Merge branches 'x86/cache', 'x86/debug' and 'x86/irq' into x86/urgent
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 const struct ethtool_ops *ops);
71
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
74 #define NET_RX_DROP 1 /* packet dropped */
75
76 /*
77 * Transmit return codes: transmit return codes originate from three different
78 * namespaces:
79 *
80 * - qdisc return codes
81 * - driver transmit return codes
82 * - errno values
83 *
84 * Drivers are allowed to return any one of those in their hard_start_xmit()
85 * function. Real network devices commonly used with qdiscs should only return
86 * the driver transmit return codes though - when qdiscs are used, the actual
87 * transmission happens asynchronously, so the value is not propagated to
88 * higher layers. Virtual network devices transmit synchronously; in this case
89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90 * others are propagated to higher layers.
91 */
92
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS 0x00
95 #define NET_XMIT_DROP 0x01 /* skb dropped */
96 #define NET_XMIT_CN 0x02 /* congestion notification */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 /*
134 * Compute the worst-case header length according to the protocols
135 * used.
136 */
137
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 # define LL_MAX_HEADER 128
143 # else
144 # define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156
157 /*
158 * Old network device statistics. Fields are native words
159 * (unsigned long) so they can be read and written atomically.
160 */
161
162 struct net_device_stats {
163 unsigned long rx_packets;
164 unsigned long tx_packets;
165 unsigned long rx_bytes;
166 unsigned long tx_bytes;
167 unsigned long rx_errors;
168 unsigned long tx_errors;
169 unsigned long rx_dropped;
170 unsigned long tx_dropped;
171 unsigned long multicast;
172 unsigned long collisions;
173 unsigned long rx_length_errors;
174 unsigned long rx_over_errors;
175 unsigned long rx_crc_errors;
176 unsigned long rx_frame_errors;
177 unsigned long rx_fifo_errors;
178 unsigned long rx_missed_errors;
179 unsigned long tx_aborted_errors;
180 unsigned long tx_carrier_errors;
181 unsigned long tx_fifo_errors;
182 unsigned long tx_heartbeat_errors;
183 unsigned long tx_window_errors;
184 unsigned long rx_compressed;
185 unsigned long tx_compressed;
186 };
187
188
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339
340 enum {
341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED),
342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE),
343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC),
344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED),
345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348
349 enum gro_result {
350 GRO_MERGED,
351 GRO_MERGED_FREE,
352 GRO_HELD,
353 GRO_NORMAL,
354 GRO_DROP,
355 };
356 typedef enum gro_result gro_result_t;
357
358 /*
359 * enum rx_handler_result - Possible return values for rx_handlers.
360 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
361 * further.
362 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
363 * case skb->dev was changed by rx_handler.
364 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
365 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
366 *
367 * rx_handlers are functions called from inside __netif_receive_skb(), to do
368 * special processing of the skb, prior to delivery to protocol handlers.
369 *
370 * Currently, a net_device can only have a single rx_handler registered. Trying
371 * to register a second rx_handler will return -EBUSY.
372 *
373 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
374 * To unregister a rx_handler on a net_device, use
375 * netdev_rx_handler_unregister().
376 *
377 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
378 * do with the skb.
379 *
380 * If the rx_handler consumed the skb in some way, it should return
381 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
382 * the skb to be delivered in some other way.
383 *
384 * If the rx_handler changed skb->dev, to divert the skb to another
385 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
386 * new device will be called if it exists.
387 *
388 * If the rx_handler decides the skb should be ignored, it should return
389 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
390 * are registered on exact device (ptype->dev == skb->dev).
391 *
392 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
393 * delivered, it should return RX_HANDLER_PASS.
394 *
395 * A device without a registered rx_handler will behave as if rx_handler
396 * returned RX_HANDLER_PASS.
397 */
398
399 enum rx_handler_result {
400 RX_HANDLER_CONSUMED,
401 RX_HANDLER_ANOTHER,
402 RX_HANDLER_EXACT,
403 RX_HANDLER_PASS,
404 };
405 typedef enum rx_handler_result rx_handler_result_t;
406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
407
408 void __napi_schedule(struct napi_struct *n);
409 void __napi_schedule_irqoff(struct napi_struct *n);
410
411 static inline bool napi_disable_pending(struct napi_struct *n)
412 {
413 return test_bit(NAPI_STATE_DISABLE, &n->state);
414 }
415
416 /**
417 * napi_schedule_prep - check if NAPI can be scheduled
418 * @n: NAPI context
419 *
420 * Test if NAPI routine is already running, and if not mark
421 * it as running. This is used as a condition variable to
422 * insure only one NAPI poll instance runs. We also make
423 * sure there is no pending NAPI disable.
424 */
425 static inline bool napi_schedule_prep(struct napi_struct *n)
426 {
427 return !napi_disable_pending(n) &&
428 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
429 }
430
431 /**
432 * napi_schedule - schedule NAPI poll
433 * @n: NAPI context
434 *
435 * Schedule NAPI poll routine to be called if it is not already
436 * running.
437 */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule(n);
442 }
443
444 /**
445 * napi_schedule_irqoff - schedule NAPI poll
446 * @n: NAPI context
447 *
448 * Variant of napi_schedule(), assuming hard irqs are masked.
449 */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452 if (napi_schedule_prep(n))
453 __napi_schedule_irqoff(n);
454 }
455
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459 if (napi_schedule_prep(napi)) {
460 __napi_schedule(napi);
461 return true;
462 }
463 return false;
464 }
465
466 bool __napi_complete(struct napi_struct *n);
467 bool napi_complete_done(struct napi_struct *n, int work_done);
468 /**
469 * napi_complete - NAPI processing complete
470 * @n: NAPI context
471 *
472 * Mark NAPI processing as complete.
473 * Consider using napi_complete_done() instead.
474 * Return false if device should avoid rearming interrupts.
475 */
476 static inline bool napi_complete(struct napi_struct *n)
477 {
478 return napi_complete_done(n, 0);
479 }
480
481 /**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: NAPI context
484 *
485 * Warning: caller must observe RCU grace period
486 * before freeing memory containing @napi, if
487 * this function returns true.
488 * Note: core networking stack automatically calls it
489 * from netif_napi_del().
490 * Drivers might want to call this helper to combine all
491 * the needed RCU grace periods into a single one.
492 */
493 bool napi_hash_del(struct napi_struct *napi);
494
495 /**
496 * napi_disable - prevent NAPI from scheduling
497 * @n: NAPI context
498 *
499 * Stop NAPI from being scheduled on this context.
500 * Waits till any outstanding processing completes.
501 */
502 void napi_disable(struct napi_struct *n);
503
504 /**
505 * napi_enable - enable NAPI scheduling
506 * @n: NAPI context
507 *
508 * Resume NAPI from being scheduled on this context.
509 * Must be paired with napi_disable.
510 */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 smp_mb__before_atomic();
515 clear_bit(NAPI_STATE_SCHED, &n->state);
516 clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518
519 /**
520 * napi_synchronize - wait until NAPI is not running
521 * @n: NAPI context
522 *
523 * Wait until NAPI is done being scheduled on this context.
524 * Waits till any outstanding processing completes but
525 * does not disable future activations.
526 */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 if (IS_ENABLED(CONFIG_SMP))
530 while (test_bit(NAPI_STATE_SCHED, &n->state))
531 msleep(1);
532 else
533 barrier();
534 }
535
536 enum netdev_queue_state_t {
537 __QUEUE_STATE_DRV_XOFF,
538 __QUEUE_STATE_STACK_XOFF,
539 __QUEUE_STATE_FROZEN,
540 };
541
542 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
545
546 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 QUEUE_STATE_FROZEN)
551
552 /*
553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
554 * netif_tx_* functions below are used to manipulate this flag. The
555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556 * queue independently. The netif_xmit_*stopped functions below are called
557 * to check if the queue has been stopped by the driver or stack (either
558 * of the XOFF bits are set in the state). Drivers should not need to call
559 * netif_xmit*stopped functions, they should only be using netif_tx_*.
560 */
561
562 struct netdev_queue {
563 /*
564 * read-mostly part
565 */
566 struct net_device *dev;
567 struct Qdisc __rcu *qdisc;
568 struct Qdisc *qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 struct kobject kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 int numa_node;
574 #endif
575 unsigned long tx_maxrate;
576 /*
577 * Number of TX timeouts for this queue
578 * (/sys/class/net/DEV/Q/trans_timeout)
579 */
580 unsigned long trans_timeout;
581 /*
582 * write-mostly part
583 */
584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
585 int xmit_lock_owner;
586 /*
587 * Time (in jiffies) of last Tx
588 */
589 unsigned long trans_start;
590
591 unsigned long state;
592
593 #ifdef CONFIG_BQL
594 struct dql dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 return q->numa_node;
602 #else
603 return NUMA_NO_NODE;
604 #endif
605 }
606
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 q->numa_node = node;
611 #endif
612 }
613
614 #ifdef CONFIG_RPS
615 /*
616 * This structure holds an RPS map which can be of variable length. The
617 * map is an array of CPUs.
618 */
619 struct rps_map {
620 unsigned int len;
621 struct rcu_head rcu;
622 u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625
626 /*
627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628 * tail pointer for that CPU's input queue at the time of last enqueue, and
629 * a hardware filter index.
630 */
631 struct rps_dev_flow {
632 u16 cpu;
633 u16 filter;
634 unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637
638 /*
639 * The rps_dev_flow_table structure contains a table of flow mappings.
640 */
641 struct rps_dev_flow_table {
642 unsigned int mask;
643 struct rcu_head rcu;
644 struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647 ((_num) * sizeof(struct rps_dev_flow)))
648
649 /*
650 * The rps_sock_flow_table contains mappings of flows to the last CPU
651 * on which they were processed by the application (set in recvmsg).
652 * Each entry is a 32bit value. Upper part is the high-order bits
653 * of flow hash, lower part is CPU number.
654 * rps_cpu_mask is used to partition the space, depending on number of
655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657 * meaning we use 32-6=26 bits for the hash.
658 */
659 struct rps_sock_flow_table {
660 u32 mask;
661
662 u32 ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665
666 #define RPS_NO_CPU 0xffff
667
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 u32 hash)
673 {
674 if (table && hash) {
675 unsigned int index = hash & table->mask;
676 u32 val = hash & ~rps_cpu_mask;
677
678 /* We only give a hint, preemption can change CPU under us */
679 val |= raw_smp_processor_id();
680
681 if (table->ents[index] != val)
682 table->ents[index] = val;
683 }
684 }
685
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 struct rps_map __rcu *rps_map;
696 struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698 struct kobject kobj;
699 struct net_device *dev;
700 } ____cacheline_aligned_in_smp;
701
702 /*
703 * RX queue sysfs structures and functions.
704 */
705 struct rx_queue_attribute {
706 struct attribute attr;
707 ssize_t (*show)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, char *buf);
709 ssize_t (*store)(struct netdev_rx_queue *queue,
710 struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712
713 #ifdef CONFIG_XPS
714 /*
715 * This structure holds an XPS map which can be of variable length. The
716 * map is an array of queues.
717 */
718 struct xps_map {
719 unsigned int len;
720 unsigned int alloc_len;
721 struct rcu_head rcu;
722 u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726 - sizeof(struct xps_map)) / sizeof(u16))
727
728 /*
729 * This structure holds all XPS maps for device. Maps are indexed by CPU.
730 */
731 struct xps_dev_maps {
732 struct rcu_head rcu;
733 struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738
739 #define TC_MAX_QUEUE 16
740 #define TC_BITMASK 15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 u16 count;
744 u16 offset;
745 };
746
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749 * This structure is to hold information about the device
750 * configured to run FCoE protocol stack.
751 */
752 struct netdev_fcoe_hbainfo {
753 char manufacturer[64];
754 char serial_number[64];
755 char hardware_version[64];
756 char driver_version[64];
757 char optionrom_version[64];
758 char firmware_version[64];
759 char model[256];
760 char model_description[256];
761 };
762 #endif
763
764 #define MAX_PHYS_ITEM_ID_LEN 32
765
766 /* This structure holds a unique identifier to identify some
767 * physical item (port for example) used by a netdevice.
768 */
769 struct netdev_phys_item_id {
770 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 unsigned char id_len;
772 };
773
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 struct netdev_phys_item_id *b)
776 {
777 return a->id_len == b->id_len &&
778 memcmp(a->id, b->id, a->id_len) == 0;
779 }
780
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 struct sk_buff *skb);
783
784 /* These structures hold the attributes of qdisc and classifiers
785 * that are being passed to the netdevice through the setup_tc op.
786 */
787 enum {
788 TC_SETUP_MQPRIO,
789 TC_SETUP_CLSU32,
790 TC_SETUP_CLSFLOWER,
791 TC_SETUP_MATCHALL,
792 TC_SETUP_CLSBPF,
793 };
794
795 struct tc_cls_u32_offload;
796
797 struct tc_to_netdev {
798 unsigned int type;
799 union {
800 u8 tc;
801 struct tc_cls_u32_offload *cls_u32;
802 struct tc_cls_flower_offload *cls_flower;
803 struct tc_cls_matchall_offload *cls_mall;
804 struct tc_cls_bpf_offload *cls_bpf;
805 };
806 bool egress_dev;
807 };
808
809 /* These structures hold the attributes of xdp state that are being passed
810 * to the netdevice through the xdp op.
811 */
812 enum xdp_netdev_command {
813 /* Set or clear a bpf program used in the earliest stages of packet
814 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
815 * is responsible for calling bpf_prog_put on any old progs that are
816 * stored. In case of error, the callee need not release the new prog
817 * reference, but on success it takes ownership and must bpf_prog_put
818 * when it is no longer used.
819 */
820 XDP_SETUP_PROG,
821 /* Check if a bpf program is set on the device. The callee should
822 * return true if a program is currently attached and running.
823 */
824 XDP_QUERY_PROG,
825 };
826
827 struct netdev_xdp {
828 enum xdp_netdev_command command;
829 union {
830 /* XDP_SETUP_PROG */
831 struct bpf_prog *prog;
832 /* XDP_QUERY_PROG */
833 bool prog_attached;
834 };
835 };
836
837 /*
838 * This structure defines the management hooks for network devices.
839 * The following hooks can be defined; unless noted otherwise, they are
840 * optional and can be filled with a null pointer.
841 *
842 * int (*ndo_init)(struct net_device *dev);
843 * This function is called once when a network device is registered.
844 * The network device can use this for any late stage initialization
845 * or semantic validation. It can fail with an error code which will
846 * be propagated back to register_netdev.
847 *
848 * void (*ndo_uninit)(struct net_device *dev);
849 * This function is called when device is unregistered or when registration
850 * fails. It is not called if init fails.
851 *
852 * int (*ndo_open)(struct net_device *dev);
853 * This function is called when a network device transitions to the up
854 * state.
855 *
856 * int (*ndo_stop)(struct net_device *dev);
857 * This function is called when a network device transitions to the down
858 * state.
859 *
860 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
861 * struct net_device *dev);
862 * Called when a packet needs to be transmitted.
863 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
864 * the queue before that can happen; it's for obsolete devices and weird
865 * corner cases, but the stack really does a non-trivial amount
866 * of useless work if you return NETDEV_TX_BUSY.
867 * Required; cannot be NULL.
868 *
869 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
870 * struct net_device *dev
871 * netdev_features_t features);
872 * Called by core transmit path to determine if device is capable of
873 * performing offload operations on a given packet. This is to give
874 * the device an opportunity to implement any restrictions that cannot
875 * be otherwise expressed by feature flags. The check is called with
876 * the set of features that the stack has calculated and it returns
877 * those the driver believes to be appropriate.
878 *
879 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
880 * void *accel_priv, select_queue_fallback_t fallback);
881 * Called to decide which queue to use when device supports multiple
882 * transmit queues.
883 *
884 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
885 * This function is called to allow device receiver to make
886 * changes to configuration when multicast or promiscuous is enabled.
887 *
888 * void (*ndo_set_rx_mode)(struct net_device *dev);
889 * This function is called device changes address list filtering.
890 * If driver handles unicast address filtering, it should set
891 * IFF_UNICAST_FLT in its priv_flags.
892 *
893 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
894 * This function is called when the Media Access Control address
895 * needs to be changed. If this interface is not defined, the
896 * MAC address can not be changed.
897 *
898 * int (*ndo_validate_addr)(struct net_device *dev);
899 * Test if Media Access Control address is valid for the device.
900 *
901 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
902 * Called when a user requests an ioctl which can't be handled by
903 * the generic interface code. If not defined ioctls return
904 * not supported error code.
905 *
906 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
907 * Used to set network devices bus interface parameters. This interface
908 * is retained for legacy reasons; new devices should use the bus
909 * interface (PCI) for low level management.
910 *
911 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
912 * Called when a user wants to change the Maximum Transfer Unit
913 * of a device. If not defined, any request to change MTU will
914 * will return an error.
915 *
916 * void (*ndo_tx_timeout)(struct net_device *dev);
917 * Callback used when the transmitter has not made any progress
918 * for dev->watchdog ticks.
919 *
920 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
921 * struct rtnl_link_stats64 *storage);
922 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
923 * Called when a user wants to get the network device usage
924 * statistics. Drivers must do one of the following:
925 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
926 * rtnl_link_stats64 structure passed by the caller.
927 * 2. Define @ndo_get_stats to update a net_device_stats structure
928 * (which should normally be dev->stats) and return a pointer to
929 * it. The structure may be changed asynchronously only if each
930 * field is written atomically.
931 * 3. Update dev->stats asynchronously and atomically, and define
932 * neither operation.
933 *
934 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
935 * Return true if this device supports offload stats of this attr_id.
936 *
937 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
938 * void *attr_data)
939 * Get statistics for offload operations by attr_id. Write it into the
940 * attr_data pointer.
941 *
942 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
943 * If device supports VLAN filtering this function is called when a
944 * VLAN id is registered.
945 *
946 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
947 * If device supports VLAN filtering this function is called when a
948 * VLAN id is unregistered.
949 *
950 * void (*ndo_poll_controller)(struct net_device *dev);
951 *
952 * SR-IOV management functions.
953 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
954 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
955 * u8 qos, __be16 proto);
956 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
957 * int max_tx_rate);
958 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
959 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
960 * int (*ndo_get_vf_config)(struct net_device *dev,
961 * int vf, struct ifla_vf_info *ivf);
962 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
963 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
964 * struct nlattr *port[]);
965 *
966 * Enable or disable the VF ability to query its RSS Redirection Table and
967 * Hash Key. This is needed since on some devices VF share this information
968 * with PF and querying it may introduce a theoretical security risk.
969 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
970 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
971 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
972 * Called to setup 'tc' number of traffic classes in the net device. This
973 * is always called from the stack with the rtnl lock held and netif tx
974 * queues stopped. This allows the netdevice to perform queue management
975 * safely.
976 *
977 * Fiber Channel over Ethernet (FCoE) offload functions.
978 * int (*ndo_fcoe_enable)(struct net_device *dev);
979 * Called when the FCoE protocol stack wants to start using LLD for FCoE
980 * so the underlying device can perform whatever needed configuration or
981 * initialization to support acceleration of FCoE traffic.
982 *
983 * int (*ndo_fcoe_disable)(struct net_device *dev);
984 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
985 * so the underlying device can perform whatever needed clean-ups to
986 * stop supporting acceleration of FCoE traffic.
987 *
988 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
989 * struct scatterlist *sgl, unsigned int sgc);
990 * Called when the FCoE Initiator wants to initialize an I/O that
991 * is a possible candidate for Direct Data Placement (DDP). The LLD can
992 * perform necessary setup and returns 1 to indicate the device is set up
993 * successfully to perform DDP on this I/O, otherwise this returns 0.
994 *
995 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
996 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
997 * indicated by the FC exchange id 'xid', so the underlying device can
998 * clean up and reuse resources for later DDP requests.
999 *
1000 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1001 * struct scatterlist *sgl, unsigned int sgc);
1002 * Called when the FCoE Target wants to initialize an I/O that
1003 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1004 * perform necessary setup and returns 1 to indicate the device is set up
1005 * successfully to perform DDP on this I/O, otherwise this returns 0.
1006 *
1007 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1008 * struct netdev_fcoe_hbainfo *hbainfo);
1009 * Called when the FCoE Protocol stack wants information on the underlying
1010 * device. This information is utilized by the FCoE protocol stack to
1011 * register attributes with Fiber Channel management service as per the
1012 * FC-GS Fabric Device Management Information(FDMI) specification.
1013 *
1014 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1015 * Called when the underlying device wants to override default World Wide
1016 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1017 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1018 * protocol stack to use.
1019 *
1020 * RFS acceleration.
1021 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1022 * u16 rxq_index, u32 flow_id);
1023 * Set hardware filter for RFS. rxq_index is the target queue index;
1024 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1025 * Return the filter ID on success, or a negative error code.
1026 *
1027 * Slave management functions (for bridge, bonding, etc).
1028 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1029 * Called to make another netdev an underling.
1030 *
1031 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1032 * Called to release previously enslaved netdev.
1033 *
1034 * Feature/offload setting functions.
1035 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1036 * netdev_features_t features);
1037 * Adjusts the requested feature flags according to device-specific
1038 * constraints, and returns the resulting flags. Must not modify
1039 * the device state.
1040 *
1041 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1042 * Called to update device configuration to new features. Passed
1043 * feature set might be less than what was returned by ndo_fix_features()).
1044 * Must return >0 or -errno if it changed dev->features itself.
1045 *
1046 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1047 * struct net_device *dev,
1048 * const unsigned char *addr, u16 vid, u16 flags)
1049 * Adds an FDB entry to dev for addr.
1050 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1051 * struct net_device *dev,
1052 * const unsigned char *addr, u16 vid)
1053 * Deletes the FDB entry from dev coresponding to addr.
1054 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1055 * struct net_device *dev, struct net_device *filter_dev,
1056 * int *idx)
1057 * Used to add FDB entries to dump requests. Implementers should add
1058 * entries to skb and update idx with the number of entries.
1059 *
1060 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1061 * u16 flags)
1062 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1063 * struct net_device *dev, u32 filter_mask,
1064 * int nlflags)
1065 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1066 * u16 flags);
1067 *
1068 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1069 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1070 * which do not represent real hardware may define this to allow their
1071 * userspace components to manage their virtual carrier state. Devices
1072 * that determine carrier state from physical hardware properties (eg
1073 * network cables) or protocol-dependent mechanisms (eg
1074 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1075 *
1076 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1077 * struct netdev_phys_item_id *ppid);
1078 * Called to get ID of physical port of this device. If driver does
1079 * not implement this, it is assumed that the hw is not able to have
1080 * multiple net devices on single physical port.
1081 *
1082 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1083 * struct udp_tunnel_info *ti);
1084 * Called by UDP tunnel to notify a driver about the UDP port and socket
1085 * address family that a UDP tunnel is listnening to. It is called only
1086 * when a new port starts listening. The operation is protected by the
1087 * RTNL.
1088 *
1089 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1090 * struct udp_tunnel_info *ti);
1091 * Called by UDP tunnel to notify the driver about a UDP port and socket
1092 * address family that the UDP tunnel is not listening to anymore. The
1093 * operation is protected by the RTNL.
1094 *
1095 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1096 * struct net_device *dev)
1097 * Called by upper layer devices to accelerate switching or other
1098 * station functionality into hardware. 'pdev is the lowerdev
1099 * to use for the offload and 'dev' is the net device that will
1100 * back the offload. Returns a pointer to the private structure
1101 * the upper layer will maintain.
1102 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1103 * Called by upper layer device to delete the station created
1104 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1105 * the station and priv is the structure returned by the add
1106 * operation.
1107 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1108 * struct net_device *dev,
1109 * void *priv);
1110 * Callback to use for xmit over the accelerated station. This
1111 * is used in place of ndo_start_xmit on accelerated net
1112 * devices.
1113 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1114 * int queue_index, u32 maxrate);
1115 * Called when a user wants to set a max-rate limitation of specific
1116 * TX queue.
1117 * int (*ndo_get_iflink)(const struct net_device *dev);
1118 * Called to get the iflink value of this device.
1119 * void (*ndo_change_proto_down)(struct net_device *dev,
1120 * bool proto_down);
1121 * This function is used to pass protocol port error state information
1122 * to the switch driver. The switch driver can react to the proto_down
1123 * by doing a phys down on the associated switch port.
1124 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1125 * This function is used to get egress tunnel information for given skb.
1126 * This is useful for retrieving outer tunnel header parameters while
1127 * sampling packet.
1128 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1129 * This function is used to specify the headroom that the skb must
1130 * consider when allocation skb during packet reception. Setting
1131 * appropriate rx headroom value allows avoiding skb head copy on
1132 * forward. Setting a negative value resets the rx headroom to the
1133 * default value.
1134 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1135 * This function is used to set or query state related to XDP on the
1136 * netdevice. See definition of enum xdp_netdev_command for details.
1137 *
1138 */
1139 struct net_device_ops {
1140 int (*ndo_init)(struct net_device *dev);
1141 void (*ndo_uninit)(struct net_device *dev);
1142 int (*ndo_open)(struct net_device *dev);
1143 int (*ndo_stop)(struct net_device *dev);
1144 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1145 struct net_device *dev);
1146 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1147 struct net_device *dev,
1148 netdev_features_t features);
1149 u16 (*ndo_select_queue)(struct net_device *dev,
1150 struct sk_buff *skb,
1151 void *accel_priv,
1152 select_queue_fallback_t fallback);
1153 void (*ndo_change_rx_flags)(struct net_device *dev,
1154 int flags);
1155 void (*ndo_set_rx_mode)(struct net_device *dev);
1156 int (*ndo_set_mac_address)(struct net_device *dev,
1157 void *addr);
1158 int (*ndo_validate_addr)(struct net_device *dev);
1159 int (*ndo_do_ioctl)(struct net_device *dev,
1160 struct ifreq *ifr, int cmd);
1161 int (*ndo_set_config)(struct net_device *dev,
1162 struct ifmap *map);
1163 int (*ndo_change_mtu)(struct net_device *dev,
1164 int new_mtu);
1165 int (*ndo_neigh_setup)(struct net_device *dev,
1166 struct neigh_parms *);
1167 void (*ndo_tx_timeout) (struct net_device *dev);
1168
1169 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1170 struct rtnl_link_stats64 *storage);
1171 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1172 int (*ndo_get_offload_stats)(int attr_id,
1173 const struct net_device *dev,
1174 void *attr_data);
1175 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1176
1177 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1178 __be16 proto, u16 vid);
1179 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1180 __be16 proto, u16 vid);
1181 #ifdef CONFIG_NET_POLL_CONTROLLER
1182 void (*ndo_poll_controller)(struct net_device *dev);
1183 int (*ndo_netpoll_setup)(struct net_device *dev,
1184 struct netpoll_info *info);
1185 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1186 #endif
1187 #ifdef CONFIG_NET_RX_BUSY_POLL
1188 int (*ndo_busy_poll)(struct napi_struct *dev);
1189 #endif
1190 int (*ndo_set_vf_mac)(struct net_device *dev,
1191 int queue, u8 *mac);
1192 int (*ndo_set_vf_vlan)(struct net_device *dev,
1193 int queue, u16 vlan,
1194 u8 qos, __be16 proto);
1195 int (*ndo_set_vf_rate)(struct net_device *dev,
1196 int vf, int min_tx_rate,
1197 int max_tx_rate);
1198 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1199 int vf, bool setting);
1200 int (*ndo_set_vf_trust)(struct net_device *dev,
1201 int vf, bool setting);
1202 int (*ndo_get_vf_config)(struct net_device *dev,
1203 int vf,
1204 struct ifla_vf_info *ivf);
1205 int (*ndo_set_vf_link_state)(struct net_device *dev,
1206 int vf, int link_state);
1207 int (*ndo_get_vf_stats)(struct net_device *dev,
1208 int vf,
1209 struct ifla_vf_stats
1210 *vf_stats);
1211 int (*ndo_set_vf_port)(struct net_device *dev,
1212 int vf,
1213 struct nlattr *port[]);
1214 int (*ndo_get_vf_port)(struct net_device *dev,
1215 int vf, struct sk_buff *skb);
1216 int (*ndo_set_vf_guid)(struct net_device *dev,
1217 int vf, u64 guid,
1218 int guid_type);
1219 int (*ndo_set_vf_rss_query_en)(
1220 struct net_device *dev,
1221 int vf, bool setting);
1222 int (*ndo_setup_tc)(struct net_device *dev,
1223 u32 handle,
1224 __be16 protocol,
1225 struct tc_to_netdev *tc);
1226 #if IS_ENABLED(CONFIG_FCOE)
1227 int (*ndo_fcoe_enable)(struct net_device *dev);
1228 int (*ndo_fcoe_disable)(struct net_device *dev);
1229 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1230 u16 xid,
1231 struct scatterlist *sgl,
1232 unsigned int sgc);
1233 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1234 u16 xid);
1235 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1236 u16 xid,
1237 struct scatterlist *sgl,
1238 unsigned int sgc);
1239 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1240 struct netdev_fcoe_hbainfo *hbainfo);
1241 #endif
1242
1243 #if IS_ENABLED(CONFIG_LIBFCOE)
1244 #define NETDEV_FCOE_WWNN 0
1245 #define NETDEV_FCOE_WWPN 1
1246 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1247 u64 *wwn, int type);
1248 #endif
1249
1250 #ifdef CONFIG_RFS_ACCEL
1251 int (*ndo_rx_flow_steer)(struct net_device *dev,
1252 const struct sk_buff *skb,
1253 u16 rxq_index,
1254 u32 flow_id);
1255 #endif
1256 int (*ndo_add_slave)(struct net_device *dev,
1257 struct net_device *slave_dev);
1258 int (*ndo_del_slave)(struct net_device *dev,
1259 struct net_device *slave_dev);
1260 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1261 netdev_features_t features);
1262 int (*ndo_set_features)(struct net_device *dev,
1263 netdev_features_t features);
1264 int (*ndo_neigh_construct)(struct net_device *dev,
1265 struct neighbour *n);
1266 void (*ndo_neigh_destroy)(struct net_device *dev,
1267 struct neighbour *n);
1268
1269 int (*ndo_fdb_add)(struct ndmsg *ndm,
1270 struct nlattr *tb[],
1271 struct net_device *dev,
1272 const unsigned char *addr,
1273 u16 vid,
1274 u16 flags);
1275 int (*ndo_fdb_del)(struct ndmsg *ndm,
1276 struct nlattr *tb[],
1277 struct net_device *dev,
1278 const unsigned char *addr,
1279 u16 vid);
1280 int (*ndo_fdb_dump)(struct sk_buff *skb,
1281 struct netlink_callback *cb,
1282 struct net_device *dev,
1283 struct net_device *filter_dev,
1284 int *idx);
1285
1286 int (*ndo_bridge_setlink)(struct net_device *dev,
1287 struct nlmsghdr *nlh,
1288 u16 flags);
1289 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1290 u32 pid, u32 seq,
1291 struct net_device *dev,
1292 u32 filter_mask,
1293 int nlflags);
1294 int (*ndo_bridge_dellink)(struct net_device *dev,
1295 struct nlmsghdr *nlh,
1296 u16 flags);
1297 int (*ndo_change_carrier)(struct net_device *dev,
1298 bool new_carrier);
1299 int (*ndo_get_phys_port_id)(struct net_device *dev,
1300 struct netdev_phys_item_id *ppid);
1301 int (*ndo_get_phys_port_name)(struct net_device *dev,
1302 char *name, size_t len);
1303 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1304 struct udp_tunnel_info *ti);
1305 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1306 struct udp_tunnel_info *ti);
1307 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1308 struct net_device *dev);
1309 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1310 void *priv);
1311
1312 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1313 struct net_device *dev,
1314 void *priv);
1315 int (*ndo_get_lock_subclass)(struct net_device *dev);
1316 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1317 int queue_index,
1318 u32 maxrate);
1319 int (*ndo_get_iflink)(const struct net_device *dev);
1320 int (*ndo_change_proto_down)(struct net_device *dev,
1321 bool proto_down);
1322 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1323 struct sk_buff *skb);
1324 void (*ndo_set_rx_headroom)(struct net_device *dev,
1325 int needed_headroom);
1326 int (*ndo_xdp)(struct net_device *dev,
1327 struct netdev_xdp *xdp);
1328 };
1329
1330 /**
1331 * enum net_device_priv_flags - &struct net_device priv_flags
1332 *
1333 * These are the &struct net_device, they are only set internally
1334 * by drivers and used in the kernel. These flags are invisible to
1335 * userspace; this means that the order of these flags can change
1336 * during any kernel release.
1337 *
1338 * You should have a pretty good reason to be extending these flags.
1339 *
1340 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1341 * @IFF_EBRIDGE: Ethernet bridging device
1342 * @IFF_BONDING: bonding master or slave
1343 * @IFF_ISATAP: ISATAP interface (RFC4214)
1344 * @IFF_WAN_HDLC: WAN HDLC device
1345 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1346 * release skb->dst
1347 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1348 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1349 * @IFF_MACVLAN_PORT: device used as macvlan port
1350 * @IFF_BRIDGE_PORT: device used as bridge port
1351 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1352 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1353 * @IFF_UNICAST_FLT: Supports unicast filtering
1354 * @IFF_TEAM_PORT: device used as team port
1355 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1356 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1357 * change when it's running
1358 * @IFF_MACVLAN: Macvlan device
1359 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1360 * underlying stacked devices
1361 * @IFF_IPVLAN_MASTER: IPvlan master device
1362 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1363 * @IFF_L3MDEV_MASTER: device is an L3 master device
1364 * @IFF_NO_QUEUE: device can run without qdisc attached
1365 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1366 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1367 * @IFF_TEAM: device is a team device
1368 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1369 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1370 * entity (i.e. the master device for bridged veth)
1371 * @IFF_MACSEC: device is a MACsec device
1372 */
1373 enum netdev_priv_flags {
1374 IFF_802_1Q_VLAN = 1<<0,
1375 IFF_EBRIDGE = 1<<1,
1376 IFF_BONDING = 1<<2,
1377 IFF_ISATAP = 1<<3,
1378 IFF_WAN_HDLC = 1<<4,
1379 IFF_XMIT_DST_RELEASE = 1<<5,
1380 IFF_DONT_BRIDGE = 1<<6,
1381 IFF_DISABLE_NETPOLL = 1<<7,
1382 IFF_MACVLAN_PORT = 1<<8,
1383 IFF_BRIDGE_PORT = 1<<9,
1384 IFF_OVS_DATAPATH = 1<<10,
1385 IFF_TX_SKB_SHARING = 1<<11,
1386 IFF_UNICAST_FLT = 1<<12,
1387 IFF_TEAM_PORT = 1<<13,
1388 IFF_SUPP_NOFCS = 1<<14,
1389 IFF_LIVE_ADDR_CHANGE = 1<<15,
1390 IFF_MACVLAN = 1<<16,
1391 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1392 IFF_IPVLAN_MASTER = 1<<18,
1393 IFF_IPVLAN_SLAVE = 1<<19,
1394 IFF_L3MDEV_MASTER = 1<<20,
1395 IFF_NO_QUEUE = 1<<21,
1396 IFF_OPENVSWITCH = 1<<22,
1397 IFF_L3MDEV_SLAVE = 1<<23,
1398 IFF_TEAM = 1<<24,
1399 IFF_RXFH_CONFIGURED = 1<<25,
1400 IFF_PHONY_HEADROOM = 1<<26,
1401 IFF_MACSEC = 1<<27,
1402 };
1403
1404 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1405 #define IFF_EBRIDGE IFF_EBRIDGE
1406 #define IFF_BONDING IFF_BONDING
1407 #define IFF_ISATAP IFF_ISATAP
1408 #define IFF_WAN_HDLC IFF_WAN_HDLC
1409 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1410 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1411 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1412 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1413 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1414 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1415 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1416 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1417 #define IFF_TEAM_PORT IFF_TEAM_PORT
1418 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1419 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1420 #define IFF_MACVLAN IFF_MACVLAN
1421 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1422 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1423 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1424 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1425 #define IFF_NO_QUEUE IFF_NO_QUEUE
1426 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1427 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1428 #define IFF_TEAM IFF_TEAM
1429 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1430 #define IFF_MACSEC IFF_MACSEC
1431
1432 /**
1433 * struct net_device - The DEVICE structure.
1434 * Actually, this whole structure is a big mistake. It mixes I/O
1435 * data with strictly "high-level" data, and it has to know about
1436 * almost every data structure used in the INET module.
1437 *
1438 * @name: This is the first field of the "visible" part of this structure
1439 * (i.e. as seen by users in the "Space.c" file). It is the name
1440 * of the interface.
1441 *
1442 * @name_hlist: Device name hash chain, please keep it close to name[]
1443 * @ifalias: SNMP alias
1444 * @mem_end: Shared memory end
1445 * @mem_start: Shared memory start
1446 * @base_addr: Device I/O address
1447 * @irq: Device IRQ number
1448 *
1449 * @carrier_changes: Stats to monitor carrier on<->off transitions
1450 *
1451 * @state: Generic network queuing layer state, see netdev_state_t
1452 * @dev_list: The global list of network devices
1453 * @napi_list: List entry used for polling NAPI devices
1454 * @unreg_list: List entry when we are unregistering the
1455 * device; see the function unregister_netdev
1456 * @close_list: List entry used when we are closing the device
1457 * @ptype_all: Device-specific packet handlers for all protocols
1458 * @ptype_specific: Device-specific, protocol-specific packet handlers
1459 *
1460 * @adj_list: Directly linked devices, like slaves for bonding
1461 * @features: Currently active device features
1462 * @hw_features: User-changeable features
1463 *
1464 * @wanted_features: User-requested features
1465 * @vlan_features: Mask of features inheritable by VLAN devices
1466 *
1467 * @hw_enc_features: Mask of features inherited by encapsulating devices
1468 * This field indicates what encapsulation
1469 * offloads the hardware is capable of doing,
1470 * and drivers will need to set them appropriately.
1471 *
1472 * @mpls_features: Mask of features inheritable by MPLS
1473 *
1474 * @ifindex: interface index
1475 * @group: The group the device belongs to
1476 *
1477 * @stats: Statistics struct, which was left as a legacy, use
1478 * rtnl_link_stats64 instead
1479 *
1480 * @rx_dropped: Dropped packets by core network,
1481 * do not use this in drivers
1482 * @tx_dropped: Dropped packets by core network,
1483 * do not use this in drivers
1484 * @rx_nohandler: nohandler dropped packets by core network on
1485 * inactive devices, do not use this in drivers
1486 *
1487 * @wireless_handlers: List of functions to handle Wireless Extensions,
1488 * instead of ioctl,
1489 * see <net/iw_handler.h> for details.
1490 * @wireless_data: Instance data managed by the core of wireless extensions
1491 *
1492 * @netdev_ops: Includes several pointers to callbacks,
1493 * if one wants to override the ndo_*() functions
1494 * @ethtool_ops: Management operations
1495 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1496 * discovery handling. Necessary for e.g. 6LoWPAN.
1497 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1498 * of Layer 2 headers.
1499 *
1500 * @flags: Interface flags (a la BSD)
1501 * @priv_flags: Like 'flags' but invisible to userspace,
1502 * see if.h for the definitions
1503 * @gflags: Global flags ( kept as legacy )
1504 * @padded: How much padding added by alloc_netdev()
1505 * @operstate: RFC2863 operstate
1506 * @link_mode: Mapping policy to operstate
1507 * @if_port: Selectable AUI, TP, ...
1508 * @dma: DMA channel
1509 * @mtu: Interface MTU value
1510 * @min_mtu: Interface Minimum MTU value
1511 * @max_mtu: Interface Maximum MTU value
1512 * @type: Interface hardware type
1513 * @hard_header_len: Maximum hardware header length.
1514 * @min_header_len: Minimum hardware header length
1515 *
1516 * @needed_headroom: Extra headroom the hardware may need, but not in all
1517 * cases can this be guaranteed
1518 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1519 * cases can this be guaranteed. Some cases also use
1520 * LL_MAX_HEADER instead to allocate the skb
1521 *
1522 * interface address info:
1523 *
1524 * @perm_addr: Permanent hw address
1525 * @addr_assign_type: Hw address assignment type
1526 * @addr_len: Hardware address length
1527 * @neigh_priv_len: Used in neigh_alloc()
1528 * @dev_id: Used to differentiate devices that share
1529 * the same link layer address
1530 * @dev_port: Used to differentiate devices that share
1531 * the same function
1532 * @addr_list_lock: XXX: need comments on this one
1533 * @uc_promisc: Counter that indicates promiscuous mode
1534 * has been enabled due to the need to listen to
1535 * additional unicast addresses in a device that
1536 * does not implement ndo_set_rx_mode()
1537 * @uc: unicast mac addresses
1538 * @mc: multicast mac addresses
1539 * @dev_addrs: list of device hw addresses
1540 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1541 * @promiscuity: Number of times the NIC is told to work in
1542 * promiscuous mode; if it becomes 0 the NIC will
1543 * exit promiscuous mode
1544 * @allmulti: Counter, enables or disables allmulticast mode
1545 *
1546 * @vlan_info: VLAN info
1547 * @dsa_ptr: dsa specific data
1548 * @tipc_ptr: TIPC specific data
1549 * @atalk_ptr: AppleTalk link
1550 * @ip_ptr: IPv4 specific data
1551 * @dn_ptr: DECnet specific data
1552 * @ip6_ptr: IPv6 specific data
1553 * @ax25_ptr: AX.25 specific data
1554 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1555 *
1556 * @last_rx: Time of last Rx
1557 * @dev_addr: Hw address (before bcast,
1558 * because most packets are unicast)
1559 *
1560 * @_rx: Array of RX queues
1561 * @num_rx_queues: Number of RX queues
1562 * allocated at register_netdev() time
1563 * @real_num_rx_queues: Number of RX queues currently active in device
1564 *
1565 * @rx_handler: handler for received packets
1566 * @rx_handler_data: XXX: need comments on this one
1567 * @ingress_queue: XXX: need comments on this one
1568 * @broadcast: hw bcast address
1569 *
1570 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1571 * indexed by RX queue number. Assigned by driver.
1572 * This must only be set if the ndo_rx_flow_steer
1573 * operation is defined
1574 * @index_hlist: Device index hash chain
1575 *
1576 * @_tx: Array of TX queues
1577 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1578 * @real_num_tx_queues: Number of TX queues currently active in device
1579 * @qdisc: Root qdisc from userspace point of view
1580 * @tx_queue_len: Max frames per queue allowed
1581 * @tx_global_lock: XXX: need comments on this one
1582 *
1583 * @xps_maps: XXX: need comments on this one
1584 *
1585 * @watchdog_timeo: Represents the timeout that is used by
1586 * the watchdog (see dev_watchdog())
1587 * @watchdog_timer: List of timers
1588 *
1589 * @pcpu_refcnt: Number of references to this device
1590 * @todo_list: Delayed register/unregister
1591 * @link_watch_list: XXX: need comments on this one
1592 *
1593 * @reg_state: Register/unregister state machine
1594 * @dismantle: Device is going to be freed
1595 * @rtnl_link_state: This enum represents the phases of creating
1596 * a new link
1597 *
1598 * @destructor: Called from unregister,
1599 * can be used to call free_netdev
1600 * @npinfo: XXX: need comments on this one
1601 * @nd_net: Network namespace this network device is inside
1602 *
1603 * @ml_priv: Mid-layer private
1604 * @lstats: Loopback statistics
1605 * @tstats: Tunnel statistics
1606 * @dstats: Dummy statistics
1607 * @vstats: Virtual ethernet statistics
1608 *
1609 * @garp_port: GARP
1610 * @mrp_port: MRP
1611 *
1612 * @dev: Class/net/name entry
1613 * @sysfs_groups: Space for optional device, statistics and wireless
1614 * sysfs groups
1615 *
1616 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1617 * @rtnl_link_ops: Rtnl_link_ops
1618 *
1619 * @gso_max_size: Maximum size of generic segmentation offload
1620 * @gso_max_segs: Maximum number of segments that can be passed to the
1621 * NIC for GSO
1622 *
1623 * @dcbnl_ops: Data Center Bridging netlink ops
1624 * @num_tc: Number of traffic classes in the net device
1625 * @tc_to_txq: XXX: need comments on this one
1626 * @prio_tc_map: XXX: need comments on this one
1627 *
1628 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1629 *
1630 * @priomap: XXX: need comments on this one
1631 * @phydev: Physical device may attach itself
1632 * for hardware timestamping
1633 *
1634 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1635 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1636 *
1637 * @proto_down: protocol port state information can be sent to the
1638 * switch driver and used to set the phys state of the
1639 * switch port.
1640 *
1641 * FIXME: cleanup struct net_device such that network protocol info
1642 * moves out.
1643 */
1644
1645 struct net_device {
1646 char name[IFNAMSIZ];
1647 struct hlist_node name_hlist;
1648 char *ifalias;
1649 /*
1650 * I/O specific fields
1651 * FIXME: Merge these and struct ifmap into one
1652 */
1653 unsigned long mem_end;
1654 unsigned long mem_start;
1655 unsigned long base_addr;
1656 int irq;
1657
1658 atomic_t carrier_changes;
1659
1660 /*
1661 * Some hardware also needs these fields (state,dev_list,
1662 * napi_list,unreg_list,close_list) but they are not
1663 * part of the usual set specified in Space.c.
1664 */
1665
1666 unsigned long state;
1667
1668 struct list_head dev_list;
1669 struct list_head napi_list;
1670 struct list_head unreg_list;
1671 struct list_head close_list;
1672 struct list_head ptype_all;
1673 struct list_head ptype_specific;
1674
1675 struct {
1676 struct list_head upper;
1677 struct list_head lower;
1678 } adj_list;
1679
1680 netdev_features_t features;
1681 netdev_features_t hw_features;
1682 netdev_features_t wanted_features;
1683 netdev_features_t vlan_features;
1684 netdev_features_t hw_enc_features;
1685 netdev_features_t mpls_features;
1686 netdev_features_t gso_partial_features;
1687
1688 int ifindex;
1689 int group;
1690
1691 struct net_device_stats stats;
1692
1693 atomic_long_t rx_dropped;
1694 atomic_long_t tx_dropped;
1695 atomic_long_t rx_nohandler;
1696
1697 #ifdef CONFIG_WIRELESS_EXT
1698 const struct iw_handler_def *wireless_handlers;
1699 struct iw_public_data *wireless_data;
1700 #endif
1701 const struct net_device_ops *netdev_ops;
1702 const struct ethtool_ops *ethtool_ops;
1703 #ifdef CONFIG_NET_SWITCHDEV
1704 const struct switchdev_ops *switchdev_ops;
1705 #endif
1706 #ifdef CONFIG_NET_L3_MASTER_DEV
1707 const struct l3mdev_ops *l3mdev_ops;
1708 #endif
1709 #if IS_ENABLED(CONFIG_IPV6)
1710 const struct ndisc_ops *ndisc_ops;
1711 #endif
1712
1713 const struct header_ops *header_ops;
1714
1715 unsigned int flags;
1716 unsigned int priv_flags;
1717
1718 unsigned short gflags;
1719 unsigned short padded;
1720
1721 unsigned char operstate;
1722 unsigned char link_mode;
1723
1724 unsigned char if_port;
1725 unsigned char dma;
1726
1727 unsigned int mtu;
1728 unsigned int min_mtu;
1729 unsigned int max_mtu;
1730 unsigned short type;
1731 unsigned short hard_header_len;
1732 unsigned short min_header_len;
1733
1734 unsigned short needed_headroom;
1735 unsigned short needed_tailroom;
1736
1737 /* Interface address info. */
1738 unsigned char perm_addr[MAX_ADDR_LEN];
1739 unsigned char addr_assign_type;
1740 unsigned char addr_len;
1741 unsigned short neigh_priv_len;
1742 unsigned short dev_id;
1743 unsigned short dev_port;
1744 spinlock_t addr_list_lock;
1745 unsigned char name_assign_type;
1746 bool uc_promisc;
1747 struct netdev_hw_addr_list uc;
1748 struct netdev_hw_addr_list mc;
1749 struct netdev_hw_addr_list dev_addrs;
1750
1751 #ifdef CONFIG_SYSFS
1752 struct kset *queues_kset;
1753 #endif
1754 unsigned int promiscuity;
1755 unsigned int allmulti;
1756
1757
1758 /* Protocol-specific pointers */
1759
1760 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1761 struct vlan_info __rcu *vlan_info;
1762 #endif
1763 #if IS_ENABLED(CONFIG_NET_DSA)
1764 struct dsa_switch_tree *dsa_ptr;
1765 #endif
1766 #if IS_ENABLED(CONFIG_TIPC)
1767 struct tipc_bearer __rcu *tipc_ptr;
1768 #endif
1769 void *atalk_ptr;
1770 struct in_device __rcu *ip_ptr;
1771 struct dn_dev __rcu *dn_ptr;
1772 struct inet6_dev __rcu *ip6_ptr;
1773 void *ax25_ptr;
1774 struct wireless_dev *ieee80211_ptr;
1775 struct wpan_dev *ieee802154_ptr;
1776 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1777 struct mpls_dev __rcu *mpls_ptr;
1778 #endif
1779
1780 /*
1781 * Cache lines mostly used on receive path (including eth_type_trans())
1782 */
1783 unsigned long last_rx;
1784
1785 /* Interface address info used in eth_type_trans() */
1786 unsigned char *dev_addr;
1787
1788 #ifdef CONFIG_SYSFS
1789 struct netdev_rx_queue *_rx;
1790
1791 unsigned int num_rx_queues;
1792 unsigned int real_num_rx_queues;
1793 #endif
1794
1795 unsigned long gro_flush_timeout;
1796 rx_handler_func_t __rcu *rx_handler;
1797 void __rcu *rx_handler_data;
1798
1799 #ifdef CONFIG_NET_CLS_ACT
1800 struct tcf_proto __rcu *ingress_cl_list;
1801 #endif
1802 struct netdev_queue __rcu *ingress_queue;
1803 #ifdef CONFIG_NETFILTER_INGRESS
1804 struct nf_hook_entry __rcu *nf_hooks_ingress;
1805 #endif
1806
1807 unsigned char broadcast[MAX_ADDR_LEN];
1808 #ifdef CONFIG_RFS_ACCEL
1809 struct cpu_rmap *rx_cpu_rmap;
1810 #endif
1811 struct hlist_node index_hlist;
1812
1813 /*
1814 * Cache lines mostly used on transmit path
1815 */
1816 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1817 unsigned int num_tx_queues;
1818 unsigned int real_num_tx_queues;
1819 struct Qdisc *qdisc;
1820 #ifdef CONFIG_NET_SCHED
1821 DECLARE_HASHTABLE (qdisc_hash, 4);
1822 #endif
1823 unsigned long tx_queue_len;
1824 spinlock_t tx_global_lock;
1825 int watchdog_timeo;
1826
1827 #ifdef CONFIG_XPS
1828 struct xps_dev_maps __rcu *xps_maps;
1829 #endif
1830 #ifdef CONFIG_NET_CLS_ACT
1831 struct tcf_proto __rcu *egress_cl_list;
1832 #endif
1833
1834 /* These may be needed for future network-power-down code. */
1835 struct timer_list watchdog_timer;
1836
1837 int __percpu *pcpu_refcnt;
1838 struct list_head todo_list;
1839
1840 struct list_head link_watch_list;
1841
1842 enum { NETREG_UNINITIALIZED=0,
1843 NETREG_REGISTERED, /* completed register_netdevice */
1844 NETREG_UNREGISTERING, /* called unregister_netdevice */
1845 NETREG_UNREGISTERED, /* completed unregister todo */
1846 NETREG_RELEASED, /* called free_netdev */
1847 NETREG_DUMMY, /* dummy device for NAPI poll */
1848 } reg_state:8;
1849
1850 bool dismantle;
1851
1852 enum {
1853 RTNL_LINK_INITIALIZED,
1854 RTNL_LINK_INITIALIZING,
1855 } rtnl_link_state:16;
1856
1857 void (*destructor)(struct net_device *dev);
1858
1859 #ifdef CONFIG_NETPOLL
1860 struct netpoll_info __rcu *npinfo;
1861 #endif
1862
1863 possible_net_t nd_net;
1864
1865 /* mid-layer private */
1866 union {
1867 void *ml_priv;
1868 struct pcpu_lstats __percpu *lstats;
1869 struct pcpu_sw_netstats __percpu *tstats;
1870 struct pcpu_dstats __percpu *dstats;
1871 struct pcpu_vstats __percpu *vstats;
1872 };
1873
1874 struct garp_port __rcu *garp_port;
1875 struct mrp_port __rcu *mrp_port;
1876
1877 struct device dev;
1878 const struct attribute_group *sysfs_groups[4];
1879 const struct attribute_group *sysfs_rx_queue_group;
1880
1881 const struct rtnl_link_ops *rtnl_link_ops;
1882
1883 /* for setting kernel sock attribute on TCP connection setup */
1884 #define GSO_MAX_SIZE 65536
1885 unsigned int gso_max_size;
1886 #define GSO_MAX_SEGS 65535
1887 u16 gso_max_segs;
1888
1889 #ifdef CONFIG_DCB
1890 const struct dcbnl_rtnl_ops *dcbnl_ops;
1891 #endif
1892 u8 num_tc;
1893 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1894 u8 prio_tc_map[TC_BITMASK + 1];
1895
1896 #if IS_ENABLED(CONFIG_FCOE)
1897 unsigned int fcoe_ddp_xid;
1898 #endif
1899 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1900 struct netprio_map __rcu *priomap;
1901 #endif
1902 struct phy_device *phydev;
1903 struct lock_class_key *qdisc_tx_busylock;
1904 struct lock_class_key *qdisc_running_key;
1905 bool proto_down;
1906 };
1907 #define to_net_dev(d) container_of(d, struct net_device, dev)
1908
1909 #define NETDEV_ALIGN 32
1910
1911 static inline
1912 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1913 {
1914 return dev->prio_tc_map[prio & TC_BITMASK];
1915 }
1916
1917 static inline
1918 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1919 {
1920 if (tc >= dev->num_tc)
1921 return -EINVAL;
1922
1923 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1924 return 0;
1925 }
1926
1927 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1928 void netdev_reset_tc(struct net_device *dev);
1929 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1930 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1931
1932 static inline
1933 int netdev_get_num_tc(struct net_device *dev)
1934 {
1935 return dev->num_tc;
1936 }
1937
1938 static inline
1939 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1940 unsigned int index)
1941 {
1942 return &dev->_tx[index];
1943 }
1944
1945 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1946 const struct sk_buff *skb)
1947 {
1948 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1949 }
1950
1951 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1952 void (*f)(struct net_device *,
1953 struct netdev_queue *,
1954 void *),
1955 void *arg)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < dev->num_tx_queues; i++)
1960 f(dev, &dev->_tx[i], arg);
1961 }
1962
1963 #define netdev_lockdep_set_classes(dev) \
1964 { \
1965 static struct lock_class_key qdisc_tx_busylock_key; \
1966 static struct lock_class_key qdisc_running_key; \
1967 static struct lock_class_key qdisc_xmit_lock_key; \
1968 static struct lock_class_key dev_addr_list_lock_key; \
1969 unsigned int i; \
1970 \
1971 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1972 (dev)->qdisc_running_key = &qdisc_running_key; \
1973 lockdep_set_class(&(dev)->addr_list_lock, \
1974 &dev_addr_list_lock_key); \
1975 for (i = 0; i < (dev)->num_tx_queues; i++) \
1976 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1977 &qdisc_xmit_lock_key); \
1978 }
1979
1980 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1981 struct sk_buff *skb,
1982 void *accel_priv);
1983
1984 /* returns the headroom that the master device needs to take in account
1985 * when forwarding to this dev
1986 */
1987 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1988 {
1989 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1990 }
1991
1992 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1993 {
1994 if (dev->netdev_ops->ndo_set_rx_headroom)
1995 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1996 }
1997
1998 /* set the device rx headroom to the dev's default */
1999 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2000 {
2001 netdev_set_rx_headroom(dev, -1);
2002 }
2003
2004 /*
2005 * Net namespace inlines
2006 */
2007 static inline
2008 struct net *dev_net(const struct net_device *dev)
2009 {
2010 return read_pnet(&dev->nd_net);
2011 }
2012
2013 static inline
2014 void dev_net_set(struct net_device *dev, struct net *net)
2015 {
2016 write_pnet(&dev->nd_net, net);
2017 }
2018
2019 static inline bool netdev_uses_dsa(struct net_device *dev)
2020 {
2021 #if IS_ENABLED(CONFIG_NET_DSA)
2022 if (dev->dsa_ptr != NULL)
2023 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2024 #endif
2025 return false;
2026 }
2027
2028 /**
2029 * netdev_priv - access network device private data
2030 * @dev: network device
2031 *
2032 * Get network device private data
2033 */
2034 static inline void *netdev_priv(const struct net_device *dev)
2035 {
2036 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2037 }
2038
2039 /* Set the sysfs physical device reference for the network logical device
2040 * if set prior to registration will cause a symlink during initialization.
2041 */
2042 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2043
2044 /* Set the sysfs device type for the network logical device to allow
2045 * fine-grained identification of different network device types. For
2046 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2047 */
2048 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2049
2050 /* Default NAPI poll() weight
2051 * Device drivers are strongly advised to not use bigger value
2052 */
2053 #define NAPI_POLL_WEIGHT 64
2054
2055 /**
2056 * netif_napi_add - initialize a NAPI context
2057 * @dev: network device
2058 * @napi: NAPI context
2059 * @poll: polling function
2060 * @weight: default weight
2061 *
2062 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2063 * *any* of the other NAPI-related functions.
2064 */
2065 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2066 int (*poll)(struct napi_struct *, int), int weight);
2067
2068 /**
2069 * netif_tx_napi_add - initialize a NAPI context
2070 * @dev: network device
2071 * @napi: NAPI context
2072 * @poll: polling function
2073 * @weight: default weight
2074 *
2075 * This variant of netif_napi_add() should be used from drivers using NAPI
2076 * to exclusively poll a TX queue.
2077 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2078 */
2079 static inline void netif_tx_napi_add(struct net_device *dev,
2080 struct napi_struct *napi,
2081 int (*poll)(struct napi_struct *, int),
2082 int weight)
2083 {
2084 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2085 netif_napi_add(dev, napi, poll, weight);
2086 }
2087
2088 /**
2089 * netif_napi_del - remove a NAPI context
2090 * @napi: NAPI context
2091 *
2092 * netif_napi_del() removes a NAPI context from the network device NAPI list
2093 */
2094 void netif_napi_del(struct napi_struct *napi);
2095
2096 struct napi_gro_cb {
2097 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2098 void *frag0;
2099
2100 /* Length of frag0. */
2101 unsigned int frag0_len;
2102
2103 /* This indicates where we are processing relative to skb->data. */
2104 int data_offset;
2105
2106 /* This is non-zero if the packet cannot be merged with the new skb. */
2107 u16 flush;
2108
2109 /* Save the IP ID here and check when we get to the transport layer */
2110 u16 flush_id;
2111
2112 /* Number of segments aggregated. */
2113 u16 count;
2114
2115 /* Start offset for remote checksum offload */
2116 u16 gro_remcsum_start;
2117
2118 /* jiffies when first packet was created/queued */
2119 unsigned long age;
2120
2121 /* Used in ipv6_gro_receive() and foo-over-udp */
2122 u16 proto;
2123
2124 /* This is non-zero if the packet may be of the same flow. */
2125 u8 same_flow:1;
2126
2127 /* Used in tunnel GRO receive */
2128 u8 encap_mark:1;
2129
2130 /* GRO checksum is valid */
2131 u8 csum_valid:1;
2132
2133 /* Number of checksums via CHECKSUM_UNNECESSARY */
2134 u8 csum_cnt:3;
2135
2136 /* Free the skb? */
2137 u8 free:2;
2138 #define NAPI_GRO_FREE 1
2139 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2140
2141 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2142 u8 is_ipv6:1;
2143
2144 /* Used in GRE, set in fou/gue_gro_receive */
2145 u8 is_fou:1;
2146
2147 /* Used to determine if flush_id can be ignored */
2148 u8 is_atomic:1;
2149
2150 /* Number of gro_receive callbacks this packet already went through */
2151 u8 recursion_counter:4;
2152
2153 /* 1 bit hole */
2154
2155 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2156 __wsum csum;
2157
2158 /* used in skb_gro_receive() slow path */
2159 struct sk_buff *last;
2160 };
2161
2162 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2163
2164 #define GRO_RECURSION_LIMIT 15
2165 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2166 {
2167 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2168 }
2169
2170 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2171 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2172 struct sk_buff **head,
2173 struct sk_buff *skb)
2174 {
2175 if (unlikely(gro_recursion_inc_test(skb))) {
2176 NAPI_GRO_CB(skb)->flush |= 1;
2177 return NULL;
2178 }
2179
2180 return cb(head, skb);
2181 }
2182
2183 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2184 struct sk_buff *);
2185 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2186 struct sock *sk,
2187 struct sk_buff **head,
2188 struct sk_buff *skb)
2189 {
2190 if (unlikely(gro_recursion_inc_test(skb))) {
2191 NAPI_GRO_CB(skb)->flush |= 1;
2192 return NULL;
2193 }
2194
2195 return cb(sk, head, skb);
2196 }
2197
2198 struct packet_type {
2199 __be16 type; /* This is really htons(ether_type). */
2200 struct net_device *dev; /* NULL is wildcarded here */
2201 int (*func) (struct sk_buff *,
2202 struct net_device *,
2203 struct packet_type *,
2204 struct net_device *);
2205 bool (*id_match)(struct packet_type *ptype,
2206 struct sock *sk);
2207 void *af_packet_priv;
2208 struct list_head list;
2209 };
2210
2211 struct offload_callbacks {
2212 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2213 netdev_features_t features);
2214 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2215 struct sk_buff *skb);
2216 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2217 };
2218
2219 struct packet_offload {
2220 __be16 type; /* This is really htons(ether_type). */
2221 u16 priority;
2222 struct offload_callbacks callbacks;
2223 struct list_head list;
2224 };
2225
2226 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2227 struct pcpu_sw_netstats {
2228 u64 rx_packets;
2229 u64 rx_bytes;
2230 u64 tx_packets;
2231 u64 tx_bytes;
2232 struct u64_stats_sync syncp;
2233 };
2234
2235 #define __netdev_alloc_pcpu_stats(type, gfp) \
2236 ({ \
2237 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2238 if (pcpu_stats) { \
2239 int __cpu; \
2240 for_each_possible_cpu(__cpu) { \
2241 typeof(type) *stat; \
2242 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2243 u64_stats_init(&stat->syncp); \
2244 } \
2245 } \
2246 pcpu_stats; \
2247 })
2248
2249 #define netdev_alloc_pcpu_stats(type) \
2250 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2251
2252 enum netdev_lag_tx_type {
2253 NETDEV_LAG_TX_TYPE_UNKNOWN,
2254 NETDEV_LAG_TX_TYPE_RANDOM,
2255 NETDEV_LAG_TX_TYPE_BROADCAST,
2256 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2257 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2258 NETDEV_LAG_TX_TYPE_HASH,
2259 };
2260
2261 struct netdev_lag_upper_info {
2262 enum netdev_lag_tx_type tx_type;
2263 };
2264
2265 struct netdev_lag_lower_state_info {
2266 u8 link_up : 1,
2267 tx_enabled : 1;
2268 };
2269
2270 #include <linux/notifier.h>
2271
2272 /* netdevice notifier chain. Please remember to update the rtnetlink
2273 * notification exclusion list in rtnetlink_event() when adding new
2274 * types.
2275 */
2276 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2277 #define NETDEV_DOWN 0x0002
2278 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2279 detected a hardware crash and restarted
2280 - we can use this eg to kick tcp sessions
2281 once done */
2282 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2283 #define NETDEV_REGISTER 0x0005
2284 #define NETDEV_UNREGISTER 0x0006
2285 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2286 #define NETDEV_CHANGEADDR 0x0008
2287 #define NETDEV_GOING_DOWN 0x0009
2288 #define NETDEV_CHANGENAME 0x000A
2289 #define NETDEV_FEAT_CHANGE 0x000B
2290 #define NETDEV_BONDING_FAILOVER 0x000C
2291 #define NETDEV_PRE_UP 0x000D
2292 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2293 #define NETDEV_POST_TYPE_CHANGE 0x000F
2294 #define NETDEV_POST_INIT 0x0010
2295 #define NETDEV_UNREGISTER_FINAL 0x0011
2296 #define NETDEV_RELEASE 0x0012
2297 #define NETDEV_NOTIFY_PEERS 0x0013
2298 #define NETDEV_JOIN 0x0014
2299 #define NETDEV_CHANGEUPPER 0x0015
2300 #define NETDEV_RESEND_IGMP 0x0016
2301 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2302 #define NETDEV_CHANGEINFODATA 0x0018
2303 #define NETDEV_BONDING_INFO 0x0019
2304 #define NETDEV_PRECHANGEUPPER 0x001A
2305 #define NETDEV_CHANGELOWERSTATE 0x001B
2306 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2307 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2308
2309 int register_netdevice_notifier(struct notifier_block *nb);
2310 int unregister_netdevice_notifier(struct notifier_block *nb);
2311
2312 struct netdev_notifier_info {
2313 struct net_device *dev;
2314 };
2315
2316 struct netdev_notifier_change_info {
2317 struct netdev_notifier_info info; /* must be first */
2318 unsigned int flags_changed;
2319 };
2320
2321 struct netdev_notifier_changeupper_info {
2322 struct netdev_notifier_info info; /* must be first */
2323 struct net_device *upper_dev; /* new upper dev */
2324 bool master; /* is upper dev master */
2325 bool linking; /* is the notification for link or unlink */
2326 void *upper_info; /* upper dev info */
2327 };
2328
2329 struct netdev_notifier_changelowerstate_info {
2330 struct netdev_notifier_info info; /* must be first */
2331 void *lower_state_info; /* is lower dev state */
2332 };
2333
2334 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2335 struct net_device *dev)
2336 {
2337 info->dev = dev;
2338 }
2339
2340 static inline struct net_device *
2341 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2342 {
2343 return info->dev;
2344 }
2345
2346 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2347
2348
2349 extern rwlock_t dev_base_lock; /* Device list lock */
2350
2351 #define for_each_netdev(net, d) \
2352 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_reverse(net, d) \
2354 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_rcu(net, d) \
2356 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_safe(net, d, n) \
2358 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_continue(net, d) \
2360 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_continue_rcu(net, d) \
2362 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_in_bond_rcu(bond, slave) \
2364 for_each_netdev_rcu(&init_net, slave) \
2365 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2366 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2367
2368 static inline struct net_device *next_net_device(struct net_device *dev)
2369 {
2370 struct list_head *lh;
2371 struct net *net;
2372
2373 net = dev_net(dev);
2374 lh = dev->dev_list.next;
2375 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2376 }
2377
2378 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2379 {
2380 struct list_head *lh;
2381 struct net *net;
2382
2383 net = dev_net(dev);
2384 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2385 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2386 }
2387
2388 static inline struct net_device *first_net_device(struct net *net)
2389 {
2390 return list_empty(&net->dev_base_head) ? NULL :
2391 net_device_entry(net->dev_base_head.next);
2392 }
2393
2394 static inline struct net_device *first_net_device_rcu(struct net *net)
2395 {
2396 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2397
2398 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2399 }
2400
2401 int netdev_boot_setup_check(struct net_device *dev);
2402 unsigned long netdev_boot_base(const char *prefix, int unit);
2403 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2404 const char *hwaddr);
2405 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2406 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2407 void dev_add_pack(struct packet_type *pt);
2408 void dev_remove_pack(struct packet_type *pt);
2409 void __dev_remove_pack(struct packet_type *pt);
2410 void dev_add_offload(struct packet_offload *po);
2411 void dev_remove_offload(struct packet_offload *po);
2412
2413 int dev_get_iflink(const struct net_device *dev);
2414 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2415 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2416 unsigned short mask);
2417 struct net_device *dev_get_by_name(struct net *net, const char *name);
2418 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2419 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2420 int dev_alloc_name(struct net_device *dev, const char *name);
2421 int dev_open(struct net_device *dev);
2422 int dev_close(struct net_device *dev);
2423 int dev_close_many(struct list_head *head, bool unlink);
2424 void dev_disable_lro(struct net_device *dev);
2425 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2426 int dev_queue_xmit(struct sk_buff *skb);
2427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2428 int register_netdevice(struct net_device *dev);
2429 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2430 void unregister_netdevice_many(struct list_head *head);
2431 static inline void unregister_netdevice(struct net_device *dev)
2432 {
2433 unregister_netdevice_queue(dev, NULL);
2434 }
2435
2436 int netdev_refcnt_read(const struct net_device *dev);
2437 void free_netdev(struct net_device *dev);
2438 void netdev_freemem(struct net_device *dev);
2439 void synchronize_net(void);
2440 int init_dummy_netdev(struct net_device *dev);
2441
2442 DECLARE_PER_CPU(int, xmit_recursion);
2443 #define XMIT_RECURSION_LIMIT 10
2444
2445 static inline int dev_recursion_level(void)
2446 {
2447 return this_cpu_read(xmit_recursion);
2448 }
2449
2450 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2451 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2452 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2453 int netdev_get_name(struct net *net, char *name, int ifindex);
2454 int dev_restart(struct net_device *dev);
2455 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2456
2457 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2458 {
2459 return NAPI_GRO_CB(skb)->data_offset;
2460 }
2461
2462 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2463 {
2464 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2465 }
2466
2467 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2468 {
2469 NAPI_GRO_CB(skb)->data_offset += len;
2470 }
2471
2472 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2473 unsigned int offset)
2474 {
2475 return NAPI_GRO_CB(skb)->frag0 + offset;
2476 }
2477
2478 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2479 {
2480 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2481 }
2482
2483 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2484 {
2485 NAPI_GRO_CB(skb)->frag0 = NULL;
2486 NAPI_GRO_CB(skb)->frag0_len = 0;
2487 }
2488
2489 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2490 unsigned int offset)
2491 {
2492 if (!pskb_may_pull(skb, hlen))
2493 return NULL;
2494
2495 skb_gro_frag0_invalidate(skb);
2496 return skb->data + offset;
2497 }
2498
2499 static inline void *skb_gro_network_header(struct sk_buff *skb)
2500 {
2501 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2502 skb_network_offset(skb);
2503 }
2504
2505 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2506 const void *start, unsigned int len)
2507 {
2508 if (NAPI_GRO_CB(skb)->csum_valid)
2509 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2510 csum_partial(start, len, 0));
2511 }
2512
2513 /* GRO checksum functions. These are logical equivalents of the normal
2514 * checksum functions (in skbuff.h) except that they operate on the GRO
2515 * offsets and fields in sk_buff.
2516 */
2517
2518 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2519
2520 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2521 {
2522 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2523 }
2524
2525 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2526 bool zero_okay,
2527 __sum16 check)
2528 {
2529 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2530 skb_checksum_start_offset(skb) <
2531 skb_gro_offset(skb)) &&
2532 !skb_at_gro_remcsum_start(skb) &&
2533 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2534 (!zero_okay || check));
2535 }
2536
2537 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2538 __wsum psum)
2539 {
2540 if (NAPI_GRO_CB(skb)->csum_valid &&
2541 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2542 return 0;
2543
2544 NAPI_GRO_CB(skb)->csum = psum;
2545
2546 return __skb_gro_checksum_complete(skb);
2547 }
2548
2549 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2550 {
2551 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2552 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2553 NAPI_GRO_CB(skb)->csum_cnt--;
2554 } else {
2555 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2556 * verified a new top level checksum or an encapsulated one
2557 * during GRO. This saves work if we fallback to normal path.
2558 */
2559 __skb_incr_checksum_unnecessary(skb);
2560 }
2561 }
2562
2563 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2564 compute_pseudo) \
2565 ({ \
2566 __sum16 __ret = 0; \
2567 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2568 __ret = __skb_gro_checksum_validate_complete(skb, \
2569 compute_pseudo(skb, proto)); \
2570 if (__ret) \
2571 __skb_mark_checksum_bad(skb); \
2572 else \
2573 skb_gro_incr_csum_unnecessary(skb); \
2574 __ret; \
2575 })
2576
2577 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2578 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2579
2580 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2581 compute_pseudo) \
2582 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2583
2584 #define skb_gro_checksum_simple_validate(skb) \
2585 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2586
2587 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2588 {
2589 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2590 !NAPI_GRO_CB(skb)->csum_valid);
2591 }
2592
2593 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2594 __sum16 check, __wsum pseudo)
2595 {
2596 NAPI_GRO_CB(skb)->csum = ~pseudo;
2597 NAPI_GRO_CB(skb)->csum_valid = 1;
2598 }
2599
2600 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2601 do { \
2602 if (__skb_gro_checksum_convert_check(skb)) \
2603 __skb_gro_checksum_convert(skb, check, \
2604 compute_pseudo(skb, proto)); \
2605 } while (0)
2606
2607 struct gro_remcsum {
2608 int offset;
2609 __wsum delta;
2610 };
2611
2612 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2613 {
2614 grc->offset = 0;
2615 grc->delta = 0;
2616 }
2617
2618 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2619 unsigned int off, size_t hdrlen,
2620 int start, int offset,
2621 struct gro_remcsum *grc,
2622 bool nopartial)
2623 {
2624 __wsum delta;
2625 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2626
2627 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2628
2629 if (!nopartial) {
2630 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2631 return ptr;
2632 }
2633
2634 ptr = skb_gro_header_fast(skb, off);
2635 if (skb_gro_header_hard(skb, off + plen)) {
2636 ptr = skb_gro_header_slow(skb, off + plen, off);
2637 if (!ptr)
2638 return NULL;
2639 }
2640
2641 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2642 start, offset);
2643
2644 /* Adjust skb->csum since we changed the packet */
2645 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2646
2647 grc->offset = off + hdrlen + offset;
2648 grc->delta = delta;
2649
2650 return ptr;
2651 }
2652
2653 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2654 struct gro_remcsum *grc)
2655 {
2656 void *ptr;
2657 size_t plen = grc->offset + sizeof(u16);
2658
2659 if (!grc->delta)
2660 return;
2661
2662 ptr = skb_gro_header_fast(skb, grc->offset);
2663 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2664 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2665 if (!ptr)
2666 return;
2667 }
2668
2669 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2670 }
2671
2672 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2673 unsigned short type,
2674 const void *daddr, const void *saddr,
2675 unsigned int len)
2676 {
2677 if (!dev->header_ops || !dev->header_ops->create)
2678 return 0;
2679
2680 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2681 }
2682
2683 static inline int dev_parse_header(const struct sk_buff *skb,
2684 unsigned char *haddr)
2685 {
2686 const struct net_device *dev = skb->dev;
2687
2688 if (!dev->header_ops || !dev->header_ops->parse)
2689 return 0;
2690 return dev->header_ops->parse(skb, haddr);
2691 }
2692
2693 /* ll_header must have at least hard_header_len allocated */
2694 static inline bool dev_validate_header(const struct net_device *dev,
2695 char *ll_header, int len)
2696 {
2697 if (likely(len >= dev->hard_header_len))
2698 return true;
2699 if (len < dev->min_header_len)
2700 return false;
2701
2702 if (capable(CAP_SYS_RAWIO)) {
2703 memset(ll_header + len, 0, dev->hard_header_len - len);
2704 return true;
2705 }
2706
2707 if (dev->header_ops && dev->header_ops->validate)
2708 return dev->header_ops->validate(ll_header, len);
2709
2710 return false;
2711 }
2712
2713 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2714 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2715 static inline int unregister_gifconf(unsigned int family)
2716 {
2717 return register_gifconf(family, NULL);
2718 }
2719
2720 #ifdef CONFIG_NET_FLOW_LIMIT
2721 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2722 struct sd_flow_limit {
2723 u64 count;
2724 unsigned int num_buckets;
2725 unsigned int history_head;
2726 u16 history[FLOW_LIMIT_HISTORY];
2727 u8 buckets[];
2728 };
2729
2730 extern int netdev_flow_limit_table_len;
2731 #endif /* CONFIG_NET_FLOW_LIMIT */
2732
2733 /*
2734 * Incoming packets are placed on per-CPU queues
2735 */
2736 struct softnet_data {
2737 struct list_head poll_list;
2738 struct sk_buff_head process_queue;
2739
2740 /* stats */
2741 unsigned int processed;
2742 unsigned int time_squeeze;
2743 unsigned int received_rps;
2744 #ifdef CONFIG_RPS
2745 struct softnet_data *rps_ipi_list;
2746 #endif
2747 #ifdef CONFIG_NET_FLOW_LIMIT
2748 struct sd_flow_limit __rcu *flow_limit;
2749 #endif
2750 struct Qdisc *output_queue;
2751 struct Qdisc **output_queue_tailp;
2752 struct sk_buff *completion_queue;
2753
2754 #ifdef CONFIG_RPS
2755 /* input_queue_head should be written by cpu owning this struct,
2756 * and only read by other cpus. Worth using a cache line.
2757 */
2758 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2759
2760 /* Elements below can be accessed between CPUs for RPS/RFS */
2761 struct call_single_data csd ____cacheline_aligned_in_smp;
2762 struct softnet_data *rps_ipi_next;
2763 unsigned int cpu;
2764 unsigned int input_queue_tail;
2765 #endif
2766 unsigned int dropped;
2767 struct sk_buff_head input_pkt_queue;
2768 struct napi_struct backlog;
2769
2770 };
2771
2772 static inline void input_queue_head_incr(struct softnet_data *sd)
2773 {
2774 #ifdef CONFIG_RPS
2775 sd->input_queue_head++;
2776 #endif
2777 }
2778
2779 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2780 unsigned int *qtail)
2781 {
2782 #ifdef CONFIG_RPS
2783 *qtail = ++sd->input_queue_tail;
2784 #endif
2785 }
2786
2787 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2788
2789 void __netif_schedule(struct Qdisc *q);
2790 void netif_schedule_queue(struct netdev_queue *txq);
2791
2792 static inline void netif_tx_schedule_all(struct net_device *dev)
2793 {
2794 unsigned int i;
2795
2796 for (i = 0; i < dev->num_tx_queues; i++)
2797 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2798 }
2799
2800 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2801 {
2802 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2803 }
2804
2805 /**
2806 * netif_start_queue - allow transmit
2807 * @dev: network device
2808 *
2809 * Allow upper layers to call the device hard_start_xmit routine.
2810 */
2811 static inline void netif_start_queue(struct net_device *dev)
2812 {
2813 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2814 }
2815
2816 static inline void netif_tx_start_all_queues(struct net_device *dev)
2817 {
2818 unsigned int i;
2819
2820 for (i = 0; i < dev->num_tx_queues; i++) {
2821 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2822 netif_tx_start_queue(txq);
2823 }
2824 }
2825
2826 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2827
2828 /**
2829 * netif_wake_queue - restart transmit
2830 * @dev: network device
2831 *
2832 * Allow upper layers to call the device hard_start_xmit routine.
2833 * Used for flow control when transmit resources are available.
2834 */
2835 static inline void netif_wake_queue(struct net_device *dev)
2836 {
2837 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2838 }
2839
2840 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2841 {
2842 unsigned int i;
2843
2844 for (i = 0; i < dev->num_tx_queues; i++) {
2845 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2846 netif_tx_wake_queue(txq);
2847 }
2848 }
2849
2850 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2851 {
2852 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2853 }
2854
2855 /**
2856 * netif_stop_queue - stop transmitted packets
2857 * @dev: network device
2858 *
2859 * Stop upper layers calling the device hard_start_xmit routine.
2860 * Used for flow control when transmit resources are unavailable.
2861 */
2862 static inline void netif_stop_queue(struct net_device *dev)
2863 {
2864 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2865 }
2866
2867 void netif_tx_stop_all_queues(struct net_device *dev);
2868
2869 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2870 {
2871 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2872 }
2873
2874 /**
2875 * netif_queue_stopped - test if transmit queue is flowblocked
2876 * @dev: network device
2877 *
2878 * Test if transmit queue on device is currently unable to send.
2879 */
2880 static inline bool netif_queue_stopped(const struct net_device *dev)
2881 {
2882 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2883 }
2884
2885 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2886 {
2887 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2888 }
2889
2890 static inline bool
2891 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2892 {
2893 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2894 }
2895
2896 static inline bool
2897 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2900 }
2901
2902 /**
2903 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2904 * @dev_queue: pointer to transmit queue
2905 *
2906 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2907 * to give appropriate hint to the CPU.
2908 */
2909 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2910 {
2911 #ifdef CONFIG_BQL
2912 prefetchw(&dev_queue->dql.num_queued);
2913 #endif
2914 }
2915
2916 /**
2917 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2918 * @dev_queue: pointer to transmit queue
2919 *
2920 * BQL enabled drivers might use this helper in their TX completion path,
2921 * to give appropriate hint to the CPU.
2922 */
2923 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2924 {
2925 #ifdef CONFIG_BQL
2926 prefetchw(&dev_queue->dql.limit);
2927 #endif
2928 }
2929
2930 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2931 unsigned int bytes)
2932 {
2933 #ifdef CONFIG_BQL
2934 dql_queued(&dev_queue->dql, bytes);
2935
2936 if (likely(dql_avail(&dev_queue->dql) >= 0))
2937 return;
2938
2939 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2940
2941 /*
2942 * The XOFF flag must be set before checking the dql_avail below,
2943 * because in netdev_tx_completed_queue we update the dql_completed
2944 * before checking the XOFF flag.
2945 */
2946 smp_mb();
2947
2948 /* check again in case another CPU has just made room avail */
2949 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2950 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2951 #endif
2952 }
2953
2954 /**
2955 * netdev_sent_queue - report the number of bytes queued to hardware
2956 * @dev: network device
2957 * @bytes: number of bytes queued to the hardware device queue
2958 *
2959 * Report the number of bytes queued for sending/completion to the network
2960 * device hardware queue. @bytes should be a good approximation and should
2961 * exactly match netdev_completed_queue() @bytes
2962 */
2963 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2964 {
2965 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2966 }
2967
2968 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2969 unsigned int pkts, unsigned int bytes)
2970 {
2971 #ifdef CONFIG_BQL
2972 if (unlikely(!bytes))
2973 return;
2974
2975 dql_completed(&dev_queue->dql, bytes);
2976
2977 /*
2978 * Without the memory barrier there is a small possiblity that
2979 * netdev_tx_sent_queue will miss the update and cause the queue to
2980 * be stopped forever
2981 */
2982 smp_mb();
2983
2984 if (dql_avail(&dev_queue->dql) < 0)
2985 return;
2986
2987 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2988 netif_schedule_queue(dev_queue);
2989 #endif
2990 }
2991
2992 /**
2993 * netdev_completed_queue - report bytes and packets completed by device
2994 * @dev: network device
2995 * @pkts: actual number of packets sent over the medium
2996 * @bytes: actual number of bytes sent over the medium
2997 *
2998 * Report the number of bytes and packets transmitted by the network device
2999 * hardware queue over the physical medium, @bytes must exactly match the
3000 * @bytes amount passed to netdev_sent_queue()
3001 */
3002 static inline void netdev_completed_queue(struct net_device *dev,
3003 unsigned int pkts, unsigned int bytes)
3004 {
3005 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3006 }
3007
3008 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3009 {
3010 #ifdef CONFIG_BQL
3011 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3012 dql_reset(&q->dql);
3013 #endif
3014 }
3015
3016 /**
3017 * netdev_reset_queue - reset the packets and bytes count of a network device
3018 * @dev_queue: network device
3019 *
3020 * Reset the bytes and packet count of a network device and clear the
3021 * software flow control OFF bit for this network device
3022 */
3023 static inline void netdev_reset_queue(struct net_device *dev_queue)
3024 {
3025 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3026 }
3027
3028 /**
3029 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3030 * @dev: network device
3031 * @queue_index: given tx queue index
3032 *
3033 * Returns 0 if given tx queue index >= number of device tx queues,
3034 * otherwise returns the originally passed tx queue index.
3035 */
3036 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3037 {
3038 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3039 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3040 dev->name, queue_index,
3041 dev->real_num_tx_queues);
3042 return 0;
3043 }
3044
3045 return queue_index;
3046 }
3047
3048 /**
3049 * netif_running - test if up
3050 * @dev: network device
3051 *
3052 * Test if the device has been brought up.
3053 */
3054 static inline bool netif_running(const struct net_device *dev)
3055 {
3056 return test_bit(__LINK_STATE_START, &dev->state);
3057 }
3058
3059 /*
3060 * Routines to manage the subqueues on a device. We only need start,
3061 * stop, and a check if it's stopped. All other device management is
3062 * done at the overall netdevice level.
3063 * Also test the device if we're multiqueue.
3064 */
3065
3066 /**
3067 * netif_start_subqueue - allow sending packets on subqueue
3068 * @dev: network device
3069 * @queue_index: sub queue index
3070 *
3071 * Start individual transmit queue of a device with multiple transmit queues.
3072 */
3073 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3074 {
3075 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3076
3077 netif_tx_start_queue(txq);
3078 }
3079
3080 /**
3081 * netif_stop_subqueue - stop sending packets on subqueue
3082 * @dev: network device
3083 * @queue_index: sub queue index
3084 *
3085 * Stop individual transmit queue of a device with multiple transmit queues.
3086 */
3087 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3088 {
3089 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3090 netif_tx_stop_queue(txq);
3091 }
3092
3093 /**
3094 * netif_subqueue_stopped - test status of subqueue
3095 * @dev: network device
3096 * @queue_index: sub queue index
3097 *
3098 * Check individual transmit queue of a device with multiple transmit queues.
3099 */
3100 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3101 u16 queue_index)
3102 {
3103 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104
3105 return netif_tx_queue_stopped(txq);
3106 }
3107
3108 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3109 struct sk_buff *skb)
3110 {
3111 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3112 }
3113
3114 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3115
3116 #ifdef CONFIG_XPS
3117 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3118 u16 index);
3119 #else
3120 static inline int netif_set_xps_queue(struct net_device *dev,
3121 const struct cpumask *mask,
3122 u16 index)
3123 {
3124 return 0;
3125 }
3126 #endif
3127
3128 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3129 unsigned int num_tx_queues);
3130
3131 /*
3132 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3133 * as a distribution range limit for the returned value.
3134 */
3135 static inline u16 skb_tx_hash(const struct net_device *dev,
3136 struct sk_buff *skb)
3137 {
3138 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3139 }
3140
3141 /**
3142 * netif_is_multiqueue - test if device has multiple transmit queues
3143 * @dev: network device
3144 *
3145 * Check if device has multiple transmit queues
3146 */
3147 static inline bool netif_is_multiqueue(const struct net_device *dev)
3148 {
3149 return dev->num_tx_queues > 1;
3150 }
3151
3152 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3153
3154 #ifdef CONFIG_SYSFS
3155 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3156 #else
3157 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3158 unsigned int rxq)
3159 {
3160 return 0;
3161 }
3162 #endif
3163
3164 #ifdef CONFIG_SYSFS
3165 static inline unsigned int get_netdev_rx_queue_index(
3166 struct netdev_rx_queue *queue)
3167 {
3168 struct net_device *dev = queue->dev;
3169 int index = queue - dev->_rx;
3170
3171 BUG_ON(index >= dev->num_rx_queues);
3172 return index;
3173 }
3174 #endif
3175
3176 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3177 int netif_get_num_default_rss_queues(void);
3178
3179 enum skb_free_reason {
3180 SKB_REASON_CONSUMED,
3181 SKB_REASON_DROPPED,
3182 };
3183
3184 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3185 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3186
3187 /*
3188 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3189 * interrupt context or with hardware interrupts being disabled.
3190 * (in_irq() || irqs_disabled())
3191 *
3192 * We provide four helpers that can be used in following contexts :
3193 *
3194 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3195 * replacing kfree_skb(skb)
3196 *
3197 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3198 * Typically used in place of consume_skb(skb) in TX completion path
3199 *
3200 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3201 * replacing kfree_skb(skb)
3202 *
3203 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3204 * and consumed a packet. Used in place of consume_skb(skb)
3205 */
3206 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3207 {
3208 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3209 }
3210
3211 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3212 {
3213 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3214 }
3215
3216 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3217 {
3218 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3219 }
3220
3221 static inline void dev_consume_skb_any(struct sk_buff *skb)
3222 {
3223 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3224 }
3225
3226 int netif_rx(struct sk_buff *skb);
3227 int netif_rx_ni(struct sk_buff *skb);
3228 int netif_receive_skb(struct sk_buff *skb);
3229 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3230 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3231 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3232 gro_result_t napi_gro_frags(struct napi_struct *napi);
3233 struct packet_offload *gro_find_receive_by_type(__be16 type);
3234 struct packet_offload *gro_find_complete_by_type(__be16 type);
3235
3236 static inline void napi_free_frags(struct napi_struct *napi)
3237 {
3238 kfree_skb(napi->skb);
3239 napi->skb = NULL;
3240 }
3241
3242 bool netdev_is_rx_handler_busy(struct net_device *dev);
3243 int netdev_rx_handler_register(struct net_device *dev,
3244 rx_handler_func_t *rx_handler,
3245 void *rx_handler_data);
3246 void netdev_rx_handler_unregister(struct net_device *dev);
3247
3248 bool dev_valid_name(const char *name);
3249 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3250 int dev_ethtool(struct net *net, struct ifreq *);
3251 unsigned int dev_get_flags(const struct net_device *);
3252 int __dev_change_flags(struct net_device *, unsigned int flags);
3253 int dev_change_flags(struct net_device *, unsigned int);
3254 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3255 unsigned int gchanges);
3256 int dev_change_name(struct net_device *, const char *);
3257 int dev_set_alias(struct net_device *, const char *, size_t);
3258 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3259 int dev_set_mtu(struct net_device *, int);
3260 void dev_set_group(struct net_device *, int);
3261 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3262 int dev_change_carrier(struct net_device *, bool new_carrier);
3263 int dev_get_phys_port_id(struct net_device *dev,
3264 struct netdev_phys_item_id *ppid);
3265 int dev_get_phys_port_name(struct net_device *dev,
3266 char *name, size_t len);
3267 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3268 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3269 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3270 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3271 struct netdev_queue *txq, int *ret);
3272 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3273 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3274 bool is_skb_forwardable(const struct net_device *dev,
3275 const struct sk_buff *skb);
3276
3277 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3278 struct sk_buff *skb)
3279 {
3280 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3281 unlikely(!is_skb_forwardable(dev, skb))) {
3282 atomic_long_inc(&dev->rx_dropped);
3283 kfree_skb(skb);
3284 return NET_RX_DROP;
3285 }
3286
3287 skb_scrub_packet(skb, true);
3288 skb->priority = 0;
3289 return 0;
3290 }
3291
3292 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3293
3294 extern int netdev_budget;
3295
3296 /* Called by rtnetlink.c:rtnl_unlock() */
3297 void netdev_run_todo(void);
3298
3299 /**
3300 * dev_put - release reference to device
3301 * @dev: network device
3302 *
3303 * Release reference to device to allow it to be freed.
3304 */
3305 static inline void dev_put(struct net_device *dev)
3306 {
3307 this_cpu_dec(*dev->pcpu_refcnt);
3308 }
3309
3310 /**
3311 * dev_hold - get reference to device
3312 * @dev: network device
3313 *
3314 * Hold reference to device to keep it from being freed.
3315 */
3316 static inline void dev_hold(struct net_device *dev)
3317 {
3318 this_cpu_inc(*dev->pcpu_refcnt);
3319 }
3320
3321 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3322 * and _off may be called from IRQ context, but it is caller
3323 * who is responsible for serialization of these calls.
3324 *
3325 * The name carrier is inappropriate, these functions should really be
3326 * called netif_lowerlayer_*() because they represent the state of any
3327 * kind of lower layer not just hardware media.
3328 */
3329
3330 void linkwatch_init_dev(struct net_device *dev);
3331 void linkwatch_fire_event(struct net_device *dev);
3332 void linkwatch_forget_dev(struct net_device *dev);
3333
3334 /**
3335 * netif_carrier_ok - test if carrier present
3336 * @dev: network device
3337 *
3338 * Check if carrier is present on device
3339 */
3340 static inline bool netif_carrier_ok(const struct net_device *dev)
3341 {
3342 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3343 }
3344
3345 unsigned long dev_trans_start(struct net_device *dev);
3346
3347 void __netdev_watchdog_up(struct net_device *dev);
3348
3349 void netif_carrier_on(struct net_device *dev);
3350
3351 void netif_carrier_off(struct net_device *dev);
3352
3353 /**
3354 * netif_dormant_on - mark device as dormant.
3355 * @dev: network device
3356 *
3357 * Mark device as dormant (as per RFC2863).
3358 *
3359 * The dormant state indicates that the relevant interface is not
3360 * actually in a condition to pass packets (i.e., it is not 'up') but is
3361 * in a "pending" state, waiting for some external event. For "on-
3362 * demand" interfaces, this new state identifies the situation where the
3363 * interface is waiting for events to place it in the up state.
3364 */
3365 static inline void netif_dormant_on(struct net_device *dev)
3366 {
3367 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3368 linkwatch_fire_event(dev);
3369 }
3370
3371 /**
3372 * netif_dormant_off - set device as not dormant.
3373 * @dev: network device
3374 *
3375 * Device is not in dormant state.
3376 */
3377 static inline void netif_dormant_off(struct net_device *dev)
3378 {
3379 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3380 linkwatch_fire_event(dev);
3381 }
3382
3383 /**
3384 * netif_dormant - test if carrier present
3385 * @dev: network device
3386 *
3387 * Check if carrier is present on device
3388 */
3389 static inline bool netif_dormant(const struct net_device *dev)
3390 {
3391 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3392 }
3393
3394
3395 /**
3396 * netif_oper_up - test if device is operational
3397 * @dev: network device
3398 *
3399 * Check if carrier is operational
3400 */
3401 static inline bool netif_oper_up(const struct net_device *dev)
3402 {
3403 return (dev->operstate == IF_OPER_UP ||
3404 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3405 }
3406
3407 /**
3408 * netif_device_present - is device available or removed
3409 * @dev: network device
3410 *
3411 * Check if device has not been removed from system.
3412 */
3413 static inline bool netif_device_present(struct net_device *dev)
3414 {
3415 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3416 }
3417
3418 void netif_device_detach(struct net_device *dev);
3419
3420 void netif_device_attach(struct net_device *dev);
3421
3422 /*
3423 * Network interface message level settings
3424 */
3425
3426 enum {
3427 NETIF_MSG_DRV = 0x0001,
3428 NETIF_MSG_PROBE = 0x0002,
3429 NETIF_MSG_LINK = 0x0004,
3430 NETIF_MSG_TIMER = 0x0008,
3431 NETIF_MSG_IFDOWN = 0x0010,
3432 NETIF_MSG_IFUP = 0x0020,
3433 NETIF_MSG_RX_ERR = 0x0040,
3434 NETIF_MSG_TX_ERR = 0x0080,
3435 NETIF_MSG_TX_QUEUED = 0x0100,
3436 NETIF_MSG_INTR = 0x0200,
3437 NETIF_MSG_TX_DONE = 0x0400,
3438 NETIF_MSG_RX_STATUS = 0x0800,
3439 NETIF_MSG_PKTDATA = 0x1000,
3440 NETIF_MSG_HW = 0x2000,
3441 NETIF_MSG_WOL = 0x4000,
3442 };
3443
3444 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3445 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3446 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3447 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3448 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3449 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3450 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3451 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3452 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3453 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3454 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3455 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3456 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3457 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3458 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3459
3460 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3461 {
3462 /* use default */
3463 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3464 return default_msg_enable_bits;
3465 if (debug_value == 0) /* no output */
3466 return 0;
3467 /* set low N bits */
3468 return (1 << debug_value) - 1;
3469 }
3470
3471 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3472 {
3473 spin_lock(&txq->_xmit_lock);
3474 txq->xmit_lock_owner = cpu;
3475 }
3476
3477 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3478 {
3479 __acquire(&txq->_xmit_lock);
3480 return true;
3481 }
3482
3483 static inline void __netif_tx_release(struct netdev_queue *txq)
3484 {
3485 __release(&txq->_xmit_lock);
3486 }
3487
3488 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3489 {
3490 spin_lock_bh(&txq->_xmit_lock);
3491 txq->xmit_lock_owner = smp_processor_id();
3492 }
3493
3494 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3495 {
3496 bool ok = spin_trylock(&txq->_xmit_lock);
3497 if (likely(ok))
3498 txq->xmit_lock_owner = smp_processor_id();
3499 return ok;
3500 }
3501
3502 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3503 {
3504 txq->xmit_lock_owner = -1;
3505 spin_unlock(&txq->_xmit_lock);
3506 }
3507
3508 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3509 {
3510 txq->xmit_lock_owner = -1;
3511 spin_unlock_bh(&txq->_xmit_lock);
3512 }
3513
3514 static inline void txq_trans_update(struct netdev_queue *txq)
3515 {
3516 if (txq->xmit_lock_owner != -1)
3517 txq->trans_start = jiffies;
3518 }
3519
3520 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3521 static inline void netif_trans_update(struct net_device *dev)
3522 {
3523 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3524
3525 if (txq->trans_start != jiffies)
3526 txq->trans_start = jiffies;
3527 }
3528
3529 /**
3530 * netif_tx_lock - grab network device transmit lock
3531 * @dev: network device
3532 *
3533 * Get network device transmit lock
3534 */
3535 static inline void netif_tx_lock(struct net_device *dev)
3536 {
3537 unsigned int i;
3538 int cpu;
3539
3540 spin_lock(&dev->tx_global_lock);
3541 cpu = smp_processor_id();
3542 for (i = 0; i < dev->num_tx_queues; i++) {
3543 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3544
3545 /* We are the only thread of execution doing a
3546 * freeze, but we have to grab the _xmit_lock in
3547 * order to synchronize with threads which are in
3548 * the ->hard_start_xmit() handler and already
3549 * checked the frozen bit.
3550 */
3551 __netif_tx_lock(txq, cpu);
3552 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3553 __netif_tx_unlock(txq);
3554 }
3555 }
3556
3557 static inline void netif_tx_lock_bh(struct net_device *dev)
3558 {
3559 local_bh_disable();
3560 netif_tx_lock(dev);
3561 }
3562
3563 static inline void netif_tx_unlock(struct net_device *dev)
3564 {
3565 unsigned int i;
3566
3567 for (i = 0; i < dev->num_tx_queues; i++) {
3568 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3569
3570 /* No need to grab the _xmit_lock here. If the
3571 * queue is not stopped for another reason, we
3572 * force a schedule.
3573 */
3574 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3575 netif_schedule_queue(txq);
3576 }
3577 spin_unlock(&dev->tx_global_lock);
3578 }
3579
3580 static inline void netif_tx_unlock_bh(struct net_device *dev)
3581 {
3582 netif_tx_unlock(dev);
3583 local_bh_enable();
3584 }
3585
3586 #define HARD_TX_LOCK(dev, txq, cpu) { \
3587 if ((dev->features & NETIF_F_LLTX) == 0) { \
3588 __netif_tx_lock(txq, cpu); \
3589 } else { \
3590 __netif_tx_acquire(txq); \
3591 } \
3592 }
3593
3594 #define HARD_TX_TRYLOCK(dev, txq) \
3595 (((dev->features & NETIF_F_LLTX) == 0) ? \
3596 __netif_tx_trylock(txq) : \
3597 __netif_tx_acquire(txq))
3598
3599 #define HARD_TX_UNLOCK(dev, txq) { \
3600 if ((dev->features & NETIF_F_LLTX) == 0) { \
3601 __netif_tx_unlock(txq); \
3602 } else { \
3603 __netif_tx_release(txq); \
3604 } \
3605 }
3606
3607 static inline void netif_tx_disable(struct net_device *dev)
3608 {
3609 unsigned int i;
3610 int cpu;
3611
3612 local_bh_disable();
3613 cpu = smp_processor_id();
3614 for (i = 0; i < dev->num_tx_queues; i++) {
3615 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3616
3617 __netif_tx_lock(txq, cpu);
3618 netif_tx_stop_queue(txq);
3619 __netif_tx_unlock(txq);
3620 }
3621 local_bh_enable();
3622 }
3623
3624 static inline void netif_addr_lock(struct net_device *dev)
3625 {
3626 spin_lock(&dev->addr_list_lock);
3627 }
3628
3629 static inline void netif_addr_lock_nested(struct net_device *dev)
3630 {
3631 int subclass = SINGLE_DEPTH_NESTING;
3632
3633 if (dev->netdev_ops->ndo_get_lock_subclass)
3634 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3635
3636 spin_lock_nested(&dev->addr_list_lock, subclass);
3637 }
3638
3639 static inline void netif_addr_lock_bh(struct net_device *dev)
3640 {
3641 spin_lock_bh(&dev->addr_list_lock);
3642 }
3643
3644 static inline void netif_addr_unlock(struct net_device *dev)
3645 {
3646 spin_unlock(&dev->addr_list_lock);
3647 }
3648
3649 static inline void netif_addr_unlock_bh(struct net_device *dev)
3650 {
3651 spin_unlock_bh(&dev->addr_list_lock);
3652 }
3653
3654 /*
3655 * dev_addrs walker. Should be used only for read access. Call with
3656 * rcu_read_lock held.
3657 */
3658 #define for_each_dev_addr(dev, ha) \
3659 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3660
3661 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3662
3663 void ether_setup(struct net_device *dev);
3664
3665 /* Support for loadable net-drivers */
3666 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3667 unsigned char name_assign_type,
3668 void (*setup)(struct net_device *),
3669 unsigned int txqs, unsigned int rxqs);
3670 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3671 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3672
3673 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3674 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3675 count)
3676
3677 int register_netdev(struct net_device *dev);
3678 void unregister_netdev(struct net_device *dev);
3679
3680 /* General hardware address lists handling functions */
3681 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3682 struct netdev_hw_addr_list *from_list, int addr_len);
3683 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3684 struct netdev_hw_addr_list *from_list, int addr_len);
3685 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3686 struct net_device *dev,
3687 int (*sync)(struct net_device *, const unsigned char *),
3688 int (*unsync)(struct net_device *,
3689 const unsigned char *));
3690 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3691 struct net_device *dev,
3692 int (*unsync)(struct net_device *,
3693 const unsigned char *));
3694 void __hw_addr_init(struct netdev_hw_addr_list *list);
3695
3696 /* Functions used for device addresses handling */
3697 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3698 unsigned char addr_type);
3699 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3700 unsigned char addr_type);
3701 void dev_addr_flush(struct net_device *dev);
3702 int dev_addr_init(struct net_device *dev);
3703
3704 /* Functions used for unicast addresses handling */
3705 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3706 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3707 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3708 int dev_uc_sync(struct net_device *to, struct net_device *from);
3709 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3710 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3711 void dev_uc_flush(struct net_device *dev);
3712 void dev_uc_init(struct net_device *dev);
3713
3714 /**
3715 * __dev_uc_sync - Synchonize device's unicast list
3716 * @dev: device to sync
3717 * @sync: function to call if address should be added
3718 * @unsync: function to call if address should be removed
3719 *
3720 * Add newly added addresses to the interface, and release
3721 * addresses that have been deleted.
3722 */
3723 static inline int __dev_uc_sync(struct net_device *dev,
3724 int (*sync)(struct net_device *,
3725 const unsigned char *),
3726 int (*unsync)(struct net_device *,
3727 const unsigned char *))
3728 {
3729 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3730 }
3731
3732 /**
3733 * __dev_uc_unsync - Remove synchronized addresses from device
3734 * @dev: device to sync
3735 * @unsync: function to call if address should be removed
3736 *
3737 * Remove all addresses that were added to the device by dev_uc_sync().
3738 */
3739 static inline void __dev_uc_unsync(struct net_device *dev,
3740 int (*unsync)(struct net_device *,
3741 const unsigned char *))
3742 {
3743 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3744 }
3745
3746 /* Functions used for multicast addresses handling */
3747 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3750 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3751 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3752 int dev_mc_sync(struct net_device *to, struct net_device *from);
3753 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3754 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3755 void dev_mc_flush(struct net_device *dev);
3756 void dev_mc_init(struct net_device *dev);
3757
3758 /**
3759 * __dev_mc_sync - Synchonize device's multicast list
3760 * @dev: device to sync
3761 * @sync: function to call if address should be added
3762 * @unsync: function to call if address should be removed
3763 *
3764 * Add newly added addresses to the interface, and release
3765 * addresses that have been deleted.
3766 */
3767 static inline int __dev_mc_sync(struct net_device *dev,
3768 int (*sync)(struct net_device *,
3769 const unsigned char *),
3770 int (*unsync)(struct net_device *,
3771 const unsigned char *))
3772 {
3773 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3774 }
3775
3776 /**
3777 * __dev_mc_unsync - Remove synchronized addresses from device
3778 * @dev: device to sync
3779 * @unsync: function to call if address should be removed
3780 *
3781 * Remove all addresses that were added to the device by dev_mc_sync().
3782 */
3783 static inline void __dev_mc_unsync(struct net_device *dev,
3784 int (*unsync)(struct net_device *,
3785 const unsigned char *))
3786 {
3787 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3788 }
3789
3790 /* Functions used for secondary unicast and multicast support */
3791 void dev_set_rx_mode(struct net_device *dev);
3792 void __dev_set_rx_mode(struct net_device *dev);
3793 int dev_set_promiscuity(struct net_device *dev, int inc);
3794 int dev_set_allmulti(struct net_device *dev, int inc);
3795 void netdev_state_change(struct net_device *dev);
3796 void netdev_notify_peers(struct net_device *dev);
3797 void netdev_features_change(struct net_device *dev);
3798 /* Load a device via the kmod */
3799 void dev_load(struct net *net, const char *name);
3800 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3801 struct rtnl_link_stats64 *storage);
3802 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3803 const struct net_device_stats *netdev_stats);
3804
3805 extern int netdev_max_backlog;
3806 extern int netdev_tstamp_prequeue;
3807 extern int weight_p;
3808
3809 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3810 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3811 struct list_head **iter);
3812 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3813 struct list_head **iter);
3814
3815 /* iterate through upper list, must be called under RCU read lock */
3816 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3817 for (iter = &(dev)->adj_list.upper, \
3818 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3819 updev; \
3820 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3821
3822 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3823 int (*fn)(struct net_device *upper_dev,
3824 void *data),
3825 void *data);
3826
3827 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3828 struct net_device *upper_dev);
3829
3830 void *netdev_lower_get_next_private(struct net_device *dev,
3831 struct list_head **iter);
3832 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3833 struct list_head **iter);
3834
3835 #define netdev_for_each_lower_private(dev, priv, iter) \
3836 for (iter = (dev)->adj_list.lower.next, \
3837 priv = netdev_lower_get_next_private(dev, &(iter)); \
3838 priv; \
3839 priv = netdev_lower_get_next_private(dev, &(iter)))
3840
3841 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3842 for (iter = &(dev)->adj_list.lower, \
3843 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3844 priv; \
3845 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3846
3847 void *netdev_lower_get_next(struct net_device *dev,
3848 struct list_head **iter);
3849
3850 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3851 for (iter = (dev)->adj_list.lower.next, \
3852 ldev = netdev_lower_get_next(dev, &(iter)); \
3853 ldev; \
3854 ldev = netdev_lower_get_next(dev, &(iter)))
3855
3856 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3857 struct list_head **iter);
3858 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3859 struct list_head **iter);
3860
3861 int netdev_walk_all_lower_dev(struct net_device *dev,
3862 int (*fn)(struct net_device *lower_dev,
3863 void *data),
3864 void *data);
3865 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3866 int (*fn)(struct net_device *lower_dev,
3867 void *data),
3868 void *data);
3869
3870 void *netdev_adjacent_get_private(struct list_head *adj_list);
3871 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3873 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3874 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3875 int netdev_master_upper_dev_link(struct net_device *dev,
3876 struct net_device *upper_dev,
3877 void *upper_priv, void *upper_info);
3878 void netdev_upper_dev_unlink(struct net_device *dev,
3879 struct net_device *upper_dev);
3880 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3881 void *netdev_lower_dev_get_private(struct net_device *dev,
3882 struct net_device *lower_dev);
3883 void netdev_lower_state_changed(struct net_device *lower_dev,
3884 void *lower_state_info);
3885 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3886 struct neighbour *n);
3887 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3888 struct neighbour *n);
3889
3890 /* RSS keys are 40 or 52 bytes long */
3891 #define NETDEV_RSS_KEY_LEN 52
3892 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3893 void netdev_rss_key_fill(void *buffer, size_t len);
3894
3895 int dev_get_nest_level(struct net_device *dev);
3896 int skb_checksum_help(struct sk_buff *skb);
3897 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3898 netdev_features_t features, bool tx_path);
3899 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3900 netdev_features_t features);
3901
3902 struct netdev_bonding_info {
3903 ifslave slave;
3904 ifbond master;
3905 };
3906
3907 struct netdev_notifier_bonding_info {
3908 struct netdev_notifier_info info; /* must be first */
3909 struct netdev_bonding_info bonding_info;
3910 };
3911
3912 void netdev_bonding_info_change(struct net_device *dev,
3913 struct netdev_bonding_info *bonding_info);
3914
3915 static inline
3916 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3917 {
3918 return __skb_gso_segment(skb, features, true);
3919 }
3920 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3921
3922 static inline bool can_checksum_protocol(netdev_features_t features,
3923 __be16 protocol)
3924 {
3925 if (protocol == htons(ETH_P_FCOE))
3926 return !!(features & NETIF_F_FCOE_CRC);
3927
3928 /* Assume this is an IP checksum (not SCTP CRC) */
3929
3930 if (features & NETIF_F_HW_CSUM) {
3931 /* Can checksum everything */
3932 return true;
3933 }
3934
3935 switch (protocol) {
3936 case htons(ETH_P_IP):
3937 return !!(features & NETIF_F_IP_CSUM);
3938 case htons(ETH_P_IPV6):
3939 return !!(features & NETIF_F_IPV6_CSUM);
3940 default:
3941 return false;
3942 }
3943 }
3944
3945 #ifdef CONFIG_BUG
3946 void netdev_rx_csum_fault(struct net_device *dev);
3947 #else
3948 static inline void netdev_rx_csum_fault(struct net_device *dev)
3949 {
3950 }
3951 #endif
3952 /* rx skb timestamps */
3953 void net_enable_timestamp(void);
3954 void net_disable_timestamp(void);
3955
3956 #ifdef CONFIG_PROC_FS
3957 int __init dev_proc_init(void);
3958 #else
3959 #define dev_proc_init() 0
3960 #endif
3961
3962 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3963 struct sk_buff *skb, struct net_device *dev,
3964 bool more)
3965 {
3966 skb->xmit_more = more ? 1 : 0;
3967 return ops->ndo_start_xmit(skb, dev);
3968 }
3969
3970 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3971 struct netdev_queue *txq, bool more)
3972 {
3973 const struct net_device_ops *ops = dev->netdev_ops;
3974 int rc;
3975
3976 rc = __netdev_start_xmit(ops, skb, dev, more);
3977 if (rc == NETDEV_TX_OK)
3978 txq_trans_update(txq);
3979
3980 return rc;
3981 }
3982
3983 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3984 const void *ns);
3985 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3986 const void *ns);
3987
3988 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3989 {
3990 return netdev_class_create_file_ns(class_attr, NULL);
3991 }
3992
3993 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3994 {
3995 netdev_class_remove_file_ns(class_attr, NULL);
3996 }
3997
3998 extern struct kobj_ns_type_operations net_ns_type_operations;
3999
4000 const char *netdev_drivername(const struct net_device *dev);
4001
4002 void linkwatch_run_queue(void);
4003
4004 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4005 netdev_features_t f2)
4006 {
4007 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4008 if (f1 & NETIF_F_HW_CSUM)
4009 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4010 else
4011 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4012 }
4013
4014 return f1 & f2;
4015 }
4016
4017 static inline netdev_features_t netdev_get_wanted_features(
4018 struct net_device *dev)
4019 {
4020 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4021 }
4022 netdev_features_t netdev_increment_features(netdev_features_t all,
4023 netdev_features_t one, netdev_features_t mask);
4024
4025 /* Allow TSO being used on stacked device :
4026 * Performing the GSO segmentation before last device
4027 * is a performance improvement.
4028 */
4029 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4030 netdev_features_t mask)
4031 {
4032 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4033 }
4034
4035 int __netdev_update_features(struct net_device *dev);
4036 void netdev_update_features(struct net_device *dev);
4037 void netdev_change_features(struct net_device *dev);
4038
4039 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4040 struct net_device *dev);
4041
4042 netdev_features_t passthru_features_check(struct sk_buff *skb,
4043 struct net_device *dev,
4044 netdev_features_t features);
4045 netdev_features_t netif_skb_features(struct sk_buff *skb);
4046
4047 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4048 {
4049 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4050
4051 /* check flags correspondence */
4052 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4053 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4054 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4055 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4056 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4057 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4058 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4059 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4060 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4061 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4062 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4063 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4064 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4065 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4066 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4067 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4068
4069 return (features & feature) == feature;
4070 }
4071
4072 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4073 {
4074 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4075 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4076 }
4077
4078 static inline bool netif_needs_gso(struct sk_buff *skb,
4079 netdev_features_t features)
4080 {
4081 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4082 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4083 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4084 }
4085
4086 static inline void netif_set_gso_max_size(struct net_device *dev,
4087 unsigned int size)
4088 {
4089 dev->gso_max_size = size;
4090 }
4091
4092 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4093 int pulled_hlen, u16 mac_offset,
4094 int mac_len)
4095 {
4096 skb->protocol = protocol;
4097 skb->encapsulation = 1;
4098 skb_push(skb, pulled_hlen);
4099 skb_reset_transport_header(skb);
4100 skb->mac_header = mac_offset;
4101 skb->network_header = skb->mac_header + mac_len;
4102 skb->mac_len = mac_len;
4103 }
4104
4105 static inline bool netif_is_macsec(const struct net_device *dev)
4106 {
4107 return dev->priv_flags & IFF_MACSEC;
4108 }
4109
4110 static inline bool netif_is_macvlan(const struct net_device *dev)
4111 {
4112 return dev->priv_flags & IFF_MACVLAN;
4113 }
4114
4115 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4116 {
4117 return dev->priv_flags & IFF_MACVLAN_PORT;
4118 }
4119
4120 static inline bool netif_is_ipvlan(const struct net_device *dev)
4121 {
4122 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4123 }
4124
4125 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4126 {
4127 return dev->priv_flags & IFF_IPVLAN_MASTER;
4128 }
4129
4130 static inline bool netif_is_bond_master(const struct net_device *dev)
4131 {
4132 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4133 }
4134
4135 static inline bool netif_is_bond_slave(const struct net_device *dev)
4136 {
4137 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4138 }
4139
4140 static inline bool netif_supports_nofcs(struct net_device *dev)
4141 {
4142 return dev->priv_flags & IFF_SUPP_NOFCS;
4143 }
4144
4145 static inline bool netif_is_l3_master(const struct net_device *dev)
4146 {
4147 return dev->priv_flags & IFF_L3MDEV_MASTER;
4148 }
4149
4150 static inline bool netif_is_l3_slave(const struct net_device *dev)
4151 {
4152 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4153 }
4154
4155 static inline bool netif_is_bridge_master(const struct net_device *dev)
4156 {
4157 return dev->priv_flags & IFF_EBRIDGE;
4158 }
4159
4160 static inline bool netif_is_bridge_port(const struct net_device *dev)
4161 {
4162 return dev->priv_flags & IFF_BRIDGE_PORT;
4163 }
4164
4165 static inline bool netif_is_ovs_master(const struct net_device *dev)
4166 {
4167 return dev->priv_flags & IFF_OPENVSWITCH;
4168 }
4169
4170 static inline bool netif_is_team_master(const struct net_device *dev)
4171 {
4172 return dev->priv_flags & IFF_TEAM;
4173 }
4174
4175 static inline bool netif_is_team_port(const struct net_device *dev)
4176 {
4177 return dev->priv_flags & IFF_TEAM_PORT;
4178 }
4179
4180 static inline bool netif_is_lag_master(const struct net_device *dev)
4181 {
4182 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4183 }
4184
4185 static inline bool netif_is_lag_port(const struct net_device *dev)
4186 {
4187 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4188 }
4189
4190 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4191 {
4192 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4193 }
4194
4195 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4196 static inline void netif_keep_dst(struct net_device *dev)
4197 {
4198 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4199 }
4200
4201 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4202 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4203 {
4204 /* TODO: reserve and use an additional IFF bit, if we get more users */
4205 return dev->priv_flags & IFF_MACSEC;
4206 }
4207
4208 extern struct pernet_operations __net_initdata loopback_net_ops;
4209
4210 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4211
4212 /* netdev_printk helpers, similar to dev_printk */
4213
4214 static inline const char *netdev_name(const struct net_device *dev)
4215 {
4216 if (!dev->name[0] || strchr(dev->name, '%'))
4217 return "(unnamed net_device)";
4218 return dev->name;
4219 }
4220
4221 static inline const char *netdev_reg_state(const struct net_device *dev)
4222 {
4223 switch (dev->reg_state) {
4224 case NETREG_UNINITIALIZED: return " (uninitialized)";
4225 case NETREG_REGISTERED: return "";
4226 case NETREG_UNREGISTERING: return " (unregistering)";
4227 case NETREG_UNREGISTERED: return " (unregistered)";
4228 case NETREG_RELEASED: return " (released)";
4229 case NETREG_DUMMY: return " (dummy)";
4230 }
4231
4232 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4233 return " (unknown)";
4234 }
4235
4236 __printf(3, 4)
4237 void netdev_printk(const char *level, const struct net_device *dev,
4238 const char *format, ...);
4239 __printf(2, 3)
4240 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4241 __printf(2, 3)
4242 void netdev_alert(const struct net_device *dev, const char *format, ...);
4243 __printf(2, 3)
4244 void netdev_crit(const struct net_device *dev, const char *format, ...);
4245 __printf(2, 3)
4246 void netdev_err(const struct net_device *dev, const char *format, ...);
4247 __printf(2, 3)
4248 void netdev_warn(const struct net_device *dev, const char *format, ...);
4249 __printf(2, 3)
4250 void netdev_notice(const struct net_device *dev, const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_info(const struct net_device *dev, const char *format, ...);
4253
4254 #define MODULE_ALIAS_NETDEV(device) \
4255 MODULE_ALIAS("netdev-" device)
4256
4257 #if defined(CONFIG_DYNAMIC_DEBUG)
4258 #define netdev_dbg(__dev, format, args...) \
4259 do { \
4260 dynamic_netdev_dbg(__dev, format, ##args); \
4261 } while (0)
4262 #elif defined(DEBUG)
4263 #define netdev_dbg(__dev, format, args...) \
4264 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4265 #else
4266 #define netdev_dbg(__dev, format, args...) \
4267 ({ \
4268 if (0) \
4269 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4270 })
4271 #endif
4272
4273 #if defined(VERBOSE_DEBUG)
4274 #define netdev_vdbg netdev_dbg
4275 #else
4276
4277 #define netdev_vdbg(dev, format, args...) \
4278 ({ \
4279 if (0) \
4280 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4281 0; \
4282 })
4283 #endif
4284
4285 /*
4286 * netdev_WARN() acts like dev_printk(), but with the key difference
4287 * of using a WARN/WARN_ON to get the message out, including the
4288 * file/line information and a backtrace.
4289 */
4290 #define netdev_WARN(dev, format, args...) \
4291 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4292 netdev_reg_state(dev), ##args)
4293
4294 /* netif printk helpers, similar to netdev_printk */
4295
4296 #define netif_printk(priv, type, level, dev, fmt, args...) \
4297 do { \
4298 if (netif_msg_##type(priv)) \
4299 netdev_printk(level, (dev), fmt, ##args); \
4300 } while (0)
4301
4302 #define netif_level(level, priv, type, dev, fmt, args...) \
4303 do { \
4304 if (netif_msg_##type(priv)) \
4305 netdev_##level(dev, fmt, ##args); \
4306 } while (0)
4307
4308 #define netif_emerg(priv, type, dev, fmt, args...) \
4309 netif_level(emerg, priv, type, dev, fmt, ##args)
4310 #define netif_alert(priv, type, dev, fmt, args...) \
4311 netif_level(alert, priv, type, dev, fmt, ##args)
4312 #define netif_crit(priv, type, dev, fmt, args...) \
4313 netif_level(crit, priv, type, dev, fmt, ##args)
4314 #define netif_err(priv, type, dev, fmt, args...) \
4315 netif_level(err, priv, type, dev, fmt, ##args)
4316 #define netif_warn(priv, type, dev, fmt, args...) \
4317 netif_level(warn, priv, type, dev, fmt, ##args)
4318 #define netif_notice(priv, type, dev, fmt, args...) \
4319 netif_level(notice, priv, type, dev, fmt, ##args)
4320 #define netif_info(priv, type, dev, fmt, args...) \
4321 netif_level(info, priv, type, dev, fmt, ##args)
4322
4323 #if defined(CONFIG_DYNAMIC_DEBUG)
4324 #define netif_dbg(priv, type, netdev, format, args...) \
4325 do { \
4326 if (netif_msg_##type(priv)) \
4327 dynamic_netdev_dbg(netdev, format, ##args); \
4328 } while (0)
4329 #elif defined(DEBUG)
4330 #define netif_dbg(priv, type, dev, format, args...) \
4331 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4332 #else
4333 #define netif_dbg(priv, type, dev, format, args...) \
4334 ({ \
4335 if (0) \
4336 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4337 0; \
4338 })
4339 #endif
4340
4341 #if defined(VERBOSE_DEBUG)
4342 #define netif_vdbg netif_dbg
4343 #else
4344 #define netif_vdbg(priv, type, dev, format, args...) \
4345 ({ \
4346 if (0) \
4347 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4348 0; \
4349 })
4350 #endif
4351
4352 /*
4353 * The list of packet types we will receive (as opposed to discard)
4354 * and the routines to invoke.
4355 *
4356 * Why 16. Because with 16 the only overlap we get on a hash of the
4357 * low nibble of the protocol value is RARP/SNAP/X.25.
4358 *
4359 * NOTE: That is no longer true with the addition of VLAN tags. Not
4360 * sure which should go first, but I bet it won't make much
4361 * difference if we are running VLANs. The good news is that
4362 * this protocol won't be in the list unless compiled in, so
4363 * the average user (w/out VLANs) will not be adversely affected.
4364 * --BLG
4365 *
4366 * 0800 IP
4367 * 8100 802.1Q VLAN
4368 * 0001 802.3
4369 * 0002 AX.25
4370 * 0004 802.2
4371 * 8035 RARP
4372 * 0005 SNAP
4373 * 0805 X.25
4374 * 0806 ARP
4375 * 8137 IPX
4376 * 0009 Localtalk
4377 * 86DD IPv6
4378 */
4379 #define PTYPE_HASH_SIZE (16)
4380 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4381
4382 #endif /* _LINUX_NETDEVICE_H */