Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62 };
63
64 #ifdef CONFIG_CMA
65 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 # define cma_wmark_pages(zone) zone->min_cma_pages
67 #else
68 # define is_migrate_cma(migratetype) false
69 # define cma_wmark_pages(zone) 0
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name) struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_LRU_BASE,
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
113 NR_UNEVICTABLE, /* " " " " " */
114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
117 only modified from process context */
118 NR_FILE_PAGES,
119 NR_FILE_DIRTY,
120 NR_WRITEBACK,
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
126 NR_UNSTABLE_NFS, /* NFS unstable pages */
127 NR_BOUNCE,
128 NR_VMSCAN_WRITE,
129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143 #endif
144 NR_ANON_TRANSPARENT_HUGEPAGES,
145 NR_VM_ZONE_STAT_ITEMS };
146
147 /*
148 * We do arithmetic on the LRU lists in various places in the code,
149 * so it is important to keep the active lists LRU_ACTIVE higher in
150 * the array than the corresponding inactive lists, and to keep
151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152 *
153 * This has to be kept in sync with the statistics in zone_stat_item
154 * above and the descriptions in vmstat_text in mm/vmstat.c
155 */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159
160 enum lru_list {
161 LRU_INACTIVE_ANON = LRU_BASE,
162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 LRU_UNEVICTABLE,
166 NR_LRU_LISTS
167 };
168
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172
173 static inline int is_file_lru(enum lru_list lru)
174 {
175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177
178 static inline int is_active_lru(enum lru_list lru)
179 {
180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185 return (lru == LRU_UNEVICTABLE);
186 }
187
188 struct lruvec {
189 struct list_head lists[NR_LRU_LISTS];
190 };
191
192 /* Mask used at gathering information at once (see memcontrol.c) */
193 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
194 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
195 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
196 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
197
198 /* Isolate inactive pages */
199 #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
200 /* Isolate active pages */
201 #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
202 /* Isolate clean file */
203 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
204 /* Isolate unmapped file */
205 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
206 /* Isolate for asynchronous migration */
207 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10)
208
209 /* LRU Isolation modes. */
210 typedef unsigned __bitwise__ isolate_mode_t;
211
212 enum zone_watermarks {
213 WMARK_MIN,
214 WMARK_LOW,
215 WMARK_HIGH,
216 NR_WMARK
217 };
218
219 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
220 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
221 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
222
223 struct per_cpu_pages {
224 int count; /* number of pages in the list */
225 int high; /* high watermark, emptying needed */
226 int batch; /* chunk size for buddy add/remove */
227
228 /* Lists of pages, one per migrate type stored on the pcp-lists */
229 struct list_head lists[MIGRATE_PCPTYPES];
230 };
231
232 struct per_cpu_pageset {
233 struct per_cpu_pages pcp;
234 #ifdef CONFIG_NUMA
235 s8 expire;
236 #endif
237 #ifdef CONFIG_SMP
238 s8 stat_threshold;
239 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
240 #endif
241 };
242
243 #endif /* !__GENERATING_BOUNDS.H */
244
245 enum zone_type {
246 #ifdef CONFIG_ZONE_DMA
247 /*
248 * ZONE_DMA is used when there are devices that are not able
249 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
250 * carve out the portion of memory that is needed for these devices.
251 * The range is arch specific.
252 *
253 * Some examples
254 *
255 * Architecture Limit
256 * ---------------------------
257 * parisc, ia64, sparc <4G
258 * s390 <2G
259 * arm Various
260 * alpha Unlimited or 0-16MB.
261 *
262 * i386, x86_64 and multiple other arches
263 * <16M.
264 */
265 ZONE_DMA,
266 #endif
267 #ifdef CONFIG_ZONE_DMA32
268 /*
269 * x86_64 needs two ZONE_DMAs because it supports devices that are
270 * only able to do DMA to the lower 16M but also 32 bit devices that
271 * can only do DMA areas below 4G.
272 */
273 ZONE_DMA32,
274 #endif
275 /*
276 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
277 * performed on pages in ZONE_NORMAL if the DMA devices support
278 * transfers to all addressable memory.
279 */
280 ZONE_NORMAL,
281 #ifdef CONFIG_HIGHMEM
282 /*
283 * A memory area that is only addressable by the kernel through
284 * mapping portions into its own address space. This is for example
285 * used by i386 to allow the kernel to address the memory beyond
286 * 900MB. The kernel will set up special mappings (page
287 * table entries on i386) for each page that the kernel needs to
288 * access.
289 */
290 ZONE_HIGHMEM,
291 #endif
292 ZONE_MOVABLE,
293 __MAX_NR_ZONES
294 };
295
296 #ifndef __GENERATING_BOUNDS_H
297
298 /*
299 * When a memory allocation must conform to specific limitations (such
300 * as being suitable for DMA) the caller will pass in hints to the
301 * allocator in the gfp_mask, in the zone modifier bits. These bits
302 * are used to select a priority ordered list of memory zones which
303 * match the requested limits. See gfp_zone() in include/linux/gfp.h
304 */
305
306 #if MAX_NR_ZONES < 2
307 #define ZONES_SHIFT 0
308 #elif MAX_NR_ZONES <= 2
309 #define ZONES_SHIFT 1
310 #elif MAX_NR_ZONES <= 4
311 #define ZONES_SHIFT 2
312 #else
313 #error ZONES_SHIFT -- too many zones configured adjust calculation
314 #endif
315
316 struct zone_reclaim_stat {
317 /*
318 * The pageout code in vmscan.c keeps track of how many of the
319 * mem/swap backed and file backed pages are refeferenced.
320 * The higher the rotated/scanned ratio, the more valuable
321 * that cache is.
322 *
323 * The anon LRU stats live in [0], file LRU stats in [1]
324 */
325 unsigned long recent_rotated[2];
326 unsigned long recent_scanned[2];
327 };
328
329 struct zone {
330 /* Fields commonly accessed by the page allocator */
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
335 /*
336 * When free pages are below this point, additional steps are taken
337 * when reading the number of free pages to avoid per-cpu counter
338 * drift allowing watermarks to be breached
339 */
340 unsigned long percpu_drift_mark;
341
342 /*
343 * We don't know if the memory that we're going to allocate will be freeable
344 * or/and it will be released eventually, so to avoid totally wasting several
345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 * to run OOM on the lower zones despite there's tons of freeable ram
347 * on the higher zones). This array is recalculated at runtime if the
348 * sysctl_lowmem_reserve_ratio sysctl changes.
349 */
350 unsigned long lowmem_reserve[MAX_NR_ZONES];
351
352 /*
353 * This is a per-zone reserve of pages that should not be
354 * considered dirtyable memory.
355 */
356 unsigned long dirty_balance_reserve;
357
358 #ifdef CONFIG_NUMA
359 int node;
360 /*
361 * zone reclaim becomes active if more unmapped pages exist.
362 */
363 unsigned long min_unmapped_pages;
364 unsigned long min_slab_pages;
365 #endif
366 struct per_cpu_pageset __percpu *pageset;
367 /*
368 * free areas of different sizes
369 */
370 spinlock_t lock;
371 int all_unreclaimable; /* All pages pinned */
372 #ifdef CONFIG_MEMORY_HOTPLUG
373 /* see spanned/present_pages for more description */
374 seqlock_t span_seqlock;
375 #endif
376 #ifdef CONFIG_CMA
377 /*
378 * CMA needs to increase watermark levels during the allocation
379 * process to make sure that the system is not starved.
380 */
381 unsigned long min_cma_pages;
382 #endif
383 struct free_area free_area[MAX_ORDER];
384
385 #ifndef CONFIG_SPARSEMEM
386 /*
387 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
388 * In SPARSEMEM, this map is stored in struct mem_section
389 */
390 unsigned long *pageblock_flags;
391 #endif /* CONFIG_SPARSEMEM */
392
393 #ifdef CONFIG_COMPACTION
394 /*
395 * On compaction failure, 1<<compact_defer_shift compactions
396 * are skipped before trying again. The number attempted since
397 * last failure is tracked with compact_considered.
398 */
399 unsigned int compact_considered;
400 unsigned int compact_defer_shift;
401 int compact_order_failed;
402 #endif
403
404 ZONE_PADDING(_pad1_)
405
406 /* Fields commonly accessed by the page reclaim scanner */
407 spinlock_t lru_lock;
408 struct lruvec lruvec;
409
410 struct zone_reclaim_stat reclaim_stat;
411
412 unsigned long pages_scanned; /* since last reclaim */
413 unsigned long flags; /* zone flags, see below */
414
415 /* Zone statistics */
416 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
417
418 /*
419 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
420 * this zone's LRU. Maintained by the pageout code.
421 */
422 unsigned int inactive_ratio;
423
424
425 ZONE_PADDING(_pad2_)
426 /* Rarely used or read-mostly fields */
427
428 /*
429 * wait_table -- the array holding the hash table
430 * wait_table_hash_nr_entries -- the size of the hash table array
431 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
432 *
433 * The purpose of all these is to keep track of the people
434 * waiting for a page to become available and make them
435 * runnable again when possible. The trouble is that this
436 * consumes a lot of space, especially when so few things
437 * wait on pages at a given time. So instead of using
438 * per-page waitqueues, we use a waitqueue hash table.
439 *
440 * The bucket discipline is to sleep on the same queue when
441 * colliding and wake all in that wait queue when removing.
442 * When something wakes, it must check to be sure its page is
443 * truly available, a la thundering herd. The cost of a
444 * collision is great, but given the expected load of the
445 * table, they should be so rare as to be outweighed by the
446 * benefits from the saved space.
447 *
448 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
449 * primary users of these fields, and in mm/page_alloc.c
450 * free_area_init_core() performs the initialization of them.
451 */
452 wait_queue_head_t * wait_table;
453 unsigned long wait_table_hash_nr_entries;
454 unsigned long wait_table_bits;
455
456 /*
457 * Discontig memory support fields.
458 */
459 struct pglist_data *zone_pgdat;
460 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
461 unsigned long zone_start_pfn;
462
463 /*
464 * zone_start_pfn, spanned_pages and present_pages are all
465 * protected by span_seqlock. It is a seqlock because it has
466 * to be read outside of zone->lock, and it is done in the main
467 * allocator path. But, it is written quite infrequently.
468 *
469 * The lock is declared along with zone->lock because it is
470 * frequently read in proximity to zone->lock. It's good to
471 * give them a chance of being in the same cacheline.
472 */
473 unsigned long spanned_pages; /* total size, including holes */
474 unsigned long present_pages; /* amount of memory (excluding holes) */
475
476 /*
477 * rarely used fields:
478 */
479 const char *name;
480 } ____cacheline_internodealigned_in_smp;
481
482 typedef enum {
483 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
484 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
485 ZONE_CONGESTED, /* zone has many dirty pages backed by
486 * a congested BDI
487 */
488 } zone_flags_t;
489
490 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
491 {
492 set_bit(flag, &zone->flags);
493 }
494
495 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
496 {
497 return test_and_set_bit(flag, &zone->flags);
498 }
499
500 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
501 {
502 clear_bit(flag, &zone->flags);
503 }
504
505 static inline int zone_is_reclaim_congested(const struct zone *zone)
506 {
507 return test_bit(ZONE_CONGESTED, &zone->flags);
508 }
509
510 static inline int zone_is_reclaim_locked(const struct zone *zone)
511 {
512 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
513 }
514
515 static inline int zone_is_oom_locked(const struct zone *zone)
516 {
517 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
518 }
519
520 /*
521 * The "priority" of VM scanning is how much of the queues we will scan in one
522 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
523 * queues ("queue_length >> 12") during an aging round.
524 */
525 #define DEF_PRIORITY 12
526
527 /* Maximum number of zones on a zonelist */
528 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
529
530 #ifdef CONFIG_NUMA
531
532 /*
533 * The NUMA zonelists are doubled because we need zonelists that restrict the
534 * allocations to a single node for GFP_THISNODE.
535 *
536 * [0] : Zonelist with fallback
537 * [1] : No fallback (GFP_THISNODE)
538 */
539 #define MAX_ZONELISTS 2
540
541
542 /*
543 * We cache key information from each zonelist for smaller cache
544 * footprint when scanning for free pages in get_page_from_freelist().
545 *
546 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
547 * up short of free memory since the last time (last_fullzone_zap)
548 * we zero'd fullzones.
549 * 2) The array z_to_n[] maps each zone in the zonelist to its node
550 * id, so that we can efficiently evaluate whether that node is
551 * set in the current tasks mems_allowed.
552 *
553 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
554 * indexed by a zones offset in the zonelist zones[] array.
555 *
556 * The get_page_from_freelist() routine does two scans. During the
557 * first scan, we skip zones whose corresponding bit in 'fullzones'
558 * is set or whose corresponding node in current->mems_allowed (which
559 * comes from cpusets) is not set. During the second scan, we bypass
560 * this zonelist_cache, to ensure we look methodically at each zone.
561 *
562 * Once per second, we zero out (zap) fullzones, forcing us to
563 * reconsider nodes that might have regained more free memory.
564 * The field last_full_zap is the time we last zapped fullzones.
565 *
566 * This mechanism reduces the amount of time we waste repeatedly
567 * reexaming zones for free memory when they just came up low on
568 * memory momentarilly ago.
569 *
570 * The zonelist_cache struct members logically belong in struct
571 * zonelist. However, the mempolicy zonelists constructed for
572 * MPOL_BIND are intentionally variable length (and usually much
573 * shorter). A general purpose mechanism for handling structs with
574 * multiple variable length members is more mechanism than we want
575 * here. We resort to some special case hackery instead.
576 *
577 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
578 * part because they are shorter), so we put the fixed length stuff
579 * at the front of the zonelist struct, ending in a variable length
580 * zones[], as is needed by MPOL_BIND.
581 *
582 * Then we put the optional zonelist cache on the end of the zonelist
583 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
584 * the fixed length portion at the front of the struct. This pointer
585 * both enables us to find the zonelist cache, and in the case of
586 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
587 * to know that the zonelist cache is not there.
588 *
589 * The end result is that struct zonelists come in two flavors:
590 * 1) The full, fixed length version, shown below, and
591 * 2) The custom zonelists for MPOL_BIND.
592 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
593 *
594 * Even though there may be multiple CPU cores on a node modifying
595 * fullzones or last_full_zap in the same zonelist_cache at the same
596 * time, we don't lock it. This is just hint data - if it is wrong now
597 * and then, the allocator will still function, perhaps a bit slower.
598 */
599
600
601 struct zonelist_cache {
602 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
603 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
604 unsigned long last_full_zap; /* when last zap'd (jiffies) */
605 };
606 #else
607 #define MAX_ZONELISTS 1
608 struct zonelist_cache;
609 #endif
610
611 /*
612 * This struct contains information about a zone in a zonelist. It is stored
613 * here to avoid dereferences into large structures and lookups of tables
614 */
615 struct zoneref {
616 struct zone *zone; /* Pointer to actual zone */
617 int zone_idx; /* zone_idx(zoneref->zone) */
618 };
619
620 /*
621 * One allocation request operates on a zonelist. A zonelist
622 * is a list of zones, the first one is the 'goal' of the
623 * allocation, the other zones are fallback zones, in decreasing
624 * priority.
625 *
626 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
627 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
628 * *
629 * To speed the reading of the zonelist, the zonerefs contain the zone index
630 * of the entry being read. Helper functions to access information given
631 * a struct zoneref are
632 *
633 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
634 * zonelist_zone_idx() - Return the index of the zone for an entry
635 * zonelist_node_idx() - Return the index of the node for an entry
636 */
637 struct zonelist {
638 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
639 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
640 #ifdef CONFIG_NUMA
641 struct zonelist_cache zlcache; // optional ...
642 #endif
643 };
644
645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
646 struct node_active_region {
647 unsigned long start_pfn;
648 unsigned long end_pfn;
649 int nid;
650 };
651 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
652
653 #ifndef CONFIG_DISCONTIGMEM
654 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
655 extern struct page *mem_map;
656 #endif
657
658 /*
659 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
660 * (mostly NUMA machines?) to denote a higher-level memory zone than the
661 * zone denotes.
662 *
663 * On NUMA machines, each NUMA node would have a pg_data_t to describe
664 * it's memory layout.
665 *
666 * Memory statistics and page replacement data structures are maintained on a
667 * per-zone basis.
668 */
669 struct bootmem_data;
670 typedef struct pglist_data {
671 struct zone node_zones[MAX_NR_ZONES];
672 struct zonelist node_zonelists[MAX_ZONELISTS];
673 int nr_zones;
674 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
675 struct page *node_mem_map;
676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
677 struct page_cgroup *node_page_cgroup;
678 #endif
679 #endif
680 #ifndef CONFIG_NO_BOOTMEM
681 struct bootmem_data *bdata;
682 #endif
683 #ifdef CONFIG_MEMORY_HOTPLUG
684 /*
685 * Must be held any time you expect node_start_pfn, node_present_pages
686 * or node_spanned_pages stay constant. Holding this will also
687 * guarantee that any pfn_valid() stays that way.
688 *
689 * Nests above zone->lock and zone->size_seqlock.
690 */
691 spinlock_t node_size_lock;
692 #endif
693 unsigned long node_start_pfn;
694 unsigned long node_present_pages; /* total number of physical pages */
695 unsigned long node_spanned_pages; /* total size of physical page
696 range, including holes */
697 int node_id;
698 wait_queue_head_t kswapd_wait;
699 struct task_struct *kswapd;
700 int kswapd_max_order;
701 enum zone_type classzone_idx;
702 } pg_data_t;
703
704 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
705 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
706 #ifdef CONFIG_FLAT_NODE_MEM_MAP
707 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
708 #else
709 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
710 #endif
711 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
712
713 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
714
715 #define node_end_pfn(nid) ({\
716 pg_data_t *__pgdat = NODE_DATA(nid);\
717 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
718 })
719
720 #include <linux/memory_hotplug.h>
721
722 extern struct mutex zonelists_mutex;
723 void build_all_zonelists(void *data);
724 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
725 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
726 int classzone_idx, int alloc_flags);
727 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
728 int classzone_idx, int alloc_flags);
729 enum memmap_context {
730 MEMMAP_EARLY,
731 MEMMAP_HOTPLUG,
732 };
733 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
734 unsigned long size,
735 enum memmap_context context);
736
737 #ifdef CONFIG_HAVE_MEMORY_PRESENT
738 void memory_present(int nid, unsigned long start, unsigned long end);
739 #else
740 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
741 #endif
742
743 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
744 int local_memory_node(int node_id);
745 #else
746 static inline int local_memory_node(int node_id) { return node_id; };
747 #endif
748
749 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
750 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
751 #endif
752
753 /*
754 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
755 */
756 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
757
758 static inline int populated_zone(struct zone *zone)
759 {
760 return (!!zone->present_pages);
761 }
762
763 extern int movable_zone;
764
765 static inline int zone_movable_is_highmem(void)
766 {
767 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
768 return movable_zone == ZONE_HIGHMEM;
769 #else
770 return 0;
771 #endif
772 }
773
774 static inline int is_highmem_idx(enum zone_type idx)
775 {
776 #ifdef CONFIG_HIGHMEM
777 return (idx == ZONE_HIGHMEM ||
778 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
779 #else
780 return 0;
781 #endif
782 }
783
784 static inline int is_normal_idx(enum zone_type idx)
785 {
786 return (idx == ZONE_NORMAL);
787 }
788
789 /**
790 * is_highmem - helper function to quickly check if a struct zone is a
791 * highmem zone or not. This is an attempt to keep references
792 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
793 * @zone - pointer to struct zone variable
794 */
795 static inline int is_highmem(struct zone *zone)
796 {
797 #ifdef CONFIG_HIGHMEM
798 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
799 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
800 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
801 zone_movable_is_highmem());
802 #else
803 return 0;
804 #endif
805 }
806
807 static inline int is_normal(struct zone *zone)
808 {
809 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
810 }
811
812 static inline int is_dma32(struct zone *zone)
813 {
814 #ifdef CONFIG_ZONE_DMA32
815 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
816 #else
817 return 0;
818 #endif
819 }
820
821 static inline int is_dma(struct zone *zone)
822 {
823 #ifdef CONFIG_ZONE_DMA
824 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
825 #else
826 return 0;
827 #endif
828 }
829
830 /* These two functions are used to setup the per zone pages min values */
831 struct ctl_table;
832 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
833 void __user *, size_t *, loff_t *);
834 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
835 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
836 void __user *, size_t *, loff_t *);
837 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
838 void __user *, size_t *, loff_t *);
839 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
840 void __user *, size_t *, loff_t *);
841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
842 void __user *, size_t *, loff_t *);
843
844 extern int numa_zonelist_order_handler(struct ctl_table *, int,
845 void __user *, size_t *, loff_t *);
846 extern char numa_zonelist_order[];
847 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
848
849 #ifndef CONFIG_NEED_MULTIPLE_NODES
850
851 extern struct pglist_data contig_page_data;
852 #define NODE_DATA(nid) (&contig_page_data)
853 #define NODE_MEM_MAP(nid) mem_map
854
855 #else /* CONFIG_NEED_MULTIPLE_NODES */
856
857 #include <asm/mmzone.h>
858
859 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
860
861 extern struct pglist_data *first_online_pgdat(void);
862 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
863 extern struct zone *next_zone(struct zone *zone);
864
865 /**
866 * for_each_online_pgdat - helper macro to iterate over all online nodes
867 * @pgdat - pointer to a pg_data_t variable
868 */
869 #define for_each_online_pgdat(pgdat) \
870 for (pgdat = first_online_pgdat(); \
871 pgdat; \
872 pgdat = next_online_pgdat(pgdat))
873 /**
874 * for_each_zone - helper macro to iterate over all memory zones
875 * @zone - pointer to struct zone variable
876 *
877 * The user only needs to declare the zone variable, for_each_zone
878 * fills it in.
879 */
880 #define for_each_zone(zone) \
881 for (zone = (first_online_pgdat())->node_zones; \
882 zone; \
883 zone = next_zone(zone))
884
885 #define for_each_populated_zone(zone) \
886 for (zone = (first_online_pgdat())->node_zones; \
887 zone; \
888 zone = next_zone(zone)) \
889 if (!populated_zone(zone)) \
890 ; /* do nothing */ \
891 else
892
893 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
894 {
895 return zoneref->zone;
896 }
897
898 static inline int zonelist_zone_idx(struct zoneref *zoneref)
899 {
900 return zoneref->zone_idx;
901 }
902
903 static inline int zonelist_node_idx(struct zoneref *zoneref)
904 {
905 #ifdef CONFIG_NUMA
906 /* zone_to_nid not available in this context */
907 return zoneref->zone->node;
908 #else
909 return 0;
910 #endif /* CONFIG_NUMA */
911 }
912
913 /**
914 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
915 * @z - The cursor used as a starting point for the search
916 * @highest_zoneidx - The zone index of the highest zone to return
917 * @nodes - An optional nodemask to filter the zonelist with
918 * @zone - The first suitable zone found is returned via this parameter
919 *
920 * This function returns the next zone at or below a given zone index that is
921 * within the allowed nodemask using a cursor as the starting point for the
922 * search. The zoneref returned is a cursor that represents the current zone
923 * being examined. It should be advanced by one before calling
924 * next_zones_zonelist again.
925 */
926 struct zoneref *next_zones_zonelist(struct zoneref *z,
927 enum zone_type highest_zoneidx,
928 nodemask_t *nodes,
929 struct zone **zone);
930
931 /**
932 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
933 * @zonelist - The zonelist to search for a suitable zone
934 * @highest_zoneidx - The zone index of the highest zone to return
935 * @nodes - An optional nodemask to filter the zonelist with
936 * @zone - The first suitable zone found is returned via this parameter
937 *
938 * This function returns the first zone at or below a given zone index that is
939 * within the allowed nodemask. The zoneref returned is a cursor that can be
940 * used to iterate the zonelist with next_zones_zonelist by advancing it by
941 * one before calling.
942 */
943 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
944 enum zone_type highest_zoneidx,
945 nodemask_t *nodes,
946 struct zone **zone)
947 {
948 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
949 zone);
950 }
951
952 /**
953 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
954 * @zone - The current zone in the iterator
955 * @z - The current pointer within zonelist->zones being iterated
956 * @zlist - The zonelist being iterated
957 * @highidx - The zone index of the highest zone to return
958 * @nodemask - Nodemask allowed by the allocator
959 *
960 * This iterator iterates though all zones at or below a given zone index and
961 * within a given nodemask
962 */
963 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
964 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
965 zone; \
966 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
967
968 /**
969 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
970 * @zone - The current zone in the iterator
971 * @z - The current pointer within zonelist->zones being iterated
972 * @zlist - The zonelist being iterated
973 * @highidx - The zone index of the highest zone to return
974 *
975 * This iterator iterates though all zones at or below a given zone index.
976 */
977 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
978 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
979
980 #ifdef CONFIG_SPARSEMEM
981 #include <asm/sparsemem.h>
982 #endif
983
984 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
985 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
987 {
988 return 0;
989 }
990 #endif
991
992 #ifdef CONFIG_FLATMEM
993 #define pfn_to_nid(pfn) (0)
994 #endif
995
996 #ifdef CONFIG_SPARSEMEM
997
998 /*
999 * SECTION_SHIFT #bits space required to store a section #
1000 *
1001 * PA_SECTION_SHIFT physical address to/from section number
1002 * PFN_SECTION_SHIFT pfn to/from section number
1003 */
1004 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1005
1006 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1007 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1008
1009 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1010
1011 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1012 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1013
1014 #define SECTION_BLOCKFLAGS_BITS \
1015 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1016
1017 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1018 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1019 #endif
1020
1021 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1022 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1023
1024 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1025 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1026
1027 struct page;
1028 struct page_cgroup;
1029 struct mem_section {
1030 /*
1031 * This is, logically, a pointer to an array of struct
1032 * pages. However, it is stored with some other magic.
1033 * (see sparse.c::sparse_init_one_section())
1034 *
1035 * Additionally during early boot we encode node id of
1036 * the location of the section here to guide allocation.
1037 * (see sparse.c::memory_present())
1038 *
1039 * Making it a UL at least makes someone do a cast
1040 * before using it wrong.
1041 */
1042 unsigned long section_mem_map;
1043
1044 /* See declaration of similar field in struct zone */
1045 unsigned long *pageblock_flags;
1046 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1047 /*
1048 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1049 * section. (see memcontrol.h/page_cgroup.h about this.)
1050 */
1051 struct page_cgroup *page_cgroup;
1052 unsigned long pad;
1053 #endif
1054 };
1055
1056 #ifdef CONFIG_SPARSEMEM_EXTREME
1057 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1058 #else
1059 #define SECTIONS_PER_ROOT 1
1060 #endif
1061
1062 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1063 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1064 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1065
1066 #ifdef CONFIG_SPARSEMEM_EXTREME
1067 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1068 #else
1069 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1070 #endif
1071
1072 static inline struct mem_section *__nr_to_section(unsigned long nr)
1073 {
1074 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1075 return NULL;
1076 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1077 }
1078 extern int __section_nr(struct mem_section* ms);
1079 extern unsigned long usemap_size(void);
1080
1081 /*
1082 * We use the lower bits of the mem_map pointer to store
1083 * a little bit of information. There should be at least
1084 * 3 bits here due to 32-bit alignment.
1085 */
1086 #define SECTION_MARKED_PRESENT (1UL<<0)
1087 #define SECTION_HAS_MEM_MAP (1UL<<1)
1088 #define SECTION_MAP_LAST_BIT (1UL<<2)
1089 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1090 #define SECTION_NID_SHIFT 2
1091
1092 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1093 {
1094 unsigned long map = section->section_mem_map;
1095 map &= SECTION_MAP_MASK;
1096 return (struct page *)map;
1097 }
1098
1099 static inline int present_section(struct mem_section *section)
1100 {
1101 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1102 }
1103
1104 static inline int present_section_nr(unsigned long nr)
1105 {
1106 return present_section(__nr_to_section(nr));
1107 }
1108
1109 static inline int valid_section(struct mem_section *section)
1110 {
1111 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1112 }
1113
1114 static inline int valid_section_nr(unsigned long nr)
1115 {
1116 return valid_section(__nr_to_section(nr));
1117 }
1118
1119 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1120 {
1121 return __nr_to_section(pfn_to_section_nr(pfn));
1122 }
1123
1124 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1125 static inline int pfn_valid(unsigned long pfn)
1126 {
1127 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1128 return 0;
1129 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1130 }
1131 #endif
1132
1133 static inline int pfn_present(unsigned long pfn)
1134 {
1135 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1136 return 0;
1137 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1138 }
1139
1140 /*
1141 * These are _only_ used during initialisation, therefore they
1142 * can use __initdata ... They could have names to indicate
1143 * this restriction.
1144 */
1145 #ifdef CONFIG_NUMA
1146 #define pfn_to_nid(pfn) \
1147 ({ \
1148 unsigned long __pfn_to_nid_pfn = (pfn); \
1149 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1150 })
1151 #else
1152 #define pfn_to_nid(pfn) (0)
1153 #endif
1154
1155 #define early_pfn_valid(pfn) pfn_valid(pfn)
1156 void sparse_init(void);
1157 #else
1158 #define sparse_init() do {} while (0)
1159 #define sparse_index_init(_sec, _nid) do {} while (0)
1160 #endif /* CONFIG_SPARSEMEM */
1161
1162 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1163 bool early_pfn_in_nid(unsigned long pfn, int nid);
1164 #else
1165 #define early_pfn_in_nid(pfn, nid) (1)
1166 #endif
1167
1168 #ifndef early_pfn_valid
1169 #define early_pfn_valid(pfn) (1)
1170 #endif
1171
1172 void memory_present(int nid, unsigned long start, unsigned long end);
1173 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1174
1175 /*
1176 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1177 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1178 * pfn_valid_within() should be used in this case; we optimise this away
1179 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1180 */
1181 #ifdef CONFIG_HOLES_IN_ZONE
1182 #define pfn_valid_within(pfn) pfn_valid(pfn)
1183 #else
1184 #define pfn_valid_within(pfn) (1)
1185 #endif
1186
1187 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1188 /*
1189 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1190 * associated with it or not. In FLATMEM, it is expected that holes always
1191 * have valid memmap as long as there is valid PFNs either side of the hole.
1192 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1193 * entire section.
1194 *
1195 * However, an ARM, and maybe other embedded architectures in the future
1196 * free memmap backing holes to save memory on the assumption the memmap is
1197 * never used. The page_zone linkages are then broken even though pfn_valid()
1198 * returns true. A walker of the full memmap must then do this additional
1199 * check to ensure the memmap they are looking at is sane by making sure
1200 * the zone and PFN linkages are still valid. This is expensive, but walkers
1201 * of the full memmap are extremely rare.
1202 */
1203 int memmap_valid_within(unsigned long pfn,
1204 struct page *page, struct zone *zone);
1205 #else
1206 static inline int memmap_valid_within(unsigned long pfn,
1207 struct page *page, struct zone *zone)
1208 {
1209 return 1;
1210 }
1211 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1212
1213 #endif /* !__GENERATING_BOUNDS.H */
1214 #endif /* !__ASSEMBLY__ */
1215 #endif /* _LINUX_MMZONE_H */