2896cb4c68f8ee96be124e6ef395226e161cc5d0
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
44 extern const int mmap_rnd_bits_min;
45 extern const int mmap_rnd_bits_max;
46 extern int mmap_rnd_bits __read_mostly;
47 #endif
48 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
49 extern const int mmap_rnd_compat_bits_min;
50 extern const int mmap_rnd_compat_bits_max;
51 extern int mmap_rnd_compat_bits __read_mostly;
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
62
63 /* to align the pointer to the (next) page boundary */
64 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
65
66 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
67 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
68
69 /*
70 * Linux kernel virtual memory manager primitives.
71 * The idea being to have a "virtual" mm in the same way
72 * we have a virtual fs - giving a cleaner interface to the
73 * mm details, and allowing different kinds of memory mappings
74 * (from shared memory to executable loading to arbitrary
75 * mmap() functions).
76 */
77
78 extern struct kmem_cache *vm_area_cachep;
79
80 #ifndef CONFIG_MMU
81 extern struct rb_root nommu_region_tree;
82 extern struct rw_semaphore nommu_region_sem;
83
84 extern unsigned int kobjsize(const void *objp);
85 #endif
86
87 /*
88 * vm_flags in vm_area_struct, see mm_types.h.
89 */
90 #define VM_NONE 0x00000000
91
92 #define VM_READ 0x00000001 /* currently active flags */
93 #define VM_WRITE 0x00000002
94 #define VM_EXEC 0x00000004
95 #define VM_SHARED 0x00000008
96
97 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
98 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
99 #define VM_MAYWRITE 0x00000020
100 #define VM_MAYEXEC 0x00000040
101 #define VM_MAYSHARE 0x00000080
102
103 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
104 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
105 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
106
107 #define VM_LOCKED 0x00002000
108 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
109
110 /* Used by sys_madvise() */
111 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
112 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
113
114 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
115 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
116 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
117 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
118 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
119 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
120 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
121 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
122
123 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
124 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
125 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
126 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
127
128 #if defined(CONFIG_X86)
129 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
130 #elif defined(CONFIG_PPC)
131 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
132 #elif defined(CONFIG_PARISC)
133 # define VM_GROWSUP VM_ARCH_1
134 #elif defined(CONFIG_METAG)
135 # define VM_GROWSUP VM_ARCH_1
136 #elif defined(CONFIG_IA64)
137 # define VM_GROWSUP VM_ARCH_1
138 #elif !defined(CONFIG_MMU)
139 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
140 #endif
141
142 #ifndef VM_GROWSUP
143 # define VM_GROWSUP VM_NONE
144 #endif
145
146 /* Bits set in the VMA until the stack is in its final location */
147 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
148
149 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
150 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
151 #endif
152
153 #ifdef CONFIG_STACK_GROWSUP
154 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
155 #else
156 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
157 #endif
158
159 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
160 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
161 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
162 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
163 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
164
165 /*
166 * Special vmas that are non-mergable, non-mlock()able.
167 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
168 */
169 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
170
171 /*
172 * mapping from the currently active vm_flags protection bits (the
173 * low four bits) to a page protection mask..
174 */
175 extern pgprot_t protection_map[16];
176
177 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
178 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
179 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
180 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
181 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
182 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
183 #define FAULT_FLAG_TRIED 0x40 /* second try */
184 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
185
186 /*
187 * vm_fault is filled by the the pagefault handler and passed to the vma's
188 * ->fault function. The vma's ->fault is responsible for returning a bitmask
189 * of VM_FAULT_xxx flags that give details about how the fault was handled.
190 *
191 * pgoff should be used in favour of virtual_address, if possible. If pgoff
192 * is used, one may implement ->remap_pages to get nonlinear mapping support.
193 */
194 struct vm_fault {
195 unsigned int flags; /* FAULT_FLAG_xxx flags */
196 pgoff_t pgoff; /* Logical page offset based on vma */
197 void __user *virtual_address; /* Faulting virtual address */
198
199 struct page *page; /* ->fault handlers should return a
200 * page here, unless VM_FAULT_NOPAGE
201 * is set (which is also implied by
202 * VM_FAULT_ERROR).
203 */
204 };
205
206 /*
207 * These are the virtual MM functions - opening of an area, closing and
208 * unmapping it (needed to keep files on disk up-to-date etc), pointer
209 * to the functions called when a no-page or a wp-page exception occurs.
210 */
211 struct vm_operations_struct {
212 void (*open)(struct vm_area_struct * area);
213 void (*close)(struct vm_area_struct * area);
214 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
215
216 /* notification that a previously read-only page is about to become
217 * writable, if an error is returned it will cause a SIGBUS */
218 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
219
220 /* called by access_process_vm when get_user_pages() fails, typically
221 * for use by special VMAs that can switch between memory and hardware
222 */
223 int (*access)(struct vm_area_struct *vma, unsigned long addr,
224 void *buf, int len, int write);
225 #ifdef CONFIG_NUMA
226 /*
227 * set_policy() op must add a reference to any non-NULL @new mempolicy
228 * to hold the policy upon return. Caller should pass NULL @new to
229 * remove a policy and fall back to surrounding context--i.e. do not
230 * install a MPOL_DEFAULT policy, nor the task or system default
231 * mempolicy.
232 */
233 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
234
235 /*
236 * get_policy() op must add reference [mpol_get()] to any policy at
237 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
238 * in mm/mempolicy.c will do this automatically.
239 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
240 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
241 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
242 * must return NULL--i.e., do not "fallback" to task or system default
243 * policy.
244 */
245 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
246 unsigned long addr);
247 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
248 const nodemask_t *to, unsigned long flags);
249 #endif
250 /* called by sys_remap_file_pages() to populate non-linear mapping */
251 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
252 unsigned long size, pgoff_t pgoff);
253 };
254
255 struct mmu_gather;
256 struct inode;
257
258 #define page_private(page) ((page)->private)
259 #define set_page_private(page, v) ((page)->private = (v))
260
261 /* It's valid only if the page is free path or free_list */
262 static inline void set_freepage_migratetype(struct page *page, int migratetype)
263 {
264 page->index = migratetype;
265 }
266
267 /* It's valid only if the page is free path or free_list */
268 static inline int get_freepage_migratetype(struct page *page)
269 {
270 return page->index;
271 }
272
273 /*
274 * FIXME: take this include out, include page-flags.h in
275 * files which need it (119 of them)
276 */
277 #include <linux/page-flags.h>
278 #include <linux/huge_mm.h>
279
280 /*
281 * Methods to modify the page usage count.
282 *
283 * What counts for a page usage:
284 * - cache mapping (page->mapping)
285 * - private data (page->private)
286 * - page mapped in a task's page tables, each mapping
287 * is counted separately
288 *
289 * Also, many kernel routines increase the page count before a critical
290 * routine so they can be sure the page doesn't go away from under them.
291 */
292
293 /*
294 * Drop a ref, return true if the refcount fell to zero (the page has no users)
295 */
296 static inline int put_page_testzero(struct page *page)
297 {
298 VM_BUG_ON(atomic_read(&page->_count) == 0);
299 return atomic_dec_and_test(&page->_count);
300 }
301
302 /*
303 * Try to grab a ref unless the page has a refcount of zero, return false if
304 * that is the case.
305 */
306 static inline int get_page_unless_zero(struct page *page)
307 {
308 return atomic_inc_not_zero(&page->_count);
309 }
310
311 extern int page_is_ram(unsigned long pfn);
312
313 /* Support for virtually mapped pages */
314 struct page *vmalloc_to_page(const void *addr);
315 unsigned long vmalloc_to_pfn(const void *addr);
316
317 /*
318 * Determine if an address is within the vmalloc range
319 *
320 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
321 * is no special casing required.
322 */
323 static inline int is_vmalloc_addr(const void *x)
324 {
325 #ifdef CONFIG_MMU
326 unsigned long addr = (unsigned long)x;
327
328 return addr >= VMALLOC_START && addr < VMALLOC_END;
329 #else
330 return 0;
331 #endif
332 }
333 #ifdef CONFIG_MMU
334 extern int is_vmalloc_or_module_addr(const void *x);
335 #else
336 static inline int is_vmalloc_or_module_addr(const void *x)
337 {
338 return 0;
339 }
340 #endif
341
342 extern void kvfree(const void *addr);
343
344 static inline void compound_lock(struct page *page)
345 {
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 VM_BUG_ON(PageSlab(page));
348 bit_spin_lock(PG_compound_lock, &page->flags);
349 #endif
350 }
351
352 static inline void compound_unlock(struct page *page)
353 {
354 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
355 VM_BUG_ON(PageSlab(page));
356 bit_spin_unlock(PG_compound_lock, &page->flags);
357 #endif
358 }
359
360 static inline unsigned long compound_lock_irqsave(struct page *page)
361 {
362 unsigned long uninitialized_var(flags);
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 local_irq_save(flags);
365 compound_lock(page);
366 #endif
367 return flags;
368 }
369
370 static inline void compound_unlock_irqrestore(struct page *page,
371 unsigned long flags)
372 {
373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
374 compound_unlock(page);
375 local_irq_restore(flags);
376 #endif
377 }
378
379 static inline struct page *compound_head(struct page *page)
380 {
381 if (unlikely(PageTail(page))) {
382 struct page *head = page->first_page;
383
384 /*
385 * page->first_page may be a dangling pointer to an old
386 * compound page, so recheck that it is still a tail
387 * page before returning.
388 */
389 smp_rmb();
390 if (likely(PageTail(page)))
391 return head;
392 }
393 return page;
394 }
395
396 /*
397 * The atomic page->_mapcount, starts from -1: so that transitions
398 * both from it and to it can be tracked, using atomic_inc_and_test
399 * and atomic_add_negative(-1).
400 */
401 static inline void page_mapcount_reset(struct page *page)
402 {
403 atomic_set(&(page)->_mapcount, -1);
404 }
405
406 static inline int page_mapcount(struct page *page)
407 {
408 return atomic_read(&(page)->_mapcount) + 1;
409 }
410
411 static inline int page_count(struct page *page)
412 {
413 return atomic_read(&compound_head(page)->_count);
414 }
415
416 static inline void get_huge_page_tail(struct page *page)
417 {
418 /*
419 * __split_huge_page_refcount() cannot run
420 * from under us.
421 */
422 VM_BUG_ON(page_mapcount(page) < 0);
423 VM_BUG_ON(atomic_read(&page->_count) != 0);
424 atomic_inc(&page->_mapcount);
425 }
426
427 extern bool __get_page_tail(struct page *page);
428
429 static inline void get_page(struct page *page)
430 {
431 if (unlikely(PageTail(page)))
432 if (likely(__get_page_tail(page)))
433 return;
434 /*
435 * Getting a normal page or the head of a compound page
436 * requires to already have an elevated page->_count.
437 */
438 VM_BUG_ON(atomic_read(&page->_count) <= 0);
439 atomic_inc(&page->_count);
440 }
441
442 static inline struct page *virt_to_head_page(const void *x)
443 {
444 struct page *page = virt_to_page(x);
445 return compound_head(page);
446 }
447
448 /*
449 * Setup the page count before being freed into the page allocator for
450 * the first time (boot or memory hotplug)
451 */
452 static inline void init_page_count(struct page *page)
453 {
454 atomic_set(&page->_count, 1);
455 }
456
457 /*
458 * PageBuddy() indicate that the page is free and in the buddy system
459 * (see mm/page_alloc.c).
460 *
461 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
462 * -2 so that an underflow of the page_mapcount() won't be mistaken
463 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
464 * efficiently by most CPU architectures.
465 */
466 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
467
468 static inline int PageBuddy(struct page *page)
469 {
470 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
471 }
472
473 static inline void __SetPageBuddy(struct page *page)
474 {
475 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
476 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
477 }
478
479 static inline void __ClearPageBuddy(struct page *page)
480 {
481 VM_BUG_ON(!PageBuddy(page));
482 atomic_set(&page->_mapcount, -1);
483 }
484
485 void put_page(struct page *page);
486 void put_pages_list(struct list_head *pages);
487
488 void split_page(struct page *page, unsigned int order);
489 int split_free_page(struct page *page);
490
491 /*
492 * Compound pages have a destructor function. Provide a
493 * prototype for that function and accessor functions.
494 * These are _only_ valid on the head of a PG_compound page.
495 */
496 typedef void compound_page_dtor(struct page *);
497
498 static inline void set_compound_page_dtor(struct page *page,
499 compound_page_dtor *dtor)
500 {
501 page[1].lru.next = (void *)dtor;
502 }
503
504 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
505 {
506 return (compound_page_dtor *)page[1].lru.next;
507 }
508
509 static inline int compound_order(struct page *page)
510 {
511 if (!PageHead(page))
512 return 0;
513 return (unsigned long)page[1].lru.prev;
514 }
515
516 static inline int compound_trans_order(struct page *page)
517 {
518 int order;
519 unsigned long flags;
520
521 if (!PageHead(page))
522 return 0;
523
524 flags = compound_lock_irqsave(page);
525 order = compound_order(page);
526 compound_unlock_irqrestore(page, flags);
527 return order;
528 }
529
530 static inline void set_compound_order(struct page *page, unsigned long order)
531 {
532 page[1].lru.prev = (void *)order;
533 }
534
535 #ifdef CONFIG_MMU
536 /*
537 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
538 * servicing faults for write access. In the normal case, do always want
539 * pte_mkwrite. But get_user_pages can cause write faults for mappings
540 * that do not have writing enabled, when used by access_process_vm.
541 */
542 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
543 {
544 if (likely(vma->vm_flags & VM_WRITE))
545 pte = pte_mkwrite(pte);
546 return pte;
547 }
548 #endif
549
550 /*
551 * Multiple processes may "see" the same page. E.g. for untouched
552 * mappings of /dev/null, all processes see the same page full of
553 * zeroes, and text pages of executables and shared libraries have
554 * only one copy in memory, at most, normally.
555 *
556 * For the non-reserved pages, page_count(page) denotes a reference count.
557 * page_count() == 0 means the page is free. page->lru is then used for
558 * freelist management in the buddy allocator.
559 * page_count() > 0 means the page has been allocated.
560 *
561 * Pages are allocated by the slab allocator in order to provide memory
562 * to kmalloc and kmem_cache_alloc. In this case, the management of the
563 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
564 * unless a particular usage is carefully commented. (the responsibility of
565 * freeing the kmalloc memory is the caller's, of course).
566 *
567 * A page may be used by anyone else who does a __get_free_page().
568 * In this case, page_count still tracks the references, and should only
569 * be used through the normal accessor functions. The top bits of page->flags
570 * and page->virtual store page management information, but all other fields
571 * are unused and could be used privately, carefully. The management of this
572 * page is the responsibility of the one who allocated it, and those who have
573 * subsequently been given references to it.
574 *
575 * The other pages (we may call them "pagecache pages") are completely
576 * managed by the Linux memory manager: I/O, buffers, swapping etc.
577 * The following discussion applies only to them.
578 *
579 * A pagecache page contains an opaque `private' member, which belongs to the
580 * page's address_space. Usually, this is the address of a circular list of
581 * the page's disk buffers. PG_private must be set to tell the VM to call
582 * into the filesystem to release these pages.
583 *
584 * A page may belong to an inode's memory mapping. In this case, page->mapping
585 * is the pointer to the inode, and page->index is the file offset of the page,
586 * in units of PAGE_CACHE_SIZE.
587 *
588 * If pagecache pages are not associated with an inode, they are said to be
589 * anonymous pages. These may become associated with the swapcache, and in that
590 * case PG_swapcache is set, and page->private is an offset into the swapcache.
591 *
592 * In either case (swapcache or inode backed), the pagecache itself holds one
593 * reference to the page. Setting PG_private should also increment the
594 * refcount. The each user mapping also has a reference to the page.
595 *
596 * The pagecache pages are stored in a per-mapping radix tree, which is
597 * rooted at mapping->page_tree, and indexed by offset.
598 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
599 * lists, we instead now tag pages as dirty/writeback in the radix tree.
600 *
601 * All pagecache pages may be subject to I/O:
602 * - inode pages may need to be read from disk,
603 * - inode pages which have been modified and are MAP_SHARED may need
604 * to be written back to the inode on disk,
605 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
606 * modified may need to be swapped out to swap space and (later) to be read
607 * back into memory.
608 */
609
610 /*
611 * The zone field is never updated after free_area_init_core()
612 * sets it, so none of the operations on it need to be atomic.
613 */
614
615 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
616 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
617 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
618 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
619 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
620
621 /*
622 * Define the bit shifts to access each section. For non-existent
623 * sections we define the shift as 0; that plus a 0 mask ensures
624 * the compiler will optimise away reference to them.
625 */
626 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
627 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
628 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
629 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
630
631 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
632 #ifdef NODE_NOT_IN_PAGE_FLAGS
633 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
634 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
635 SECTIONS_PGOFF : ZONES_PGOFF)
636 #else
637 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
638 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
639 NODES_PGOFF : ZONES_PGOFF)
640 #endif
641
642 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
643
644 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
645 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
646 #endif
647
648 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
649 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
650 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
651 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
652 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
653
654 static inline enum zone_type page_zonenum(const struct page *page)
655 {
656 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
657 }
658
659 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
660 #define SECTION_IN_PAGE_FLAGS
661 #endif
662
663 /*
664 * The identification function is only used by the buddy allocator for
665 * determining if two pages could be buddies. We are not really
666 * identifying a zone since we could be using a the section number
667 * id if we have not node id available in page flags.
668 * We guarantee only that it will return the same value for two
669 * combinable pages in a zone.
670 */
671 static inline int page_zone_id(struct page *page)
672 {
673 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
674 }
675
676 static inline int zone_to_nid(struct zone *zone)
677 {
678 #ifdef CONFIG_NUMA
679 return zone->node;
680 #else
681 return 0;
682 #endif
683 }
684
685 #ifdef NODE_NOT_IN_PAGE_FLAGS
686 extern int page_to_nid(const struct page *page);
687 #else
688 static inline int page_to_nid(const struct page *page)
689 {
690 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
691 }
692 #endif
693
694 #ifdef CONFIG_NUMA_BALANCING
695 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
696 static inline int page_nid_xchg_last(struct page *page, int nid)
697 {
698 return xchg(&page->_last_nid, nid);
699 }
700
701 static inline int page_nid_last(struct page *page)
702 {
703 return page->_last_nid;
704 }
705 static inline void page_nid_reset_last(struct page *page)
706 {
707 page->_last_nid = -1;
708 }
709 #else
710 static inline int page_nid_last(struct page *page)
711 {
712 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
713 }
714
715 extern int page_nid_xchg_last(struct page *page, int nid);
716
717 static inline void page_nid_reset_last(struct page *page)
718 {
719 int nid = (1 << LAST_NID_SHIFT) - 1;
720
721 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
722 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
723 }
724 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
725 #else
726 static inline int page_nid_xchg_last(struct page *page, int nid)
727 {
728 return page_to_nid(page);
729 }
730
731 static inline int page_nid_last(struct page *page)
732 {
733 return page_to_nid(page);
734 }
735
736 static inline void page_nid_reset_last(struct page *page)
737 {
738 }
739 #endif
740
741 static inline struct zone *page_zone(const struct page *page)
742 {
743 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
744 }
745
746 #ifdef SECTION_IN_PAGE_FLAGS
747 static inline void set_page_section(struct page *page, unsigned long section)
748 {
749 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
750 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
751 }
752
753 static inline unsigned long page_to_section(const struct page *page)
754 {
755 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
756 }
757 #endif
758
759 static inline void set_page_zone(struct page *page, enum zone_type zone)
760 {
761 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
762 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
763 }
764
765 static inline void set_page_node(struct page *page, unsigned long node)
766 {
767 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
768 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
769 }
770
771 static inline void set_page_links(struct page *page, enum zone_type zone,
772 unsigned long node, unsigned long pfn)
773 {
774 set_page_zone(page, zone);
775 set_page_node(page, node);
776 #ifdef SECTION_IN_PAGE_FLAGS
777 set_page_section(page, pfn_to_section_nr(pfn));
778 #endif
779 }
780
781 /*
782 * Some inline functions in vmstat.h depend on page_zone()
783 */
784 #include <linux/vmstat.h>
785
786 static __always_inline void *lowmem_page_address(const struct page *page)
787 {
788 return __va(PFN_PHYS(page_to_pfn(page)));
789 }
790
791 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
792 #define HASHED_PAGE_VIRTUAL
793 #endif
794
795 #if defined(WANT_PAGE_VIRTUAL)
796 static inline void *page_address(const struct page *page)
797 {
798 return page->virtual;
799 }
800 static inline void set_page_address(struct page *page, void *address)
801 {
802 page->virtual = address;
803 }
804 #define page_address_init() do { } while(0)
805 #endif
806
807 #if defined(HASHED_PAGE_VIRTUAL)
808 void *page_address(const struct page *page);
809 void set_page_address(struct page *page, void *virtual);
810 void page_address_init(void);
811 #endif
812
813 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
814 #define page_address(page) lowmem_page_address(page)
815 #define set_page_address(page, address) do { } while(0)
816 #define page_address_init() do { } while(0)
817 #endif
818
819 /*
820 * On an anonymous page mapped into a user virtual memory area,
821 * page->mapping points to its anon_vma, not to a struct address_space;
822 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
823 *
824 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
825 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
826 * and then page->mapping points, not to an anon_vma, but to a private
827 * structure which KSM associates with that merged page. See ksm.h.
828 *
829 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
830 *
831 * Please note that, confusingly, "page_mapping" refers to the inode
832 * address_space which maps the page from disk; whereas "page_mapped"
833 * refers to user virtual address space into which the page is mapped.
834 */
835 #define PAGE_MAPPING_ANON 1
836 #define PAGE_MAPPING_KSM 2
837 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
838
839 extern struct address_space *page_mapping(struct page *page);
840
841 /* Neutral page->mapping pointer to address_space or anon_vma or other */
842 static inline void *page_rmapping(struct page *page)
843 {
844 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
845 }
846
847 extern struct address_space *__page_file_mapping(struct page *);
848
849 static inline
850 struct address_space *page_file_mapping(struct page *page)
851 {
852 if (unlikely(PageSwapCache(page)))
853 return __page_file_mapping(page);
854
855 return page->mapping;
856 }
857
858 static inline int PageAnon(struct page *page)
859 {
860 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
861 }
862
863 /*
864 * Return the pagecache index of the passed page. Regular pagecache pages
865 * use ->index whereas swapcache pages use ->private
866 */
867 static inline pgoff_t page_index(struct page *page)
868 {
869 if (unlikely(PageSwapCache(page)))
870 return page_private(page);
871 return page->index;
872 }
873
874 extern pgoff_t __page_file_index(struct page *page);
875
876 /*
877 * Return the file index of the page. Regular pagecache pages use ->index
878 * whereas swapcache pages use swp_offset(->private)
879 */
880 static inline pgoff_t page_file_index(struct page *page)
881 {
882 if (unlikely(PageSwapCache(page)))
883 return __page_file_index(page);
884
885 return page->index;
886 }
887
888 /*
889 * Return true if this page is mapped into pagetables.
890 */
891 static inline int page_mapped(struct page *page)
892 {
893 return atomic_read(&(page)->_mapcount) >= 0;
894 }
895
896 /*
897 * Different kinds of faults, as returned by handle_mm_fault().
898 * Used to decide whether a process gets delivered SIGBUS or
899 * just gets major/minor fault counters bumped up.
900 */
901
902 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
903
904 #define VM_FAULT_OOM 0x0001
905 #define VM_FAULT_SIGBUS 0x0002
906 #define VM_FAULT_MAJOR 0x0004
907 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
908 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
909 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
910 #define VM_FAULT_SIGSEGV 0x0040
911
912 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
913 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
914 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
915
916 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
917
918 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
919 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)
920
921 /* Encode hstate index for a hwpoisoned large page */
922 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
923 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
924
925 /*
926 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
927 */
928 extern void pagefault_out_of_memory(void);
929
930 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
931
932 /*
933 * Flags passed to show_mem() and show_free_areas() to suppress output in
934 * various contexts.
935 */
936 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
937 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
938
939 extern void show_free_areas(unsigned int flags);
940 extern bool skip_free_areas_node(unsigned int flags, int nid);
941
942 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
943 int shmem_zero_setup(struct vm_area_struct *);
944
945 extern int can_do_mlock(void);
946 extern int user_shm_lock(size_t, struct user_struct *);
947 extern void user_shm_unlock(size_t, struct user_struct *);
948
949 /*
950 * Parameter block passed down to zap_pte_range in exceptional cases.
951 */
952 struct zap_details {
953 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
954 struct address_space *check_mapping; /* Check page->mapping if set */
955 pgoff_t first_index; /* Lowest page->index to unmap */
956 pgoff_t last_index; /* Highest page->index to unmap */
957 };
958
959 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
960 pte_t pte);
961
962 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
963 unsigned long size);
964 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
965 unsigned long size, struct zap_details *);
966 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
967 unsigned long start, unsigned long end);
968
969 /**
970 * mm_walk - callbacks for walk_page_range
971 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
972 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
973 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
974 * this handler is required to be able to handle
975 * pmd_trans_huge() pmds. They may simply choose to
976 * split_huge_page() instead of handling it explicitly.
977 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
978 * @pte_hole: if set, called for each hole at all levels
979 * @hugetlb_entry: if set, called for each hugetlb entry
980 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
981 * is used.
982 *
983 * (see walk_page_range for more details)
984 */
985 struct mm_walk {
986 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
987 unsigned long next, struct mm_walk *walk);
988 int (*pud_entry)(pud_t *pud, unsigned long addr,
989 unsigned long next, struct mm_walk *walk);
990 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
991 unsigned long next, struct mm_walk *walk);
992 int (*pte_entry)(pte_t *pte, unsigned long addr,
993 unsigned long next, struct mm_walk *walk);
994 int (*pte_hole)(unsigned long addr, unsigned long next,
995 struct mm_walk *walk);
996 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
997 unsigned long addr, unsigned long next,
998 struct mm_walk *walk);
999 struct mm_struct *mm;
1000 void *private;
1001 };
1002
1003 int walk_page_range(unsigned long addr, unsigned long end,
1004 struct mm_walk *walk);
1005 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1006 unsigned long end, unsigned long floor, unsigned long ceiling);
1007 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1008 struct vm_area_struct *vma);
1009 void unmap_mapping_range(struct address_space *mapping,
1010 loff_t const holebegin, loff_t const holelen, int even_cows);
1011 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1012 unsigned long *pfn);
1013 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1014 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1015 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1016 void *buf, int len, int write);
1017
1018 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1019 loff_t const holebegin, loff_t const holelen)
1020 {
1021 unmap_mapping_range(mapping, holebegin, holelen, 0);
1022 }
1023
1024 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1025 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1026 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1027 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1028 int truncate_inode_page(struct address_space *mapping, struct page *page);
1029 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1030 int invalidate_inode_page(struct page *page);
1031
1032 #ifdef CONFIG_MMU
1033 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1034 unsigned long address, unsigned int flags);
1035 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1036 unsigned long address, unsigned int fault_flags);
1037 #else
1038 static inline int handle_mm_fault(struct mm_struct *mm,
1039 struct vm_area_struct *vma, unsigned long address,
1040 unsigned int flags)
1041 {
1042 /* should never happen if there's no MMU */
1043 BUG();
1044 return VM_FAULT_SIGBUS;
1045 }
1046 static inline int fixup_user_fault(struct task_struct *tsk,
1047 struct mm_struct *mm, unsigned long address,
1048 unsigned int fault_flags)
1049 {
1050 /* should never happen if there's no MMU */
1051 BUG();
1052 return -EFAULT;
1053 }
1054 #endif
1055
1056 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1057 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1058 void *buf, int len, int write);
1059
1060 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1061 unsigned long start, unsigned long nr_pages,
1062 unsigned int foll_flags, struct page **pages,
1063 struct vm_area_struct **vmas, int *nonblocking);
1064 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1065 unsigned long start, unsigned long nr_pages,
1066 int write, int force, struct page **pages,
1067 struct vm_area_struct **vmas);
1068 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1069 struct page **pages);
1070 struct kvec;
1071 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1072 struct page **pages);
1073 int get_kernel_page(unsigned long start, int write, struct page **pages);
1074 struct page *get_dump_page(unsigned long addr);
1075
1076 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1077 extern void do_invalidatepage(struct page *page, unsigned long offset);
1078
1079 int __set_page_dirty_nobuffers(struct page *page);
1080 int __set_page_dirty_no_writeback(struct page *page);
1081 int redirty_page_for_writepage(struct writeback_control *wbc,
1082 struct page *page);
1083 void account_page_dirtied(struct page *page, struct address_space *mapping);
1084 void account_page_writeback(struct page *page);
1085 int set_page_dirty(struct page *page);
1086 int set_page_dirty_lock(struct page *page);
1087 int clear_page_dirty_for_io(struct page *page);
1088 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1089
1090 extern pid_t
1091 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1092
1093 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1094 unsigned long old_addr, struct vm_area_struct *new_vma,
1095 unsigned long new_addr, unsigned long len,
1096 bool need_rmap_locks);
1097 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1098 unsigned long end, pgprot_t newprot,
1099 int dirty_accountable, int prot_numa);
1100 extern int mprotect_fixup(struct vm_area_struct *vma,
1101 struct vm_area_struct **pprev, unsigned long start,
1102 unsigned long end, unsigned long newflags);
1103
1104 /*
1105 * doesn't attempt to fault and will return short.
1106 */
1107 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1108 struct page **pages);
1109 /*
1110 * per-process(per-mm_struct) statistics.
1111 */
1112 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1113 {
1114 long val = atomic_long_read(&mm->rss_stat.count[member]);
1115
1116 #ifdef SPLIT_RSS_COUNTING
1117 /*
1118 * counter is updated in asynchronous manner and may go to minus.
1119 * But it's never be expected number for users.
1120 */
1121 if (val < 0)
1122 val = 0;
1123 #endif
1124 return (unsigned long)val;
1125 }
1126
1127 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1128 {
1129 atomic_long_add(value, &mm->rss_stat.count[member]);
1130 }
1131
1132 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1133 {
1134 atomic_long_inc(&mm->rss_stat.count[member]);
1135 }
1136
1137 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1138 {
1139 atomic_long_dec(&mm->rss_stat.count[member]);
1140 }
1141
1142 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1143 {
1144 return get_mm_counter(mm, MM_FILEPAGES) +
1145 get_mm_counter(mm, MM_ANONPAGES);
1146 }
1147
1148 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1149 {
1150 return max(mm->hiwater_rss, get_mm_rss(mm));
1151 }
1152
1153 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1154 {
1155 return max(mm->hiwater_vm, mm->total_vm);
1156 }
1157
1158 static inline void update_hiwater_rss(struct mm_struct *mm)
1159 {
1160 unsigned long _rss = get_mm_rss(mm);
1161
1162 if ((mm)->hiwater_rss < _rss)
1163 (mm)->hiwater_rss = _rss;
1164 }
1165
1166 static inline void update_hiwater_vm(struct mm_struct *mm)
1167 {
1168 if (mm->hiwater_vm < mm->total_vm)
1169 mm->hiwater_vm = mm->total_vm;
1170 }
1171
1172 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1173 {
1174 mm->hiwater_rss = get_mm_rss(mm);
1175 }
1176
1177 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1178 struct mm_struct *mm)
1179 {
1180 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1181
1182 if (*maxrss < hiwater_rss)
1183 *maxrss = hiwater_rss;
1184 }
1185
1186 #if defined(SPLIT_RSS_COUNTING)
1187 void sync_mm_rss(struct mm_struct *mm);
1188 #else
1189 static inline void sync_mm_rss(struct mm_struct *mm)
1190 {
1191 }
1192 #endif
1193
1194 int vma_wants_writenotify(struct vm_area_struct *vma);
1195
1196 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1197 spinlock_t **ptl);
1198 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1199 spinlock_t **ptl)
1200 {
1201 pte_t *ptep;
1202 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1203 return ptep;
1204 }
1205
1206 #ifdef __PAGETABLE_PUD_FOLDED
1207 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1208 unsigned long address)
1209 {
1210 return 0;
1211 }
1212 #else
1213 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1214 #endif
1215
1216 #ifdef __PAGETABLE_PMD_FOLDED
1217 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1218 unsigned long address)
1219 {
1220 return 0;
1221 }
1222 #else
1223 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1224 #endif
1225
1226 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1227 pmd_t *pmd, unsigned long address);
1228 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1229
1230 /*
1231 * The following ifdef needed to get the 4level-fixup.h header to work.
1232 * Remove it when 4level-fixup.h has been removed.
1233 */
1234 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1235 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1236 {
1237 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1238 NULL: pud_offset(pgd, address);
1239 }
1240
1241 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1242 {
1243 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1244 NULL: pmd_offset(pud, address);
1245 }
1246 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1247
1248 #if USE_SPLIT_PTLOCKS
1249 /*
1250 * We tuck a spinlock to guard each pagetable page into its struct page,
1251 * at page->private, with BUILD_BUG_ON to make sure that this will not
1252 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1253 * When freeing, reset page->mapping so free_pages_check won't complain.
1254 */
1255 #define __pte_lockptr(page) &((page)->ptl)
1256 #define pte_lock_init(_page) do { \
1257 spin_lock_init(__pte_lockptr(_page)); \
1258 } while (0)
1259 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1260 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1261 #else /* !USE_SPLIT_PTLOCKS */
1262 /*
1263 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1264 */
1265 #define pte_lock_init(page) do {} while (0)
1266 #define pte_lock_deinit(page) do {} while (0)
1267 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1268 #endif /* USE_SPLIT_PTLOCKS */
1269
1270 static inline void pgtable_page_ctor(struct page *page)
1271 {
1272 pte_lock_init(page);
1273 inc_zone_page_state(page, NR_PAGETABLE);
1274 }
1275
1276 static inline void pgtable_page_dtor(struct page *page)
1277 {
1278 pte_lock_deinit(page);
1279 dec_zone_page_state(page, NR_PAGETABLE);
1280 }
1281
1282 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1283 ({ \
1284 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1285 pte_t *__pte = pte_offset_map(pmd, address); \
1286 *(ptlp) = __ptl; \
1287 spin_lock(__ptl); \
1288 __pte; \
1289 })
1290
1291 #define pte_unmap_unlock(pte, ptl) do { \
1292 spin_unlock(ptl); \
1293 pte_unmap(pte); \
1294 } while (0)
1295
1296 #define pte_alloc_map(mm, vma, pmd, address) \
1297 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1298 pmd, address))? \
1299 NULL: pte_offset_map(pmd, address))
1300
1301 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1302 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1303 pmd, address))? \
1304 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1305
1306 #define pte_alloc_kernel(pmd, address) \
1307 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1308 NULL: pte_offset_kernel(pmd, address))
1309
1310 extern void free_area_init(unsigned long * zones_size);
1311 extern void free_area_init_node(int nid, unsigned long * zones_size,
1312 unsigned long zone_start_pfn, unsigned long *zholes_size);
1313 extern void free_initmem(void);
1314
1315 /*
1316 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1317 * into the buddy system. The freed pages will be poisoned with pattern
1318 * "poison" if it's non-zero.
1319 * Return pages freed into the buddy system.
1320 */
1321 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1322 int poison, char *s);
1323 #ifdef CONFIG_HIGHMEM
1324 /*
1325 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1326 * and totalram_pages.
1327 */
1328 extern void free_highmem_page(struct page *page);
1329 #endif
1330
1331 static inline void adjust_managed_page_count(struct page *page, long count)
1332 {
1333 totalram_pages += count;
1334 }
1335
1336 /* Free the reserved page into the buddy system, so it gets managed. */
1337 static inline void __free_reserved_page(struct page *page)
1338 {
1339 ClearPageReserved(page);
1340 init_page_count(page);
1341 __free_page(page);
1342 }
1343
1344 static inline void free_reserved_page(struct page *page)
1345 {
1346 __free_reserved_page(page);
1347 adjust_managed_page_count(page, 1);
1348 }
1349
1350 static inline void mark_page_reserved(struct page *page)
1351 {
1352 SetPageReserved(page);
1353 adjust_managed_page_count(page, -1);
1354 }
1355
1356 /*
1357 * Default method to free all the __init memory into the buddy system.
1358 * The freed pages will be poisoned with pattern "poison" if it is
1359 * non-zero. Return pages freed into the buddy system.
1360 */
1361 static inline unsigned long free_initmem_default(int poison)
1362 {
1363 extern char __init_begin[], __init_end[];
1364
1365 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1366 ((unsigned long)&__init_end) & PAGE_MASK,
1367 poison, "unused kernel");
1368 }
1369
1370 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1371 /*
1372 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1373 * zones, allocate the backing mem_map and account for memory holes in a more
1374 * architecture independent manner. This is a substitute for creating the
1375 * zone_sizes[] and zholes_size[] arrays and passing them to
1376 * free_area_init_node()
1377 *
1378 * An architecture is expected to register range of page frames backed by
1379 * physical memory with memblock_add[_node]() before calling
1380 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1381 * usage, an architecture is expected to do something like
1382 *
1383 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1384 * max_highmem_pfn};
1385 * for_each_valid_physical_page_range()
1386 * memblock_add_node(base, size, nid)
1387 * free_area_init_nodes(max_zone_pfns);
1388 *
1389 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1390 * registered physical page range. Similarly
1391 * sparse_memory_present_with_active_regions() calls memory_present() for
1392 * each range when SPARSEMEM is enabled.
1393 *
1394 * See mm/page_alloc.c for more information on each function exposed by
1395 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1396 */
1397 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1398 unsigned long node_map_pfn_alignment(void);
1399 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1400 unsigned long end_pfn);
1401 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1402 unsigned long end_pfn);
1403 extern void get_pfn_range_for_nid(unsigned int nid,
1404 unsigned long *start_pfn, unsigned long *end_pfn);
1405 extern unsigned long find_min_pfn_with_active_regions(void);
1406 extern void free_bootmem_with_active_regions(int nid,
1407 unsigned long max_low_pfn);
1408 extern void sparse_memory_present_with_active_regions(int nid);
1409
1410 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1411
1412 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1413 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1414 static inline int __early_pfn_to_nid(unsigned long pfn)
1415 {
1416 return 0;
1417 }
1418 #else
1419 /* please see mm/page_alloc.c */
1420 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1421 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1422 /* there is a per-arch backend function. */
1423 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1424 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1425 #endif
1426
1427 extern void set_dma_reserve(unsigned long new_dma_reserve);
1428 extern void memmap_init_zone(unsigned long, int, unsigned long,
1429 unsigned long, enum memmap_context);
1430 extern void setup_per_zone_wmarks(void);
1431 extern int __meminit init_per_zone_wmark_min(void);
1432 extern void mem_init(void);
1433 extern void __init mmap_init(void);
1434 extern void show_mem(unsigned int flags);
1435 extern void si_meminfo(struct sysinfo * val);
1436 extern void si_meminfo_node(struct sysinfo *val, int nid);
1437
1438 extern __printf(3, 4)
1439 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1440
1441 extern void setup_per_cpu_pageset(void);
1442
1443 extern void zone_pcp_update(struct zone *zone);
1444 extern void zone_pcp_reset(struct zone *zone);
1445
1446 /* page_alloc.c */
1447 extern int min_free_kbytes;
1448
1449 /* nommu.c */
1450 extern atomic_long_t mmap_pages_allocated;
1451 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1452
1453 /* interval_tree.c */
1454 void vma_interval_tree_insert(struct vm_area_struct *node,
1455 struct rb_root *root);
1456 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1457 struct vm_area_struct *prev,
1458 struct rb_root *root);
1459 void vma_interval_tree_remove(struct vm_area_struct *node,
1460 struct rb_root *root);
1461 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1462 unsigned long start, unsigned long last);
1463 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1464 unsigned long start, unsigned long last);
1465
1466 #define vma_interval_tree_foreach(vma, root, start, last) \
1467 for (vma = vma_interval_tree_iter_first(root, start, last); \
1468 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1469
1470 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1471 struct list_head *list)
1472 {
1473 list_add_tail(&vma->shared.nonlinear, list);
1474 }
1475
1476 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1477 struct rb_root *root);
1478 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1479 struct rb_root *root);
1480 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1481 struct rb_root *root, unsigned long start, unsigned long last);
1482 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1483 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1484 #ifdef CONFIG_DEBUG_VM_RB
1485 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1486 #endif
1487
1488 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1489 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1490 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1491
1492 /* mmap.c */
1493 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1494 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1495 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1496 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1497 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1498 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1499 struct mempolicy *, const char __user *);
1500 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1501 extern int split_vma(struct mm_struct *,
1502 struct vm_area_struct *, unsigned long addr, int new_below);
1503 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1504 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1505 struct rb_node **, struct rb_node *);
1506 extern void unlink_file_vma(struct vm_area_struct *);
1507 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1508 unsigned long addr, unsigned long len, pgoff_t pgoff,
1509 bool *need_rmap_locks);
1510 extern void exit_mmap(struct mm_struct *);
1511
1512 extern int mm_take_all_locks(struct mm_struct *mm);
1513 extern void mm_drop_all_locks(struct mm_struct *mm);
1514
1515 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1516 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1517
1518 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1519 extern int install_special_mapping(struct mm_struct *mm,
1520 unsigned long addr, unsigned long len,
1521 unsigned long flags, struct page **pages);
1522
1523 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1524
1525 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1526 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1527 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1528 unsigned long len, unsigned long prot, unsigned long flags,
1529 unsigned long pgoff, unsigned long *populate);
1530 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1531
1532 #ifdef CONFIG_MMU
1533 extern int __mm_populate(unsigned long addr, unsigned long len,
1534 int ignore_errors);
1535 static inline void mm_populate(unsigned long addr, unsigned long len)
1536 {
1537 /* Ignore errors */
1538 (void) __mm_populate(addr, len, 1);
1539 }
1540 #else
1541 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1542 #endif
1543
1544 /* These take the mm semaphore themselves */
1545 extern unsigned long vm_brk(unsigned long, unsigned long);
1546 extern int vm_munmap(unsigned long, size_t);
1547 extern unsigned long vm_mmap(struct file *, unsigned long,
1548 unsigned long, unsigned long,
1549 unsigned long, unsigned long);
1550
1551 struct vm_unmapped_area_info {
1552 #define VM_UNMAPPED_AREA_TOPDOWN 1
1553 unsigned long flags;
1554 unsigned long length;
1555 unsigned long low_limit;
1556 unsigned long high_limit;
1557 unsigned long align_mask;
1558 unsigned long align_offset;
1559 };
1560
1561 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1562 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1563
1564 /*
1565 * Search for an unmapped address range.
1566 *
1567 * We are looking for a range that:
1568 * - does not intersect with any VMA;
1569 * - is contained within the [low_limit, high_limit) interval;
1570 * - is at least the desired size.
1571 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1572 */
1573 static inline unsigned long
1574 vm_unmapped_area(struct vm_unmapped_area_info *info)
1575 {
1576 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1577 return unmapped_area(info);
1578 else
1579 return unmapped_area_topdown(info);
1580 }
1581
1582 /* truncate.c */
1583 extern void truncate_inode_pages(struct address_space *, loff_t);
1584 extern void truncate_inode_pages_range(struct address_space *,
1585 loff_t lstart, loff_t lend);
1586 extern void truncate_inode_pages_final(struct address_space *);
1587
1588 /* generic vm_area_ops exported for stackable file systems */
1589 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1590 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1591
1592 /* mm/page-writeback.c */
1593 int write_one_page(struct page *page, int wait);
1594 void task_dirty_inc(struct task_struct *tsk);
1595
1596 /* readahead.c */
1597 #define VM_MAX_READAHEAD 128 /* kbytes */
1598 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1599
1600 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1601 pgoff_t offset, unsigned long nr_to_read);
1602
1603 void page_cache_sync_readahead(struct address_space *mapping,
1604 struct file_ra_state *ra,
1605 struct file *filp,
1606 pgoff_t offset,
1607 unsigned long size);
1608
1609 void page_cache_async_readahead(struct address_space *mapping,
1610 struct file_ra_state *ra,
1611 struct file *filp,
1612 struct page *pg,
1613 pgoff_t offset,
1614 unsigned long size);
1615
1616 unsigned long max_sane_readahead(unsigned long nr);
1617 unsigned long ra_submit(struct file_ra_state *ra,
1618 struct address_space *mapping,
1619 struct file *filp);
1620
1621 extern unsigned long stack_guard_gap;
1622 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1623 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1624
1625 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1626 extern int expand_downwards(struct vm_area_struct *vma,
1627 unsigned long address);
1628 #if VM_GROWSUP
1629 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1630 #else
1631 #define expand_upwards(vma, address) (0)
1632 #endif
1633
1634 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1635 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1636 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1637 struct vm_area_struct **pprev);
1638
1639 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1640 NULL if none. Assume start_addr < end_addr. */
1641 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1642 {
1643 struct vm_area_struct * vma = find_vma(mm,start_addr);
1644
1645 if (vma && end_addr <= vma->vm_start)
1646 vma = NULL;
1647 return vma;
1648 }
1649
1650 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1651 {
1652 unsigned long vm_start = vma->vm_start;
1653
1654 if (vma->vm_flags & VM_GROWSDOWN) {
1655 vm_start -= stack_guard_gap;
1656 if (vm_start > vma->vm_start)
1657 vm_start = 0;
1658 }
1659 return vm_start;
1660 }
1661
1662 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1663 {
1664 unsigned long vm_end = vma->vm_end;
1665
1666 if (vma->vm_flags & VM_GROWSUP) {
1667 vm_end += stack_guard_gap;
1668 if (vm_end < vma->vm_end)
1669 vm_end = -PAGE_SIZE;
1670 }
1671 return vm_end;
1672 }
1673
1674 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1675 {
1676 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1677 }
1678
1679 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1680 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1681 unsigned long vm_start, unsigned long vm_end)
1682 {
1683 struct vm_area_struct *vma = find_vma(mm, vm_start);
1684
1685 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1686 vma = NULL;
1687
1688 return vma;
1689 }
1690
1691 #ifdef CONFIG_MMU
1692 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1693 #else
1694 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1695 {
1696 return __pgprot(0);
1697 }
1698 #endif
1699
1700 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1701 unsigned long change_prot_numa(struct vm_area_struct *vma,
1702 unsigned long start, unsigned long end);
1703 #endif
1704
1705 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1706 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1707 unsigned long pfn, unsigned long size, pgprot_t);
1708 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1709 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1710 unsigned long pfn);
1711 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1712 unsigned long pfn);
1713 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1714
1715
1716 struct page *follow_page_mask(struct vm_area_struct *vma,
1717 unsigned long address, unsigned int foll_flags,
1718 unsigned int *page_mask);
1719
1720 static inline struct page *follow_page(struct vm_area_struct *vma,
1721 unsigned long address, unsigned int foll_flags)
1722 {
1723 unsigned int unused_page_mask;
1724 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1725 }
1726
1727 #define FOLL_WRITE 0x01 /* check pte is writable */
1728 #define FOLL_TOUCH 0x02 /* mark page accessed */
1729 #define FOLL_GET 0x04 /* do get_page on page */
1730 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1731 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1732 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1733 * and return without waiting upon it */
1734 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1735 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1736 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1737 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1738 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1739 #define FOLL_COW 0x4000 /* internal GUP flag */
1740 #define FOLL_CMA 0x80000 /* migrate if the page is from cma pageblock */
1741
1742 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1743 void *data);
1744 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1745 unsigned long size, pte_fn_t fn, void *data);
1746
1747 #ifdef CONFIG_PROC_FS
1748 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1749 #else
1750 static inline void vm_stat_account(struct mm_struct *mm,
1751 unsigned long flags, struct file *file, long pages)
1752 {
1753 mm->total_vm += pages;
1754 }
1755 #endif /* CONFIG_PROC_FS */
1756
1757 #ifdef CONFIG_DEBUG_PAGEALLOC
1758 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1759 #ifdef CONFIG_HIBERNATION
1760 extern bool kernel_page_present(struct page *page);
1761 #endif /* CONFIG_HIBERNATION */
1762 #else
1763 static inline void
1764 kernel_map_pages(struct page *page, int numpages, int enable) {}
1765 #ifdef CONFIG_HIBERNATION
1766 static inline bool kernel_page_present(struct page *page) { return true; }
1767 #endif /* CONFIG_HIBERNATION */
1768 #endif
1769
1770 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1771 #ifdef __HAVE_ARCH_GATE_AREA
1772 int in_gate_area_no_mm(unsigned long addr);
1773 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1774 #else
1775 int in_gate_area_no_mm(unsigned long addr);
1776 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1777 #endif /* __HAVE_ARCH_GATE_AREA */
1778
1779 #ifdef CONFIG_SYSCTL
1780 extern int sysctl_drop_caches;
1781 int drop_caches_sysctl_handler(struct ctl_table *, int,
1782 void __user *, size_t *, loff_t *);
1783 #endif
1784
1785 unsigned long shrink_slab(struct shrink_control *shrink,
1786 unsigned long nr_pages_scanned,
1787 unsigned long lru_pages);
1788
1789 #ifndef CONFIG_MMU
1790 #define randomize_va_space 0
1791 #else
1792 extern int randomize_va_space;
1793 #endif
1794
1795 const char * arch_vma_name(struct vm_area_struct *vma);
1796 void print_vma_addr(char *prefix, unsigned long rip);
1797
1798 void sparse_mem_maps_populate_node(struct page **map_map,
1799 unsigned long pnum_begin,
1800 unsigned long pnum_end,
1801 unsigned long map_count,
1802 int nodeid);
1803
1804 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1805 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1806 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1807 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1808 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1809 void *vmemmap_alloc_block(unsigned long size, int node);
1810 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1811 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1812 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1813 int node);
1814 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1815 void vmemmap_populate_print_last(void);
1816 #ifdef CONFIG_MEMORY_HOTPLUG
1817 void vmemmap_free(unsigned long start, unsigned long end);
1818 #endif
1819 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1820 unsigned long size);
1821
1822 enum mf_flags {
1823 MF_COUNT_INCREASED = 1 << 0,
1824 MF_ACTION_REQUIRED = 1 << 1,
1825 MF_MUST_KILL = 1 << 2,
1826 };
1827 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1828 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1829 extern int unpoison_memory(unsigned long pfn);
1830 extern int sysctl_memory_failure_early_kill;
1831 extern int sysctl_memory_failure_recovery;
1832 extern void shake_page(struct page *p, int access);
1833 extern atomic_long_t num_poisoned_pages;
1834 extern int soft_offline_page(struct page *page, int flags);
1835
1836 extern void dump_page(struct page *page);
1837
1838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1839 extern void clear_huge_page(struct page *page,
1840 unsigned long addr,
1841 unsigned int pages_per_huge_page);
1842 extern void copy_user_huge_page(struct page *dst, struct page *src,
1843 unsigned long addr, struct vm_area_struct *vma,
1844 unsigned int pages_per_huge_page);
1845 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1846
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848 extern unsigned int _debug_guardpage_minorder;
1849
1850 static inline unsigned int debug_guardpage_minorder(void)
1851 {
1852 return _debug_guardpage_minorder;
1853 }
1854
1855 static inline bool page_is_guard(struct page *page)
1856 {
1857 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1858 }
1859 #else
1860 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1861 static inline bool page_is_guard(struct page *page) { return false; }
1862 #endif /* CONFIG_DEBUG_PAGEALLOC */
1863
1864 #if MAX_NUMNODES > 1
1865 void __init setup_nr_node_ids(void);
1866 #else
1867 static inline void setup_nr_node_ids(void) {}
1868 #endif
1869
1870 #endif /* __KERNEL__ */
1871 #endif /* _LINUX_MM_H */