[PATCH] knfsd: allow sockets to be passed to nfsd via 'portlist'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27 struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30 };
31
32 struct pglist_data;
33
34 /*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name) struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
48
49 enum zone_stat_item {
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
52 only modified from process context */
53 NR_FILE_PAGES,
54 NR_SLAB_RECLAIMABLE,
55 NR_SLAB_UNRECLAIMABLE,
56 NR_PAGETABLE, /* used for pagetables */
57 NR_FILE_DIRTY,
58 NR_WRITEBACK,
59 NR_UNSTABLE_NFS, /* NFS unstable pages */
60 NR_BOUNCE,
61 NR_VMSCAN_WRITE,
62 #ifdef CONFIG_NUMA
63 NUMA_HIT, /* allocated in intended node */
64 NUMA_MISS, /* allocated in non intended node */
65 NUMA_FOREIGN, /* was intended here, hit elsewhere */
66 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
67 NUMA_LOCAL, /* allocation from local node */
68 NUMA_OTHER, /* allocation from other node */
69 #endif
70 NR_VM_ZONE_STAT_ITEMS };
71
72 struct per_cpu_pages {
73 int count; /* number of pages in the list */
74 int high; /* high watermark, emptying needed */
75 int batch; /* chunk size for buddy add/remove */
76 struct list_head list; /* the list of pages */
77 };
78
79 struct per_cpu_pageset {
80 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
81 #ifdef CONFIG_SMP
82 s8 stat_threshold;
83 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
84 #endif
85 } ____cacheline_aligned_in_smp;
86
87 #ifdef CONFIG_NUMA
88 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
89 #else
90 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
91 #endif
92
93 enum zone_type {
94 /*
95 * ZONE_DMA is used when there are devices that are not able
96 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
97 * carve out the portion of memory that is needed for these devices.
98 * The range is arch specific.
99 *
100 * Some examples
101 *
102 * Architecture Limit
103 * ---------------------------
104 * parisc, ia64, sparc <4G
105 * s390 <2G
106 * arm26 <48M
107 * arm Various
108 * alpha Unlimited or 0-16MB.
109 *
110 * i386, x86_64 and multiple other arches
111 * <16M.
112 */
113 ZONE_DMA,
114 #ifdef CONFIG_ZONE_DMA32
115 /*
116 * x86_64 needs two ZONE_DMAs because it supports devices that are
117 * only able to do DMA to the lower 16M but also 32 bit devices that
118 * can only do DMA areas below 4G.
119 */
120 ZONE_DMA32,
121 #endif
122 /*
123 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
124 * performed on pages in ZONE_NORMAL if the DMA devices support
125 * transfers to all addressable memory.
126 */
127 ZONE_NORMAL,
128 #ifdef CONFIG_HIGHMEM
129 /*
130 * A memory area that is only addressable by the kernel through
131 * mapping portions into its own address space. This is for example
132 * used by i386 to allow the kernel to address the memory beyond
133 * 900MB. The kernel will set up special mappings (page
134 * table entries on i386) for each page that the kernel needs to
135 * access.
136 */
137 ZONE_HIGHMEM,
138 #endif
139 MAX_NR_ZONES
140 };
141
142 /*
143 * When a memory allocation must conform to specific limitations (such
144 * as being suitable for DMA) the caller will pass in hints to the
145 * allocator in the gfp_mask, in the zone modifier bits. These bits
146 * are used to select a priority ordered list of memory zones which
147 * match the requested limits. See gfp_zone() in include/linux/gfp.h
148 */
149
150 #if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
151 #define ZONES_SHIFT 1
152 #else
153 #define ZONES_SHIFT 2
154 #endif
155
156 struct zone {
157 /* Fields commonly accessed by the page allocator */
158 unsigned long free_pages;
159 unsigned long pages_min, pages_low, pages_high;
160 /*
161 * We don't know if the memory that we're going to allocate will be freeable
162 * or/and it will be released eventually, so to avoid totally wasting several
163 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
164 * to run OOM on the lower zones despite there's tons of freeable ram
165 * on the higher zones). This array is recalculated at runtime if the
166 * sysctl_lowmem_reserve_ratio sysctl changes.
167 */
168 unsigned long lowmem_reserve[MAX_NR_ZONES];
169
170 #ifdef CONFIG_NUMA
171 int node;
172 /*
173 * zone reclaim becomes active if more unmapped pages exist.
174 */
175 unsigned long min_unmapped_pages;
176 unsigned long min_slab_pages;
177 struct per_cpu_pageset *pageset[NR_CPUS];
178 #else
179 struct per_cpu_pageset pageset[NR_CPUS];
180 #endif
181 /*
182 * free areas of different sizes
183 */
184 spinlock_t lock;
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 /* see spanned/present_pages for more description */
187 seqlock_t span_seqlock;
188 #endif
189 struct free_area free_area[MAX_ORDER];
190
191
192 ZONE_PADDING(_pad1_)
193
194 /* Fields commonly accessed by the page reclaim scanner */
195 spinlock_t lru_lock;
196 struct list_head active_list;
197 struct list_head inactive_list;
198 unsigned long nr_scan_active;
199 unsigned long nr_scan_inactive;
200 unsigned long nr_active;
201 unsigned long nr_inactive;
202 unsigned long pages_scanned; /* since last reclaim */
203 int all_unreclaimable; /* All pages pinned */
204
205 /* A count of how many reclaimers are scanning this zone */
206 atomic_t reclaim_in_progress;
207
208 /* Zone statistics */
209 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
210
211 /*
212 * prev_priority holds the scanning priority for this zone. It is
213 * defined as the scanning priority at which we achieved our reclaim
214 * target at the previous try_to_free_pages() or balance_pgdat()
215 * invokation.
216 *
217 * We use prev_priority as a measure of how much stress page reclaim is
218 * under - it drives the swappiness decision: whether to unmap mapped
219 * pages.
220 *
221 * temp_priority is used to remember the scanning priority at which
222 * this zone was successfully refilled to free_pages == pages_high.
223 *
224 * Access to both these fields is quite racy even on uniprocessor. But
225 * it is expected to average out OK.
226 */
227 int temp_priority;
228 int prev_priority;
229
230
231 ZONE_PADDING(_pad2_)
232 /* Rarely used or read-mostly fields */
233
234 /*
235 * wait_table -- the array holding the hash table
236 * wait_table_hash_nr_entries -- the size of the hash table array
237 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
238 *
239 * The purpose of all these is to keep track of the people
240 * waiting for a page to become available and make them
241 * runnable again when possible. The trouble is that this
242 * consumes a lot of space, especially when so few things
243 * wait on pages at a given time. So instead of using
244 * per-page waitqueues, we use a waitqueue hash table.
245 *
246 * The bucket discipline is to sleep on the same queue when
247 * colliding and wake all in that wait queue when removing.
248 * When something wakes, it must check to be sure its page is
249 * truly available, a la thundering herd. The cost of a
250 * collision is great, but given the expected load of the
251 * table, they should be so rare as to be outweighed by the
252 * benefits from the saved space.
253 *
254 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
255 * primary users of these fields, and in mm/page_alloc.c
256 * free_area_init_core() performs the initialization of them.
257 */
258 wait_queue_head_t * wait_table;
259 unsigned long wait_table_hash_nr_entries;
260 unsigned long wait_table_bits;
261
262 /*
263 * Discontig memory support fields.
264 */
265 struct pglist_data *zone_pgdat;
266 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
267 unsigned long zone_start_pfn;
268
269 /*
270 * zone_start_pfn, spanned_pages and present_pages are all
271 * protected by span_seqlock. It is a seqlock because it has
272 * to be read outside of zone->lock, and it is done in the main
273 * allocator path. But, it is written quite infrequently.
274 *
275 * The lock is declared along with zone->lock because it is
276 * frequently read in proximity to zone->lock. It's good to
277 * give them a chance of being in the same cacheline.
278 */
279 unsigned long spanned_pages; /* total size, including holes */
280 unsigned long present_pages; /* amount of memory (excluding holes) */
281
282 /*
283 * rarely used fields:
284 */
285 char *name;
286 } ____cacheline_internodealigned_in_smp;
287
288 /*
289 * The "priority" of VM scanning is how much of the queues we will scan in one
290 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
291 * queues ("queue_length >> 12") during an aging round.
292 */
293 #define DEF_PRIORITY 12
294
295 /*
296 * One allocation request operates on a zonelist. A zonelist
297 * is a list of zones, the first one is the 'goal' of the
298 * allocation, the other zones are fallback zones, in decreasing
299 * priority.
300 *
301 * Right now a zonelist takes up less than a cacheline. We never
302 * modify it apart from boot-up, and only a few indices are used,
303 * so despite the zonelist table being relatively big, the cache
304 * footprint of this construct is very small.
305 */
306 struct zonelist {
307 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
308 };
309
310 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
311 struct node_active_region {
312 unsigned long start_pfn;
313 unsigned long end_pfn;
314 int nid;
315 };
316 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
317
318 #ifndef CONFIG_DISCONTIGMEM
319 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
320 extern struct page *mem_map;
321 #endif
322
323 /*
324 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
325 * (mostly NUMA machines?) to denote a higher-level memory zone than the
326 * zone denotes.
327 *
328 * On NUMA machines, each NUMA node would have a pg_data_t to describe
329 * it's memory layout.
330 *
331 * Memory statistics and page replacement data structures are maintained on a
332 * per-zone basis.
333 */
334 struct bootmem_data;
335 typedef struct pglist_data {
336 struct zone node_zones[MAX_NR_ZONES];
337 struct zonelist node_zonelists[MAX_NR_ZONES];
338 int nr_zones;
339 #ifdef CONFIG_FLAT_NODE_MEM_MAP
340 struct page *node_mem_map;
341 #endif
342 struct bootmem_data *bdata;
343 #ifdef CONFIG_MEMORY_HOTPLUG
344 /*
345 * Must be held any time you expect node_start_pfn, node_present_pages
346 * or node_spanned_pages stay constant. Holding this will also
347 * guarantee that any pfn_valid() stays that way.
348 *
349 * Nests above zone->lock and zone->size_seqlock.
350 */
351 spinlock_t node_size_lock;
352 #endif
353 unsigned long node_start_pfn;
354 unsigned long node_present_pages; /* total number of physical pages */
355 unsigned long node_spanned_pages; /* total size of physical page
356 range, including holes */
357 int node_id;
358 wait_queue_head_t kswapd_wait;
359 struct task_struct *kswapd;
360 int kswapd_max_order;
361 } pg_data_t;
362
363 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
364 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
365 #ifdef CONFIG_FLAT_NODE_MEM_MAP
366 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
367 #else
368 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
369 #endif
370 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
371
372 #include <linux/memory_hotplug.h>
373
374 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
375 unsigned long *free, struct pglist_data *pgdat);
376 void get_zone_counts(unsigned long *active, unsigned long *inactive,
377 unsigned long *free);
378 void build_all_zonelists(void);
379 void wakeup_kswapd(struct zone *zone, int order);
380 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
381 int classzone_idx, int alloc_flags);
382
383 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
384 unsigned long size);
385
386 #ifdef CONFIG_HAVE_MEMORY_PRESENT
387 void memory_present(int nid, unsigned long start, unsigned long end);
388 #else
389 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
390 #endif
391
392 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
393 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
394 #endif
395
396 /*
397 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
398 */
399 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
400
401 static inline int populated_zone(struct zone *zone)
402 {
403 return (!!zone->present_pages);
404 }
405
406 static inline int is_highmem_idx(enum zone_type idx)
407 {
408 #ifdef CONFIG_HIGHMEM
409 return (idx == ZONE_HIGHMEM);
410 #else
411 return 0;
412 #endif
413 }
414
415 static inline int is_normal_idx(enum zone_type idx)
416 {
417 return (idx == ZONE_NORMAL);
418 }
419
420 /**
421 * is_highmem - helper function to quickly check if a struct zone is a
422 * highmem zone or not. This is an attempt to keep references
423 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
424 * @zone - pointer to struct zone variable
425 */
426 static inline int is_highmem(struct zone *zone)
427 {
428 #ifdef CONFIG_HIGHMEM
429 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
430 #else
431 return 0;
432 #endif
433 }
434
435 static inline int is_normal(struct zone *zone)
436 {
437 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
438 }
439
440 static inline int is_dma32(struct zone *zone)
441 {
442 #ifdef CONFIG_ZONE_DMA32
443 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
444 #else
445 return 0;
446 #endif
447 }
448
449 static inline int is_dma(struct zone *zone)
450 {
451 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
452 }
453
454 /* These two functions are used to setup the per zone pages min values */
455 struct ctl_table;
456 struct file;
457 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
458 void __user *, size_t *, loff_t *);
459 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
460 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
461 void __user *, size_t *, loff_t *);
462 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
463 void __user *, size_t *, loff_t *);
464 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
465 struct file *, void __user *, size_t *, loff_t *);
466 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
467 struct file *, void __user *, size_t *, loff_t *);
468
469 #include <linux/topology.h>
470 /* Returns the number of the current Node. */
471 #ifndef numa_node_id
472 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
473 #endif
474
475 #ifndef CONFIG_NEED_MULTIPLE_NODES
476
477 extern struct pglist_data contig_page_data;
478 #define NODE_DATA(nid) (&contig_page_data)
479 #define NODE_MEM_MAP(nid) mem_map
480 #define MAX_NODES_SHIFT 1
481
482 #else /* CONFIG_NEED_MULTIPLE_NODES */
483
484 #include <asm/mmzone.h>
485
486 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
487
488 extern struct pglist_data *first_online_pgdat(void);
489 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
490 extern struct zone *next_zone(struct zone *zone);
491
492 /**
493 * for_each_pgdat - helper macro to iterate over all nodes
494 * @pgdat - pointer to a pg_data_t variable
495 */
496 #define for_each_online_pgdat(pgdat) \
497 for (pgdat = first_online_pgdat(); \
498 pgdat; \
499 pgdat = next_online_pgdat(pgdat))
500 /**
501 * for_each_zone - helper macro to iterate over all memory zones
502 * @zone - pointer to struct zone variable
503 *
504 * The user only needs to declare the zone variable, for_each_zone
505 * fills it in.
506 */
507 #define for_each_zone(zone) \
508 for (zone = (first_online_pgdat())->node_zones; \
509 zone; \
510 zone = next_zone(zone))
511
512 #ifdef CONFIG_SPARSEMEM
513 #include <asm/sparsemem.h>
514 #endif
515
516 #if BITS_PER_LONG == 32
517 /*
518 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
519 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
520 */
521 #define FLAGS_RESERVED 9
522
523 #elif BITS_PER_LONG == 64
524 /*
525 * with 64 bit flags field, there's plenty of room.
526 */
527 #define FLAGS_RESERVED 32
528
529 #else
530
531 #error BITS_PER_LONG not defined
532
533 #endif
534
535 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
536 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
537 #define early_pfn_to_nid(nid) (0UL)
538 #endif
539
540 #ifdef CONFIG_FLATMEM
541 #define pfn_to_nid(pfn) (0)
542 #endif
543
544 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
545 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
546
547 #ifdef CONFIG_SPARSEMEM
548
549 /*
550 * SECTION_SHIFT #bits space required to store a section #
551 *
552 * PA_SECTION_SHIFT physical address to/from section number
553 * PFN_SECTION_SHIFT pfn to/from section number
554 */
555 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
556
557 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
558 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
559
560 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
561
562 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
563 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
564
565 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
566 #error Allocator MAX_ORDER exceeds SECTION_SIZE
567 #endif
568
569 struct page;
570 struct mem_section {
571 /*
572 * This is, logically, a pointer to an array of struct
573 * pages. However, it is stored with some other magic.
574 * (see sparse.c::sparse_init_one_section())
575 *
576 * Additionally during early boot we encode node id of
577 * the location of the section here to guide allocation.
578 * (see sparse.c::memory_present())
579 *
580 * Making it a UL at least makes someone do a cast
581 * before using it wrong.
582 */
583 unsigned long section_mem_map;
584 };
585
586 #ifdef CONFIG_SPARSEMEM_EXTREME
587 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
588 #else
589 #define SECTIONS_PER_ROOT 1
590 #endif
591
592 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
593 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
594 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
595
596 #ifdef CONFIG_SPARSEMEM_EXTREME
597 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
598 #else
599 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
600 #endif
601
602 static inline struct mem_section *__nr_to_section(unsigned long nr)
603 {
604 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
605 return NULL;
606 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
607 }
608 extern int __section_nr(struct mem_section* ms);
609
610 /*
611 * We use the lower bits of the mem_map pointer to store
612 * a little bit of information. There should be at least
613 * 3 bits here due to 32-bit alignment.
614 */
615 #define SECTION_MARKED_PRESENT (1UL<<0)
616 #define SECTION_HAS_MEM_MAP (1UL<<1)
617 #define SECTION_MAP_LAST_BIT (1UL<<2)
618 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
619 #define SECTION_NID_SHIFT 2
620
621 static inline struct page *__section_mem_map_addr(struct mem_section *section)
622 {
623 unsigned long map = section->section_mem_map;
624 map &= SECTION_MAP_MASK;
625 return (struct page *)map;
626 }
627
628 static inline int valid_section(struct mem_section *section)
629 {
630 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
631 }
632
633 static inline int section_has_mem_map(struct mem_section *section)
634 {
635 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
636 }
637
638 static inline int valid_section_nr(unsigned long nr)
639 {
640 return valid_section(__nr_to_section(nr));
641 }
642
643 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
644 {
645 return __nr_to_section(pfn_to_section_nr(pfn));
646 }
647
648 static inline int pfn_valid(unsigned long pfn)
649 {
650 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
651 return 0;
652 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
653 }
654
655 /*
656 * These are _only_ used during initialisation, therefore they
657 * can use __initdata ... They could have names to indicate
658 * this restriction.
659 */
660 #ifdef CONFIG_NUMA
661 #define pfn_to_nid(pfn) \
662 ({ \
663 unsigned long __pfn_to_nid_pfn = (pfn); \
664 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
665 })
666 #else
667 #define pfn_to_nid(pfn) (0)
668 #endif
669
670 #define early_pfn_valid(pfn) pfn_valid(pfn)
671 void sparse_init(void);
672 #else
673 #define sparse_init() do {} while (0)
674 #define sparse_index_init(_sec, _nid) do {} while (0)
675 #endif /* CONFIG_SPARSEMEM */
676
677 #ifndef early_pfn_valid
678 #define early_pfn_valid(pfn) (1)
679 #endif
680
681 void memory_present(int nid, unsigned long start, unsigned long end);
682 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
683
684 #endif /* !__ASSEMBLY__ */
685 #endif /* __KERNEL__ */
686 #endif /* _LINUX_MMZONE_H */