FCOE_WWNN 0
775 #define NETDEV_FCOE_WWPN 1
776 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
777 u64 *wwn, int type);
778 #endif
779 };
780
781 /*
782 * The DEVICE structure.
783 * Actually, this whole structure is a big mistake. It mixes I/O
784 * data with strictly "high-level" data, and it has to know about
785 * almost every data structure used in the INET module.
786 *
787 * FIXME: cleanup struct net_device such that network protocol info
788 * moves out.
789 */
790
791 struct net_device {
792
793 /*
794 * This is the first field of the "visible" part of this structure
795 * (i.e. as seen by users in the "Space.c" file). It is the name
796 * the interface.
797 */
798 char name[IFNAMSIZ];
799
800 struct pm_qos_request_list *pm_qos_req;
801
802 /* device name hash chain */
803 struct hlist_node name_hlist;
804 /* snmp alias */
805 char *ifalias;
806
807 /*
808 * I/O specific fields
809 * FIXME: Merge these and struct ifmap into one
810 */
811 unsigned long mem_end; /* shared mem end */
812 unsigned long mem_start; /* shared mem start */
813 unsigned long base_addr; /* device I/O address */
814 unsigned int irq; /* device IRQ number */
815
816 /*
817 * Some hardware also needs these fields, but they are not
818 * part of the usual set specified in Space.c.
819 */
820
821 unsigned char if_port; /* Selectable AUI, TP,..*/
822 unsigned char dma; /* DMA channel */
823
824 unsigned long state;
825
826 struct list_head dev_list;
827 struct list_head napi_list;
828 struct list_head unreg_list;
829
830 /* Net device features */
831 unsigned long features;
832 #define NETIF_F_SG 1 /* Scatter/gather IO. */
833 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
834 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
835 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
836 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
837 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
838 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
839 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
840 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
841 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
842 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
843 #define NETIF_F_GSO 2048 /* Enable software GSO. */
844 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
845 /* do not use LLTX in new drivers */
846 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
847 #define NETIF_F_GRO 16384 /* Generic receive offload */
848 #define NETIF_F_LRO 32768 /* large receive offload */
849
850 /* the GSO_MASK reserves bits 16 through 23 */
851 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
852 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
853 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
854 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
855 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
856
857 /* Segmentation offload features */
858 #define NETIF_F_GSO_SHIFT 16
859 #define NETIF_F_GSO_MASK 0x00ff0000
860 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
861 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
862 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
863 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
864 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
865 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
866
867 /* List of features with software fallbacks. */
868 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
869 NETIF_F_TSO6 | NETIF_F_UFO)
870
871
872 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
873 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
874 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
875 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
876
877 /*
878 * If one device supports one of these features, then enable them
879 * for all in netdev_increment_features.
880 */
881 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
882 NETIF_F_SG | NETIF_F_HIGHDMA | \
883 NETIF_F_FRAGLIST)
884
885 /* Interface index. Unique device identifier */
886 int ifindex;
887 int iflink;
888
889 union {
890 struct rtnl_link_stats64 stats64;
891 struct net_device_stats stats;
892 };
893
894 #ifdef CONFIG_WIRELESS_EXT
895 /* List of functions to handle Wireless Extensions (instead of ioctl).
896 * See <net/iw_handler.h> for details. Jean II */
897 const struct iw_handler_def * wireless_handlers;
898 /* Instance data managed by the core of Wireless Extensions. */
899 struct iw_public_data * wireless_data;
900 #endif
901 /* Management operations */
902 const struct net_device_ops *netdev_ops;
903 const struct ethtool_ops *ethtool_ops;
904
905 /* Hardware header description */
906 const struct header_ops *header_ops;
907
908 unsigned int flags; /* interface flags (a la BSD) */
909 unsigned short gflags;
910 unsigned short priv_flags; /* Like 'flags' but invisible to userspace. */
911 unsigned short padded; /* How much padding added by alloc_netdev() */
912
913 unsigned char operstate; /* RFC2863 operstate */
914 unsigned char link_mode; /* mapping policy to operstate */
915
916 unsigned int mtu; /* interface MTU value */
917 unsigned short type; /* interface hardware type */
918 unsigned short hard_header_len; /* hardware hdr length */
919
920 /* extra head- and tailroom the hardware may need, but not in all cases
921 * can this be guaranteed, especially tailroom. Some cases also use
922 * LL_MAX_HEADER instead to allocate the skb.
923 */
924 unsigned short needed_headroom;
925 unsigned short needed_tailroom;
926
927 struct net_device *master; /* Pointer to master device of a group,
928 * which this device is member of.
929 */
930
931 /* Interface address info. */
932 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
933 unsigned char addr_len; /* hardware address length */
934 unsigned short dev_id; /* for shared network cards */
935
936 spinlock_t addr_list_lock;
937 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
938 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
939 int uc_promisc;
940 unsigned int promiscuity;
941 unsigned int allmulti;
942
943
944 /* Protocol specific pointers */
945
946 #ifdef CONFIG_NET_DSA
947 void *dsa_ptr; /* dsa specific data */
948 #endif
949 void *atalk_ptr; /* AppleTalk link */
950 void *ip_ptr; /* IPv4 specific data */
951 void *dn_ptr; /* DECnet specific data */
952 void *ip6_ptr; /* IPv6 specific data */
953 void *ec_ptr; /* Econet specific data */
954 void *ax25_ptr; /* AX.25 specific data */
955 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
956 assign before registering */
957
958 /*
959 * Cache line mostly used on receive path (including eth_type_trans())
960 */
961 unsigned long last_rx; /* Time of last Rx */
962 /* Interface address info used in eth_type_trans() */
963 unsigned char *dev_addr; /* hw address, (before bcast
964 because most packets are
965 unicast) */
966
967 struct netdev_hw_addr_list dev_addrs; /* list of device
968 hw addresses */
969
970 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
971
972 #ifdef CONFIG_RPS
973 struct kset *queues_kset;
974
975 struct netdev_rx_queue *_rx;
976
977 /* Number of RX queues allocated at alloc_netdev_mq() time */
978 unsigned int num_rx_queues;
979 #endif
980
981 struct netdev_queue rx_queue;
982 rx_handler_func_t *rx_handler;
983 void *rx_handler_data;
984
985 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
986
987 /* Number of TX queues allocated at alloc_netdev_mq() time */
988 unsigned int num_tx_queues;
989
990 /* Number of TX queues currently active in device */
991 unsigned int real_num_tx_queues;
992
993 /* root qdisc from userspace point of view */
994 struct Qdisc *qdisc;
995
996 unsigned long tx_queue_len; /* Max frames per queue allowed */
997 spinlock_t tx_global_lock;
998 /*
999 * One part is mostly used on xmit path (device)
1000 */
1001 /* These may be needed for future network-power-down code. */
1002
1003 /*
1004 * trans_start here is expensive for high speed devices on SMP,
1005 * please use netdev_queue->trans_start instead.
1006 */
1007 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1008
1009 int watchdog_timeo; /* used by dev_watchdog() */
1010 struct timer_list watchdog_timer;
1011
1012 /* Number of references to this device */
1013 atomic_t refcnt ____cacheline_aligned_in_smp;
1014
1015 /* delayed register/unregister */
1016 struct list_head todo_list;
1017 /* device index hash chain */
1018 struct hlist_node index_hlist;
1019
1020 struct list_head link_watch_list;
1021
1022 /* register/unregister state machine */
1023 enum { NETREG_UNINITIALIZED=0,
1024 NETREG_REGISTERED, /* completed register_netdevice */
1025 NETREG_UNREGISTERING, /* called unregister_netdevice */
1026 NETREG_UNREGISTERED, /* completed unregister todo */
1027 NETREG_RELEASED, /* called free_netdev */
1028 NETREG_DUMMY, /* dummy device for NAPI poll */
1029 } reg_state:16;
1030
1031 enum {
1032 RTNL_LINK_INITIALIZED,
1033 RTNL_LINK_INITIALIZING,
1034 } rtnl_link_state:16;
1035
1036 /* Called from unregister, can be used to call free_netdev */
1037 void (*destructor)(struct net_device *dev);
1038
1039 #ifdef CONFIG_NETPOLL
1040 struct netpoll_info *npinfo;
1041 #endif
1042
1043 #ifdef CONFIG_NET_NS
1044 /* Network namespace this network device is inside */
1045 struct net *nd_net;
1046 #endif
1047
1048 /* mid-layer private */
1049 void *ml_priv;
1050
1051 /* GARP */
1052 struct garp_port *garp_port;
1053
1054 /* class/net/name entry */
1055 struct device dev;
1056 /* space for optional device, statistics, and wireless sysfs groups */
1057 const struct attribute_group *sysfs_groups[4];
1058
1059 /* rtnetlink link ops */
1060 const struct rtnl_link_ops *rtnl_link_ops;
1061
1062 /* VLAN feature mask */
1063 unsigned long vlan_features;
1064
1065 /* for setting kernel sock attribute on TCP connection setup */
1066 #define GSO_MAX_SIZE 65536
1067 unsigned int gso_max_size;
1068
1069 #ifdef CONFIG_DCB
1070 /* Data Center Bridging netlink ops */
1071 const struct dcbnl_rtnl_ops *dcbnl_ops;
1072 #endif
1073
1074 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1075 /* max exchange id for FCoE LRO by ddp */
1076 unsigned int fcoe_ddp_xid;
1077 #endif
1078 /* n-tuple filter list attached to this device */
1079 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1080 };
1081 #define to_net_dev(d) container_of(d, struct net_device, dev)
1082
1083 #define NETDEV_ALIGN 32
1084
1085 static inline
1086 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1087 unsigned int index)
1088 {
1089 return &dev->_tx[index];
1090 }
1091
1092 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1093 void (*f)(struct net_device *,
1094 struct netdev_queue *,
1095 void *),
1096 void *arg)
1097 {
1098 unsigned int i;
1099
1100 for (i = 0; i < dev->num_tx_queues; i++)
1101 f(dev, &dev->_tx[i], arg);
1102 }
1103
1104 /*
1105 * Net namespace inlines
1106 */
1107 static inline
1108 struct net *dev_net(const struct net_device *dev)
1109 {
1110 return read_pnet(&dev->nd_net);
1111 }
1112
1113 static inline
1114 void dev_net_set(struct net_device *dev, struct net *net)
1115 {
1116 #ifdef CONFIG_NET_NS
1117 release_net(dev->nd_net);
1118 dev->nd_net = hold_net(net);
1119 #endif
1120 }
1121
1122 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1123 {
1124 #ifdef CONFIG_NET_DSA_TAG_DSA
1125 if (dev->dsa_ptr != NULL)
1126 return dsa_uses_dsa_tags(dev->dsa_ptr);
1127 #endif
1128
1129 return 0;
1130 }
1131
1132 #ifndef CONFIG_NET_NS
1133 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1134 {
1135 skb->dev = dev;
1136 }
1137 #else /* CONFIG_NET_NS */
1138 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1139 #endif
1140
1141 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1142 {
1143 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1144 if (dev->dsa_ptr != NULL)
1145 return dsa_uses_trailer_tags(dev->dsa_ptr);
1146 #endif
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * netdev_priv - access network device private data
1153 * @dev: network device
1154 *
1155 * Get network device private data
1156 */
1157 static inline void *netdev_priv(const struct net_device *dev)
1158 {
1159 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1160 }
1161
1162 /* Set the sysfs physical device reference for the network logical device
1163 * if set prior to registration will cause a symlink during initialization.
1164 */
1165 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1166
1167 /* Set the sysfs device type for the network logical device to allow
1168 * fin grained indentification of different network device types. For
1169 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1170 */
1171 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1172
1173 /**
1174 * netif_napi_add - initialize a napi context
1175 * @dev: network device
1176 * @napi: napi context
1177 * @poll: polling function
1178 * @weight: default weight
1179 *
1180 * netif_napi_add() must be used to initialize a napi context prior to calling
1181 * *any* of the other napi related functions.
1182 */
1183 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1184 int (*poll)(struct napi_struct *, int), int weight);
1185
1186 /**
1187 * netif_napi_del - remove a napi context
1188 * @napi: napi context
1189 *
1190 * netif_napi_del() removes a napi context from the network device napi list
1191 */
1192 void netif_napi_del(struct napi_struct *napi);
1193
1194 struct napi_gro_cb {
1195 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1196 void *frag0;
1197
1198 /* Length of frag0. */
1199 unsigned int frag0_len;
1200
1201 /* This indicates where we are processing relative to skb->data. */
1202 int data_offset;
1203
1204 /* This is non-zero if the packet may be of the same flow. */
1205 int same_flow;
1206
1207 /* This is non-zero if the packet cannot be merged with the new skb. */
1208 int flush;
1209
1210 /* Number of segments aggregated. */
1211 int count;
1212
1213 /* Free the skb? */
1214 int free;
1215 };
1216
1217 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1218
1219 struct packet_type {
1220 __be16 type; /* This is really htons(ether_type). */
1221 struct net_device *dev; /* NULL is wildcarded here */
1222 int (*func) (struct sk_buff *,
1223 struct net_device *,
1224 struct packet_type *,
1225 struct net_device *);
1226 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1227 int features);
1228 int (*gso_send_check)(struct sk_buff *skb);
1229 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1230 struct sk_buff *skb);
1231 int (*gro_complete)(struct sk_buff *skb);
1232 void *af_packet_priv;
1233 struct list_head list;
1234 };
1235
1236 #include <linux/interrupt.h>
1237 #include <linux/notifier.h>
1238
1239 extern rwlock_t dev_base_lock; /* Device list lock */
1240
1241
1242 #define for_each_netdev(net, d) \
1243 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1244 #define for_each_netdev_reverse(net, d) \
1245 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1246 #define for_each_netdev_rcu(net, d) \
1247 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1248 #define for_each_netdev_safe(net, d, n) \
1249 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1250 #define for_each_netdev_continue(net, d) \
1251 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1252 #define for_each_netdev_continue_rcu(net, d) \
1253 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1254 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1255
1256 static inline struct net_device *next_net_device(struct net_device *dev)
1257 {
1258 struct list_head *lh;
1259 struct net *net;
1260
1261 net = dev_net(dev);
1262 lh = dev->dev_list.next;
1263 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1264 }
1265
1266 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1267 {
1268 struct list_head *lh;
1269 struct net *net;
1270
1271 net = dev_net(dev);
1272 lh = rcu_dereference(dev->dev_list.next);
1273 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1274 }
1275
1276 static inline struct net_device *first_net_device(struct net *net)
1277 {
1278 return list_empty(&net->dev_base_head) ? NULL :
1279 net_device_entry(net->dev_base_head.next);
1280 }
1281
1282 extern int netdev_boot_setup_check(struct net_device *dev);
1283 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1284 extern struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr);
1285 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1286 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1287 extern void dev_add_pack(struct packet_type *pt);
1288 extern void dev_remove_pack(struct packet_type *pt);
1289 extern void __dev_remove_pack(struct packet_type *pt);
1290
1291 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1292 unsigned short mask);
1293 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1294 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1295 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1296 extern int dev_alloc_name(struct net_device *dev, const char *name);
1297 extern int dev_open(struct net_device *dev);
1298 extern int dev_close(struct net_device *dev);
1299 extern void dev_disable_lro(struct net_device *dev);
1300 extern int dev_queue_xmit(struct sk_buff *skb);
1301 extern int register_netdevice(struct net_device *dev);
1302 extern void unregister_netdevice_queue(struct net_device *dev,
1303 struct list_head *head);
1304 extern void unregister_netdevice_many(struct list_head *head);
1305 static inline void unregister_netdevice(struct net_device *dev)
1306 {
1307 unregister_netdevice_queue(dev, NULL);
1308 }
1309
1310 extern void free_netdev(struct net_device *dev);
1311 extern void synchronize_net(void);
1312 extern int register_netdevice_notifier(struct notifier_block *nb);
1313 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1314 extern int init_dummy_netdev(struct net_device *dev);
1315 extern void netdev_resync_ops(struct net_device *dev);
1316
1317 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1318 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1319 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1320 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1321 extern int dev_restart(struct net_device *dev);
1322 #ifdef CONFIG_NETPOLL_TRAP
1323 extern int netpoll_trap(void);
1324 #endif
1325 extern int skb_gro_receive(struct sk_buff **head,
1326 struct sk_buff *skb);
1327 extern void skb_gro_reset_offset(struct sk_buff *skb);
1328
1329 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1330 {
1331 return NAPI_GRO_CB(skb)->data_offset;
1332 }
1333
1334 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1335 {
1336 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1337 }
1338
1339 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1340 {
1341 NAPI_GRO_CB(skb)->data_offset += len;
1342 }
1343
1344 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1345 unsigned int offset)
1346 {
1347 return NAPI_GRO_CB(skb)->frag0 + offset;
1348 }
1349
1350 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1351 {
1352 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1353 }
1354
1355 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1356 unsigned int offset)
1357 {
1358 NAPI_GRO_CB(skb)->frag0 = NULL;
1359 NAPI_GRO_CB(skb)->frag0_len = 0;
1360 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1361 }
1362
1363 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1364 {
1365 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1366 }
1367
1368 static inline void *skb_gro_network_header(struct sk_buff *skb)
1369 {
1370 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1371 skb_network_offset(skb);
1372 }
1373
1374 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1375 unsigned short type,
1376 const void *daddr, const void *saddr,
1377 unsigned len)
1378 {
1379 if (!dev->header_ops || !dev->header_ops->create)
1380 return 0;
1381
1382 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1383 }
1384
1385 static inline int dev_parse_header(const struct sk_buff *skb,
1386 unsigned char *haddr)
1387 {
1388 const struct net_device *dev = skb->dev;
1389
1390 if (!dev->header_ops || !dev->header_ops->parse)
1391 return 0;
1392 return dev->header_ops->parse(skb, haddr);
1393 }
1394
1395 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1396 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1397 static inline int unregister_gifconf(unsigned int family)
1398 {
1399 return register_gifconf(family, NULL);
1400 }
1401
1402 /*
1403 * Incoming packets are placed on per-cpu queues
1404 */
1405 struct softnet_data {
1406 struct Qdisc *output_queue;
1407 struct Qdisc **output_queue_tailp;
1408 struct list_head poll_list;
1409 struct sk_buff *completion_queue;
1410 struct sk_buff_head process_queue;
1411
1412 /* stats */
1413 unsigned int processed;
1414 unsigned int time_squeeze;
1415 unsigned int cpu_collision;
1416 unsigned int received_rps;
1417
1418 #ifdef CONFIG_RPS
1419 struct softnet_data *rps_ipi_list;
1420
1421 /* Elements below can be accessed between CPUs for RPS */
1422 struct call_single_data csd ____cacheline_aligned_in_smp;
1423 struct softnet_data *rps_ipi_next;
1424 unsigned int cpu;
1425 unsigned int input_queue_head;
1426 unsigned int input_queue_tail;
1427 #endif
1428 unsigned dropped;
1429 struct sk_buff_head input_pkt_queue;
1430 struct napi_struct backlog;
1431 };
1432
1433 static inline void input_queue_head_incr(struct softnet_data *sd)
1434 {
1435 #ifdef CONFIG_RPS
1436 sd->input_queue_head++;
1437 #endif
1438 }
1439
1440 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1441 unsigned int *qtail)
1442 {
1443 #ifdef CONFIG_RPS
1444 *qtail = ++sd->input_queue_tail;
1445 #endif
1446 }
1447
1448 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1449
1450 #define HAVE_NETIF_QUEUE
1451
1452 extern void __netif_schedule(struct Qdisc *q);
1453
1454 static inline void netif_schedule_queue(struct netdev_queue *txq)
1455 {
1456 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1457 __netif_schedule(txq->qdisc);
1458 }
1459
1460 static inline void netif_tx_schedule_all(struct net_device *dev)
1461 {
1462 unsigned int i;
1463
1464 for (i = 0; i < dev->num_tx_queues; i++)
1465 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1466 }
1467
1468 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1469 {
1470 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1471 }
1472
1473 /**
1474 * netif_start_queue - allow transmit
1475 * @dev: network device
1476 *
1477 * Allow upper layers to call the device hard_start_xmit routine.
1478 */
1479 static inline void netif_start_queue(struct net_device *dev)
1480 {
1481 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1482 }
1483
1484 static inline void netif_tx_start_all_queues(struct net_device *dev)
1485 {
1486 unsigned int i;
1487
1488 for (i = 0; i < dev->num_tx_queues; i++) {
1489 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1490 netif_tx_start_queue(txq);
1491 }
1492 }
1493
1494 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1495 {
1496 #ifdef CONFIG_NETPOLL_TRAP
1497 if (netpoll_trap()) {
1498 netif_tx_start_queue(dev_queue);
1499 return;
1500 }
1501 #endif
1502 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1503 __netif_schedule(dev_queue->qdisc);
1504 }
1505
1506 /**
1507 * netif_wake_queue - restart transmit
1508 * @dev: network device
1509 *
1510 * Allow upper layers to call the device hard_start_xmit routine.
1511 * Used for flow control when transmit resources are available.
1512 */
1513 static inline void netif_wake_queue(struct net_device *dev)
1514 {
1515 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1516 }
1517
1518 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1519 {
1520 unsigned int i;
1521
1522 for (i = 0; i < dev->num_tx_queues; i++) {
1523 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1524 netif_tx_wake_queue(txq);
1525 }
1526 }
1527
1528 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1529 {
1530 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1531 }
1532
1533 /**
1534 * netif_stop_queue - stop transmitted packets
1535 * @dev: network device
1536 *
1537 * Stop upper layers calling the device hard_start_xmit routine.
1538 * Used for flow control when transmit resources are unavailable.
1539 */
1540 static inline void netif_stop_queue(struct net_device *dev)
1541 {
1542 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1543 }
1544
1545 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1546 {
1547 unsigned int i;
1548
1549 for (i = 0; i < dev->num_tx_queues; i++) {
1550 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1551 netif_tx_stop_queue(txq);
1552 }
1553 }
1554
1555 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1556 {
1557 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1558 }
1559
1560 /**
1561 * netif_queue_stopped - test if transmit queue is flowblocked
1562 * @dev: network device
1563 *
1564 * Test if transmit queue on device is currently unable to send.
1565 */
1566 static inline int netif_queue_stopped(const struct net_device *dev)
1567 {
1568 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1569 }
1570
1571 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue)
1572 {
1573 return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state);
1574 }
1575
1576 /**
1577 * netif_running - test if up
1578 * @dev: network device
1579 *
1580 * Test if the device has been brought up.
1581 */
1582 static inline int netif_running(const struct net_device *dev)
1583 {
1584 return test_bit(__LINK_STATE_START, &dev->state);
1585 }
1586
1587 /*
1588 * Routines to manage the subqueues on a device. We only need start
1589 * stop, and a check if it's stopped. All other device management is
1590 * done at the overall netdevice level.
1591 * Also test the device if we're multiqueue.
1592 */
1593
1594 /**
1595 * netif_start_subqueue - allow sending packets on subqueue
1596 * @dev: network device
1597 * @queue_index: sub queue index
1598 *
1599 * Start individual transmit queue of a device with multiple transmit queues.
1600 */
1601 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1602 {
1603 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1604
1605 netif_tx_start_queue(txq);
1606 }
1607
1608 /**
1609 * netif_stop_subqueue - stop sending packets on subqueue
1610 * @dev: network device
1611 * @queue_index: sub queue index
1612 *
1613 * Stop individual transmit queue of a device with multiple transmit queues.
1614 */
1615 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1616 {
1617 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1618 #ifdef CONFIG_NETPOLL_TRAP
1619 if (netpoll_trap())
1620 return;
1621 #endif
1622 netif_tx_stop_queue(txq);
1623 }
1624
1625 /**
1626 * netif_subqueue_stopped - test status of subqueue
1627 * @dev: network device
1628 * @queue_index: sub queue index
1629 *
1630 * Check individual transmit queue of a device with multiple transmit queues.
1631 */
1632 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1633 u16 queue_index)
1634 {
1635 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1636
1637 return netif_tx_queue_stopped(txq);
1638 }
1639
1640 static inline int netif_subqueue_stopped(const struct net_device *dev,
1641 struct sk_buff *skb)
1642 {
1643 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1644 }
1645
1646 /**
1647 * netif_wake_subqueue - allow sending packets on subqueue
1648 * @dev: network device
1649 * @queue_index: sub queue index
1650 *
1651 * Resume individual transmit queue of a device with multiple transmit queues.
1652 */
1653 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1654 {
1655 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1656 #ifdef CONFIG_NETPOLL_TRAP
1657 if (netpoll_trap())
1658 return;
1659 #endif
1660 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1661 __netif_schedule(txq->qdisc);
1662 }
1663
1664 /**
1665 * netif_is_multiqueue - test if device has multiple transmit queues
1666 * @dev: network device
1667 *
1668 * Check if device has multiple transmit queues
1669 */
1670 static inline int netif_is_multiqueue(const struct net_device *dev)
1671 {
1672 return (dev->num_tx_queues > 1);
1673 }
1674
1675 /* Use this variant when it is known for sure that it
1676 * is executing from hardware interrupt context or with hardware interrupts
1677 * disabled.
1678 */
1679 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1680
1681 /* Use this variant in places where it could be invoked
1682 * from either hardware interrupt or other context, with hardware interrupts
1683 * either disabled or enabled.
1684 */
1685 extern void dev_kfree_skb_any(struct sk_buff *skb);
1686
1687 #define HAVE_NETIF_RX 1
1688 extern int netif_rx(struct sk_buff *skb);
1689 extern int netif_rx_ni(struct sk_buff *skb);
1690 #define HAVE_NETIF_RECEIVE_SKB 1
1691 extern int netif_receive_skb(struct sk_buff *skb);
1692 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1693 struct sk_buff *skb);
1694 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1695 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1696 struct sk_buff *skb);
1697 extern void napi_reuse_skb(struct napi_struct *napi,
1698 struct sk_buff *skb);
1699 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1700 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1701 struct sk_buff *skb,
1702 gro_result_t ret);
1703 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1704 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1705
1706 static inline void napi_free_frags(struct napi_struct *napi)
1707 {
1708 kfree_skb(napi->skb);
1709 napi->skb = NULL;
1710 }
1711
1712 extern int netdev_rx_handler_register(struct net_device *dev,
1713 rx_handler_func_t *rx_handler,
1714 void *rx_handler_data);
1715 extern void netdev_rx_handler_unregister(struct net_device *dev);
1716
1717 extern void netif_nit_deliver(struct sk_buff *skb);
1718 extern int dev_valid_name(const char *name);
1719 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1720 extern int dev_ethtool(struct net *net, struct ifreq *);
1721 extern unsigned dev_get_flags(const struct net_device *);
1722 extern int __dev_change_flags(struct net_device *, unsigned int flags);
1723 extern int dev_change_flags(struct net_device *, unsigned);
1724 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
1725 extern int dev_change_name(struct net_device *, const char *);
1726 extern int dev_set_alias(struct net_device *, const char *, size_t);
1727 extern int dev_change_net_namespace(struct net_device *,
1728 struct net *, const char *);
1729 extern int dev_set_mtu(struct net_device *, int);
1730 extern int dev_set_mac_address(struct net_device *,
1731 struct sockaddr *);
1732 extern int dev_hard_start_xmit(struct sk_buff *skb,
1733 struct net_device *dev,
1734 struct netdev_queue *txq);
1735 extern int dev_forward_skb(struct net_device *dev,
1736 struct sk_buff *skb);
1737
1738 extern int netdev_budget;
1739
1740 /* Called by rtnetlink.c:rtnl_unlock() */
1741 extern void netdev_run_todo(void);
1742
1743 /**
1744 * dev_put - release reference to device
1745 * @dev: network device
1746 *
1747 * Release reference to device to allow it to be freed.
1748 */
1749 static inline void dev_put(struct net_device *dev)
1750 {
1751 atomic_dec(&dev->refcnt);
1752 }
1753
1754 /**
1755 * dev_hold - get reference to device
1756 * @dev: network device
1757 *
1758 * Hold reference to device to keep it from being freed.
1759 */
1760 static inline void dev_hold(struct net_device *dev)
1761 {
1762 atomic_inc(&dev->refcnt);
1763 }
1764
1765 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1766 * and _off may be called from IRQ context, but it is caller
1767 * who is responsible for serialization of these calls.
1768 *
1769 * The name carrier is inappropriate, these functions should really be
1770 * called netif_lowerlayer_*() because they represent the state of any
1771 * kind of lower layer not just hardware media.
1772 */
1773
1774 extern void linkwatch_fire_event(struct net_device *dev);
1775 extern void linkwatch_forget_dev(struct net_device *dev);
1776
1777 /**
1778 * netif_carrier_ok - test if carrier present
1779 * @dev: network device
1780 *
1781 * Check if carrier is present on device
1782 */
1783 static inline int netif_carrier_ok(const struct net_device *dev)
1784 {
1785 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
1786 }
1787
1788 extern unsigned long dev_trans_start(struct net_device *dev);
1789
1790 extern void __netdev_watchdog_up(struct net_device *dev);
1791
1792 extern void netif_carrier_on(struct net_device *dev);
1793
1794 extern void netif_carrier_off(struct net_device *dev);
1795
1796 extern void netif_notify_peers(struct net_device *dev);
1797
1798 /**
1799 * netif_dormant_on - mark device as dormant.
1800 * @dev: network device
1801 *
1802 * Mark device as dormant (as per RFC2863).
1803 *
1804 * The dormant state indicates that the relevant interface is not
1805 * actually in a condition to pass packets (i.e., it is not 'up') but is
1806 * in a "pending" state, waiting for some external event. For "on-
1807 * demand" interfaces, this new state identifies the situation where the
1808 * interface is waiting for events to place it in the up state.
1809 *
1810 */
1811 static inline void netif_dormant_on(struct net_device *dev)
1812 {
1813 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
1814 linkwatch_fire_event(dev);
1815 }
1816
1817 /**
1818 * netif_dormant_off - set device as not dormant.
1819 * @dev: network device
1820 *
1821 * Device is not in dormant state.
1822 */
1823 static inline void netif_dormant_off(struct net_device *dev)
1824 {
1825 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
1826 linkwatch_fire_event(dev);
1827 }
1828
1829 /**
1830 * netif_dormant - test if carrier present
1831 * @dev: network device
1832 *
1833 * Check if carrier is present on device
1834 */
1835 static inline int netif_dormant(const struct net_device *dev)
1836 {
1837 return test_bit(__LINK_STATE_DORMANT, &dev->state);
1838 }
1839
1840
1841 /**
1842 * netif_oper_up - test if device is operational
1843 * @dev: network device
1844 *
1845 * Check if carrier is operational
1846 */
1847 static inline int netif_oper_up(const struct net_device *dev)
1848 {
1849 return (dev->operstate == IF_OPER_UP ||
1850 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
1851 }
1852
1853 /**
1854 * netif_device_present - is device available or removed
1855 * @dev: network device
1856 *
1857 * Check if device has not been removed from system.
1858 */
1859 static inline int netif_device_present(struct net_device *dev)
1860 {
1861 return test_bit(__LINK_STATE_PRESENT, &dev->state);
1862 }
1863
1864 extern void netif_device_detach(struct net_device *dev);
1865
1866 extern void netif_device_attach(struct net_device *dev);
1867
1868 /*
1869 * Network interface message level settings
1870 */
1871 #define HAVE_NETIF_MSG 1
1872
1873 enum {
1874 NETIF_MSG_DRV = 0x0001,
1875 NETIF_MSG_PROBE = 0x0002,
1876 NETIF_MSG_LINK = 0x0004,
1877 NETIF_MSG_TIMER = 0x0008,
1878 NETIF_MSG_IFDOWN = 0x0010,
1879 NETIF_MSG_IFUP = 0x0020,
1880 NETIF_MSG_RX_ERR = 0x0040,
1881 NETIF_MSG_TX_ERR = 0x0080,
1882 NETIF_MSG_TX_QUEUED = 0x0100,
1883 NETIF_MSG_INTR = 0x0200,
1884 NETIF_MSG_TX_DONE = 0x0400,
1885 NETIF_MSG_RX_STATUS = 0x0800,
1886 NETIF_MSG_PKTDATA = 0x1000,
1887 NETIF_MSG_HW = 0x2000,
1888 NETIF_MSG_WOL = 0x4000,
1889 };
1890
1891 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
1892 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
1893 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
1894 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
1895 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
1896 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
1897 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
1898 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
1899 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
1900 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
1901 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
1902 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
1903 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
1904 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
1905 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
1906
1907 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
1908 {
1909 /* use default */
1910 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
1911 return default_msg_enable_bits;
1912 if (debug_value == 0) /* no output */
1913 return 0;
1914 /* set low N bits */
1915 return (1 << debug_value) - 1;
1916 }
1917
1918 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
1919 {
1920 spin_lock(&txq->_xmit_lock);
1921 txq->xmit_lock_owner = cpu;
1922 }
1923
1924 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
1925 {
1926 spin_lock_bh(&txq->_xmit_lock);
1927 txq->xmit_lock_owner = smp_processor_id();
1928 }
1929
1930 static inline int __netif_tx_trylock(struct netdev_queue *txq)
1931 {
1932 int ok = spin_trylock(&txq->_xmit_lock);
1933 if (likely(ok))
1934 txq->xmit_lock_owner = smp_processor_id();
1935 return ok;
1936 }
1937
1938 static inline void __netif_tx_unlock(struct netdev_queue *txq)
1939 {
1940 txq->xmit_lock_owner = -1;
1941 spin_unlock(&txq->_xmit_lock);
1942 }
1943
1944 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
1945 {
1946 txq->xmit_lock_owner = -1;
1947 spin_unlock_bh(&txq->_xmit_lock);
1948 }
1949
1950 static inline void txq_trans_update(struct netdev_queue *txq)
1951 {
1952 if (txq->xmit_lock_owner != -1)
1953 txq->trans_start = jiffies;
1954 }
1955
1956 /**
1957 * netif_tx_lock - grab network device transmit lock
1958 * @dev: network device
1959 *
1960 * Get network device transmit lock
1961 */
1962 static inline void netif_tx_lock(struct net_device *dev)
1963 {
1964 unsigned int i;
1965 int cpu;
1966
1967 spin_lock(&dev->tx_global_lock);
1968 cpu = smp_processor_id();
1969 for (i = 0; i < dev->num_tx_queues; i++) {
1970 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1971
1972 /* We are the only thread of execution doing a
1973 * freeze, but we have to grab the _xmit_lock in
1974 * order to synchronize with threads which are in
1975 * the ->hard_start_xmit() handler and already
1976 * checked the frozen bit.
1977 */
1978 __netif_tx_lock(txq, cpu);
1979 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
1980 __netif_tx_unlock(txq);
1981 }
1982 }
1983
1984 static inline void netif_tx_lock_bh(struct net_device *dev)
1985 {
1986 local_bh_disable();
1987 netif_tx_lock(dev);
1988 }
1989
1990 static inline void netif_tx_unlock(struct net_device *dev)
1991 {
1992 unsigned int i;
1993
1994 for (i = 0; i < dev->num_tx_queues; i++) {
1995 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1996
1997 /* No need to grab the _xmit_lock here. If the
1998 * queue is not stopped for another reason, we
1999 * force a schedule.
2000 */
2001 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2002 netif_schedule_queue(txq);
2003 }
2004 spin_unlock(&dev->tx_global_lock);
2005 }
2006
2007 static inline void netif_tx_unlock_bh(struct net_device *dev)
2008 {
2009 netif_tx_unlock(dev);
2010 local_bh_enable();
2011 }
2012
2013 #define HARD_TX_LOCK(dev, txq, cpu) { \
2014 if ((dev->features & NETIF_F_LLTX) == 0) { \
2015 __netif_tx_lock(txq, cpu); \
2016 } \
2017 }
2018
2019 #define HARD_TX_UNLOCK(dev, txq) { \
2020 if ((dev->features & NETIF_F_LLTX) == 0) { \
2021 __netif_tx_unlock(txq); \
2022 } \
2023 }
2024
2025 static inline void netif_tx_disable(struct net_device *dev)
2026 {
2027 unsigned int i;
2028 int cpu;
2029
2030 local_bh_disable();
2031 cpu = smp_processor_id();
2032 for (i = 0; i < dev->num_tx_queues; i++) {
2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2034
2035 __netif_tx_lock(txq, cpu);
2036 netif_tx_stop_queue(txq);
2037 __netif_tx_unlock(txq);
2038 }
2039 local_bh_enable();
2040 }
2041
2042 static inline void netif_addr_lock(struct net_device *dev)
2043 {
2044 spin_lock(&dev->addr_list_lock);
2045 }
2046
2047 static inline void netif_addr_lock_bh(struct net_device *dev)
2048 {
2049 spin_lock_bh(&dev->addr_list_lock);
2050 }
2051
2052 static inline void netif_addr_unlock(struct net_device *dev)
2053 {
2054 spin_unlock(&dev->addr_list_lock);
2055 }
2056
2057 static inline void netif_addr_unlock_bh(struct net_device *dev)
2058 {
2059 spin_unlock_bh(&dev->addr_list_lock);
2060 }
2061
2062 /*
2063 * dev_addrs walker. Should be used only for read access. Call with
2064 * rcu_read_lock held.
2065 */
2066 #define for_each_dev_addr(dev, ha) \
2067 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2068
2069 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2070
2071 extern void ether_setup(struct net_device *dev);
2072
2073 /* Support for loadable net-drivers */
2074 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
2075 void (*setup)(struct net_device *),
2076 unsigned int queue_count);
2077 #define alloc_netdev(sizeof_priv, name, setup) \
2078 alloc_netdev_mq(sizeof_priv, name, setup, 1)
2079 extern int register_netdev(struct net_device *dev);
2080 extern void unregister_netdev(struct net_device *dev);
2081
2082 /* General hardware address lists handling functions */
2083 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2084 struct netdev_hw_addr_list *from_list,
2085 int addr_len, unsigned char addr_type);
2086 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2087 struct netdev_hw_addr_list *from_list,
2088 int addr_len, unsigned char addr_type);
2089 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2090 struct netdev_hw_addr_list *from_list,
2091 int addr_len);
2092 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2093 struct netdev_hw_addr_list *from_list,
2094 int addr_len);
2095 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2096 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2097
2098 /* Functions used for device addresses handling */
2099 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2100 unsigned char addr_type);
2101 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2102 unsigned char addr_type);
2103 extern int dev_addr_add_multiple(struct net_device *to_dev,
2104 struct net_device *from_dev,
2105 unsigned char addr_type);
2106 extern int dev_addr_del_multiple(struct net_device *to_dev,
2107 struct net_device *from_dev,
2108 unsigned char addr_type);
2109 extern void dev_addr_flush(struct net_device *dev);
2110 extern int dev_addr_init(struct net_device *dev);
2111
2112 /* Functions used for unicast addresses handling */
2113 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2114 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2115 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2116 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2117 extern void dev_uc_flush(struct net_device *dev);
2118 extern void dev_uc_init(struct net_device *dev);
2119
2120 /* Functions used for multicast addresses handling */
2121 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2122 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2123 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2124 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2125 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2126 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2127 extern void dev_mc_flush(struct net_device *dev);
2128 extern void dev_mc_init(struct net_device *dev);
2129
2130 /* Functions used for secondary unicast and multicast support */
2131 extern void dev_set_rx_mode(struct net_device *dev);
2132 extern void __dev_set_rx_mode(struct net_device *dev);
2133 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2134 extern int dev_set_allmulti(struct net_device *dev, int inc);
2135 extern void netdev_state_change(struct net_device *dev);
2136 extern int netdev_bonding_change(struct net_device *dev,
2137 unsigned long event);
2138 extern void netdev_features_change(struct net_device *dev);
2139 /* Load a device via the kmod */
2140 extern void dev_load(struct net *net, const char *name);
2141 extern void dev_mcast_init(void);
2142 extern const struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev);
2143 extern void dev_txq_stats_fold(const struct net_device *dev, struct net_device_stats *stats);
2144
2145 extern int netdev_max_backlog;
2146 extern int netdev_tstamp_prequeue;
2147 extern int weight_p;
2148 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2149 extern int skb_checksum_help(struct sk_buff *skb);
2150 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
2151 #ifdef CONFIG_BUG
2152 extern void netdev_rx_csum_fault(struct net_device *dev);
2153 #else
2154 static inline void netdev_rx_csum_fault(struct net_device *dev)
2155 {
2156 }
2157 #endif
2158 /* rx skb timestamps */
2159 extern void net_enable_timestamp(void);
2160 extern void net_disable_timestamp(void);
2161
2162 #ifdef CONFIG_PROC_FS
2163 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2164 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2165 extern void dev_seq_stop(struct seq_file *seq, void *v);
2166 #endif
2167
2168 extern int netdev_class_create_file(struct class_attribute *class_attr);
2169 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2170
2171 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2172
2173 extern void linkwatch_run_queue(void);
2174
2175 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
2176 unsigned long mask);
2177 unsigned long netdev_fix_features(unsigned long features, const char *name);
2178
2179 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2180 struct net_device *dev);
2181
2182 static inline int net_gso_ok(int features, int gso_type)
2183 {
2184 int feature = gso_type << NETIF_F_GSO_SHIFT;
2185 return (features & feature) == feature;
2186 }
2187
2188 static inline int skb_gso_ok(struct sk_buff *skb, int features)
2189 {
2190 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2191 (!skb_has_frags(skb) || (features & NETIF_F_FRAGLIST));
2192 }
2193
2194 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb)
2195 {
2196 return skb_is_gso(skb) &&
2197 (!skb_gso_ok(skb, dev->features) ||
2198 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2199 }
2200
2201 static inline void netif_set_gso_max_size(struct net_device *dev,
2202 unsigned int size)
2203 {
2204 dev->gso_max_size = size;
2205 }
2206
2207 extern int __skb_bond_should_drop(struct sk_buff *skb,
2208 struct net_device *master);
2209
2210 static inline int skb_bond_should_drop(struct sk_buff *skb,
2211 struct net_device *master)
2212 {
2213 if (master)
2214 return __skb_bond_should_drop(skb, master);
2215 return 0;
2216 }
2217
2218 extern struct pernet_operations __net_initdata loopback_net_ops;
2219
2220 static inline int dev_ethtool_get_settings(struct net_device *dev,
2221 struct ethtool_cmd *cmd)
2222 {
2223 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2224 return -EOPNOTSUPP;
2225 return dev->ethtool_ops->get_settings(dev, cmd);
2226 }
2227
2228 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2229 {
2230 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2231 return 0;
2232 return dev->ethtool_ops->get_rx_csum(dev);
2233 }
2234
2235 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2236 {
2237 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2238 return 0;
2239 return dev->ethtool_ops->get_flags(dev);
2240 }
2241
2242 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2243
2244 /* netdev_printk helpers, similar to dev_printk */
2245
2246 static inline const char *netdev_name(const struct net_device *dev)
2247 {
2248 if (dev->reg_state != NETREG_REGISTERED)
2249 return "(unregistered net_device)";
2250 return dev->name;
2251 }
2252
2253 #define netdev_printk(level, netdev, format, args...) \
2254 dev_printk(level, (netdev)->dev.parent, \
2255 "%s: " format, \
2256 netdev_name(netdev), ##args)
2257
2258 #define netdev_emerg(dev, format, args...) \
2259 netdev_printk(KERN_EMERG, dev, format, ##args)
2260 #define netdev_alert(dev, format, args...) \
2261 netdev_printk(KERN_ALERT, dev, format, ##args)
2262 #define netdev_crit(dev, format, args...) \
2263 netdev_printk(KERN_CRIT, dev, format, ##args)
2264 #define netdev_err(dev, format, args...) \
2265 netdev_printk(KERN_ERR, dev, format, ##args)
2266 #define netdev_warn(dev, format, args...) \
2267 netdev_printk(KERN_WARNING, dev, format, ##args)
2268 #define netdev_notice(dev, format, args...) \
2269 netdev_printk(KERN_NOTICE, dev, format, ##args)
2270 #define netdev_info(dev, format, args...) \
2271 netdev_printk(KERN_INFO, dev, format, ##args)
2272
2273 #if defined(DEBUG)
2274 #define netdev_dbg(__dev, format, args...) \
2275 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2276 #elif defined(CONFIG_DYNAMIC_DEBUG)
2277 #define netdev_dbg(__dev, format, args...) \
2278 do { \
2279 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2280 netdev_name(__dev), ##args); \
2281 } while (0)
2282 #else
2283 #define netdev_dbg(__dev, format, args...) \
2284 ({ \
2285 if (0) \
2286 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2287 0; \
2288 })
2289 #endif
2290
2291 #if defined(VERBOSE_DEBUG)
2292 #define netdev_vdbg netdev_dbg
2293 #else
2294
2295 #define netdev_vdbg(dev, format, args...) \
2296 ({ \
2297 if (0) \
2298 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2299 0; \
2300 })
2301 #endif
2302
2303 /*
2304 * netdev_WARN() acts like dev_printk(), but with the key difference
2305 * of using a WARN/WARN_ON to get the message out, including the
2306 * file/line information and a backtrace.
2307 */
2308 #define netdev_WARN(dev, format, args...) \
2309 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2310
2311 /* netif printk helpers, similar to netdev_printk */
2312
2313 #define netif_printk(priv, type, level, dev, fmt, args...) \
2314 do { \
2315 if (netif_msg_##type(priv)) \
2316 netdev_printk(level, (dev), fmt, ##args); \
2317 } while (0)
2318
2319 #define netif_emerg(priv, type, dev, fmt, args...) \
2320 netif_printk(priv, type, KERN_EMERG, dev, fmt, ##args)
2321 #define netif_alert(priv, type, dev, fmt, args...) \
2322 netif_printk(priv, type, KERN_ALERT, dev, fmt, ##args)
2323 #define netif_crit(priv, type, dev, fmt, args...) \
2324 netif_printk(priv, type, KERN_CRIT, dev, fmt, ##args)
2325 #define netif_err(priv, type, dev, fmt, args...) \
2326 netif_printk(priv, type, KERN_ERR, dev, fmt, ##args)
2327 #define netif_warn(priv, type, dev, fmt, args...) \
2328 netif_printk(priv, type, KERN_WARNING, dev, fmt, ##args)
2329 #define netif_notice(priv, type, dev, fmt, args...) \
2330 netif_printk(priv, type, KERN_NOTICE, dev, fmt, ##args)
2331 #define netif_info(priv, type, dev, fmt, args...) \
2332 netif_printk(priv, type, KERN_INFO, (dev), fmt, ##args)
2333
2334 #if defined(DEBUG)
2335 #define netif_dbg(priv, type, dev, format, args...) \
2336 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2337 #elif defined(CONFIG_DYNAMIC_DEBUG)
2338 #define netif_dbg(priv, type, netdev, format, args...) \
2339 do { \
2340 if (netif_msg_##type(priv)) \
2341 dynamic_dev_dbg((netdev)->dev.parent, \
2342 "%s: " format, \
2343 netdev_name(netdev), ##args); \
2344 } while (0)
2345 #else
2346 #define netif_dbg(priv, type, dev, format, args...) \
2347 ({ \
2348 if (0) \
2349 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2350 0; \
2351 })
2352 #endif
2353
2354 #if defined(VERBOSE_DEBUG)
2355 #define netif_vdbg netdev_dbg
2356 #else
2357 #define netif_vdbg(priv, type, dev, format, args...) \
2358 ({ \
2359 if (0) \
2360 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2361 0; \
2362 })
2363 #endif
2364
2365 #endif /* __KERNEL__ */
2366
2367 #endif /* _LINUX_NETDEVICE_H */