Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
7
8 #ifdef __KERNEL__
9
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 #include <linux/mutex.h>
17 #include <linux/debug_locks.h>
18 #include <linux/backing-dev.h>
19 #include <linux/mm_types.h>
20
21 struct mempolicy;
22 struct anon_vma;
23
24 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern unsigned long vmalloc_earlyreserve;
31 extern int page_cluster;
32
33 #ifdef CONFIG_SYSCTL
34 extern int sysctl_legacy_va_layout;
35 #else
36 #define sysctl_legacy_va_layout 0
37 #endif
38
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45 /*
46 * Linux kernel virtual memory manager primitives.
47 * The idea being to have a "virtual" mm in the same way
48 * we have a virtual fs - giving a cleaner interface to the
49 * mm details, and allowing different kinds of memory mappings
50 * (from shared memory to executable loading to arbitrary
51 * mmap() functions).
52 */
53
54 /*
55 * This struct defines a memory VMM memory area. There is one of these
56 * per VM-area/task. A VM area is any part of the process virtual memory
57 * space that has a special rule for the page-fault handlers (ie a shared
58 * library, the executable area etc).
59 */
60 struct vm_area_struct {
61 struct mm_struct * vm_mm; /* The address space we belong to. */
62 unsigned long vm_start; /* Our start address within vm_mm. */
63 unsigned long vm_end; /* The first byte after our end address
64 within vm_mm. */
65
66 /* linked list of VM areas per task, sorted by address */
67 struct vm_area_struct *vm_next;
68
69 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
70 unsigned long vm_flags; /* Flags, listed below. */
71
72 struct rb_node vm_rb;
73
74 /*
75 * For areas with an address space and backing store,
76 * linkage into the address_space->i_mmap prio tree, or
77 * linkage to the list of like vmas hanging off its node, or
78 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 */
80 union {
81 struct {
82 struct list_head list;
83 void *parent; /* aligns with prio_tree_node parent */
84 struct vm_area_struct *head;
85 } vm_set;
86
87 struct raw_prio_tree_node prio_tree_node;
88 } shared;
89
90 /*
91 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 * list, after a COW of one of the file pages. A MAP_SHARED vma
93 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
94 * or brk vma (with NULL file) can only be in an anon_vma list.
95 */
96 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
97 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98
99 /* Function pointers to deal with this struct. */
100 struct vm_operations_struct * vm_ops;
101
102 /* Information about our backing store: */
103 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
104 units, *not* PAGE_CACHE_SIZE */
105 struct file * vm_file; /* File we map to (can be NULL). */
106 void * vm_private_data; /* was vm_pte (shared mem) */
107 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108
109 #ifndef CONFIG_MMU
110 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
111 #endif
112 #ifdef CONFIG_NUMA
113 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
114 #endif
115 };
116
117 extern struct kmem_cache *vm_area_cachep;
118
119 /*
120 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
121 * disabled, then there's a single shared list of VMAs maintained by the
122 * system, and mm's subscribe to these individually
123 */
124 struct vm_list_struct {
125 struct vm_list_struct *next;
126 struct vm_area_struct *vma;
127 };
128
129 #ifndef CONFIG_MMU
130 extern struct rb_root nommu_vma_tree;
131 extern struct rw_semaphore nommu_vma_sem;
132
133 extern unsigned int kobjsize(const void *objp);
134 #endif
135
136 /*
137 * vm_flags..
138 */
139 #define VM_READ 0x00000001 /* currently active flags */
140 #define VM_WRITE 0x00000002
141 #define VM_EXEC 0x00000004
142 #define VM_SHARED 0x00000008
143
144 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
145 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
146 #define VM_MAYWRITE 0x00000020
147 #define VM_MAYEXEC 0x00000040
148 #define VM_MAYSHARE 0x00000080
149
150 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
151 #define VM_GROWSUP 0x00000200
152 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
153 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
154
155 #define VM_EXECUTABLE 0x00001000
156 #define VM_LOCKED 0x00002000
157 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
158
159 /* Used by sys_madvise() */
160 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
161 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
162
163 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
164 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
165 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
166 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
167 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
168 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
169 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
170 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
171 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
172
173 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175 #endif
176
177 #ifdef CONFIG_STACK_GROWSUP
178 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #else
180 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181 #endif
182
183 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
188
189 /*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193 extern pgprot_t protection_map[16];
194
195
196 /*
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
200 */
201 struct vm_operations_struct {
202 void (*open)(struct vm_area_struct * area);
203 void (*close)(struct vm_area_struct * area);
204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
205 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
206 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
210 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
211 #ifdef CONFIG_NUMA
212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
214 unsigned long addr);
215 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
216 const nodemask_t *to, unsigned long flags);
217 #endif
218 };
219
220 struct mmu_gather;
221 struct inode;
222
223 #define page_private(page) ((page)->private)
224 #define set_page_private(page, v) ((page)->private = (v))
225
226 /*
227 * FIXME: take this include out, include page-flags.h in
228 * files which need it (119 of them)
229 */
230 #include <linux/page-flags.h>
231
232 #ifdef CONFIG_DEBUG_VM
233 #define VM_BUG_ON(cond) BUG_ON(cond)
234 #else
235 #define VM_BUG_ON(condition) do { } while(0)
236 #endif
237
238 /*
239 * Methods to modify the page usage count.
240 *
241 * What counts for a page usage:
242 * - cache mapping (page->mapping)
243 * - private data (page->private)
244 * - page mapped in a task's page tables, each mapping
245 * is counted separately
246 *
247 * Also, many kernel routines increase the page count before a critical
248 * routine so they can be sure the page doesn't go away from under them.
249 */
250
251 /*
252 * Drop a ref, return true if the refcount fell to zero (the page has no users)
253 */
254 static inline int put_page_testzero(struct page *page)
255 {
256 VM_BUG_ON(atomic_read(&page->_count) == 0);
257 return atomic_dec_and_test(&page->_count);
258 }
259
260 /*
261 * Try to grab a ref unless the page has a refcount of zero, return false if
262 * that is the case.
263 */
264 static inline int get_page_unless_zero(struct page *page)
265 {
266 VM_BUG_ON(PageCompound(page));
267 return atomic_inc_not_zero(&page->_count);
268 }
269
270 static inline int page_count(struct page *page)
271 {
272 if (unlikely(PageCompound(page)))
273 page = (struct page *)page_private(page);
274 return atomic_read(&page->_count);
275 }
276
277 static inline void get_page(struct page *page)
278 {
279 if (unlikely(PageCompound(page)))
280 page = (struct page *)page_private(page);
281 VM_BUG_ON(atomic_read(&page->_count) == 0);
282 atomic_inc(&page->_count);
283 }
284
285 /*
286 * Setup the page count before being freed into the page allocator for
287 * the first time (boot or memory hotplug)
288 */
289 static inline void init_page_count(struct page *page)
290 {
291 atomic_set(&page->_count, 1);
292 }
293
294 void put_page(struct page *page);
295 void put_pages_list(struct list_head *pages);
296
297 void split_page(struct page *page, unsigned int order);
298
299 /*
300 * Compound pages have a destructor function. Provide a
301 * prototype for that function and accessor functions.
302 * These are _only_ valid on the head of a PG_compound page.
303 */
304 typedef void compound_page_dtor(struct page *);
305
306 static inline void set_compound_page_dtor(struct page *page,
307 compound_page_dtor *dtor)
308 {
309 page[1].lru.next = (void *)dtor;
310 }
311
312 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
313 {
314 return (compound_page_dtor *)page[1].lru.next;
315 }
316
317 /*
318 * Multiple processes may "see" the same page. E.g. for untouched
319 * mappings of /dev/null, all processes see the same page full of
320 * zeroes, and text pages of executables and shared libraries have
321 * only one copy in memory, at most, normally.
322 *
323 * For the non-reserved pages, page_count(page) denotes a reference count.
324 * page_count() == 0 means the page is free. page->lru is then used for
325 * freelist management in the buddy allocator.
326 * page_count() > 0 means the page has been allocated.
327 *
328 * Pages are allocated by the slab allocator in order to provide memory
329 * to kmalloc and kmem_cache_alloc. In this case, the management of the
330 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
331 * unless a particular usage is carefully commented. (the responsibility of
332 * freeing the kmalloc memory is the caller's, of course).
333 *
334 * A page may be used by anyone else who does a __get_free_page().
335 * In this case, page_count still tracks the references, and should only
336 * be used through the normal accessor functions. The top bits of page->flags
337 * and page->virtual store page management information, but all other fields
338 * are unused and could be used privately, carefully. The management of this
339 * page is the responsibility of the one who allocated it, and those who have
340 * subsequently been given references to it.
341 *
342 * The other pages (we may call them "pagecache pages") are completely
343 * managed by the Linux memory manager: I/O, buffers, swapping etc.
344 * The following discussion applies only to them.
345 *
346 * A pagecache page contains an opaque `private' member, which belongs to the
347 * page's address_space. Usually, this is the address of a circular list of
348 * the page's disk buffers. PG_private must be set to tell the VM to call
349 * into the filesystem to release these pages.
350 *
351 * A page may belong to an inode's memory mapping. In this case, page->mapping
352 * is the pointer to the inode, and page->index is the file offset of the page,
353 * in units of PAGE_CACHE_SIZE.
354 *
355 * If pagecache pages are not associated with an inode, they are said to be
356 * anonymous pages. These may become associated with the swapcache, and in that
357 * case PG_swapcache is set, and page->private is an offset into the swapcache.
358 *
359 * In either case (swapcache or inode backed), the pagecache itself holds one
360 * reference to the page. Setting PG_private should also increment the
361 * refcount. The each user mapping also has a reference to the page.
362 *
363 * The pagecache pages are stored in a per-mapping radix tree, which is
364 * rooted at mapping->page_tree, and indexed by offset.
365 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
366 * lists, we instead now tag pages as dirty/writeback in the radix tree.
367 *
368 * All pagecache pages may be subject to I/O:
369 * - inode pages may need to be read from disk,
370 * - inode pages which have been modified and are MAP_SHARED may need
371 * to be written back to the inode on disk,
372 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
373 * modified may need to be swapped out to swap space and (later) to be read
374 * back into memory.
375 */
376
377 /*
378 * The zone field is never updated after free_area_init_core()
379 * sets it, so none of the operations on it need to be atomic.
380 */
381
382
383 /*
384 * page->flags layout:
385 *
386 * There are three possibilities for how page->flags get
387 * laid out. The first is for the normal case, without
388 * sparsemem. The second is for sparsemem when there is
389 * plenty of space for node and section. The last is when
390 * we have run out of space and have to fall back to an
391 * alternate (slower) way of determining the node.
392 *
393 * No sparsemem: | NODE | ZONE | ... | FLAGS |
394 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
395 * no space for node: | SECTION | ZONE | ... | FLAGS |
396 */
397 #ifdef CONFIG_SPARSEMEM
398 #define SECTIONS_WIDTH SECTIONS_SHIFT
399 #else
400 #define SECTIONS_WIDTH 0
401 #endif
402
403 #define ZONES_WIDTH ZONES_SHIFT
404
405 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
406 #define NODES_WIDTH NODES_SHIFT
407 #else
408 #define NODES_WIDTH 0
409 #endif
410
411 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
412 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
413 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
414 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
415
416 /*
417 * We are going to use the flags for the page to node mapping if its in
418 * there. This includes the case where there is no node, so it is implicit.
419 */
420 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
421 #define NODE_NOT_IN_PAGE_FLAGS
422 #endif
423
424 #ifndef PFN_SECTION_SHIFT
425 #define PFN_SECTION_SHIFT 0
426 #endif
427
428 /*
429 * Define the bit shifts to access each section. For non-existant
430 * sections we define the shift as 0; that plus a 0 mask ensures
431 * the compiler will optimise away reference to them.
432 */
433 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
434 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
435 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
436
437 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
438 #ifdef NODE_NOT_IN_PAGEFLAGS
439 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
440 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
441 SECTIONS_PGOFF : ZONES_PGOFF)
442 #else
443 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
444 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
445 NODES_PGOFF : ZONES_PGOFF)
446 #endif
447
448 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
449
450 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
451 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
452 #endif
453
454 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
455 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
456 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
457 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
458
459 static inline enum zone_type page_zonenum(struct page *page)
460 {
461 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
462 }
463
464 /*
465 * The identification function is only used by the buddy allocator for
466 * determining if two pages could be buddies. We are not really
467 * identifying a zone since we could be using a the section number
468 * id if we have not node id available in page flags.
469 * We guarantee only that it will return the same value for two
470 * combinable pages in a zone.
471 */
472 static inline int page_zone_id(struct page *page)
473 {
474 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
475 }
476
477 static inline int zone_to_nid(struct zone *zone)
478 {
479 #ifdef CONFIG_NUMA
480 return zone->node;
481 #else
482 return 0;
483 #endif
484 }
485
486 #ifdef NODE_NOT_IN_PAGE_FLAGS
487 extern int page_to_nid(struct page *page);
488 #else
489 static inline int page_to_nid(struct page *page)
490 {
491 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
492 }
493 #endif
494
495 static inline struct zone *page_zone(struct page *page)
496 {
497 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
498 }
499
500 static inline unsigned long page_to_section(struct page *page)
501 {
502 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
503 }
504
505 static inline void set_page_zone(struct page *page, enum zone_type zone)
506 {
507 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
508 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
509 }
510
511 static inline void set_page_node(struct page *page, unsigned long node)
512 {
513 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
514 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
515 }
516
517 static inline void set_page_section(struct page *page, unsigned long section)
518 {
519 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
520 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
521 }
522
523 static inline void set_page_links(struct page *page, enum zone_type zone,
524 unsigned long node, unsigned long pfn)
525 {
526 set_page_zone(page, zone);
527 set_page_node(page, node);
528 set_page_section(page, pfn_to_section_nr(pfn));
529 }
530
531 /*
532 * Some inline functions in vmstat.h depend on page_zone()
533 */
534 #include <linux/vmstat.h>
535
536 static __always_inline void *lowmem_page_address(struct page *page)
537 {
538 return __va(page_to_pfn(page) << PAGE_SHIFT);
539 }
540
541 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
542 #define HASHED_PAGE_VIRTUAL
543 #endif
544
545 #if defined(WANT_PAGE_VIRTUAL)
546 #define page_address(page) ((page)->virtual)
547 #define set_page_address(page, address) \
548 do { \
549 (page)->virtual = (address); \
550 } while(0)
551 #define page_address_init() do { } while(0)
552 #endif
553
554 #if defined(HASHED_PAGE_VIRTUAL)
555 void *page_address(struct page *page);
556 void set_page_address(struct page *page, void *virtual);
557 void page_address_init(void);
558 #endif
559
560 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
561 #define page_address(page) lowmem_page_address(page)
562 #define set_page_address(page, address) do { } while(0)
563 #define page_address_init() do { } while(0)
564 #endif
565
566 /*
567 * On an anonymous page mapped into a user virtual memory area,
568 * page->mapping points to its anon_vma, not to a struct address_space;
569 * with the PAGE_MAPPING_ANON bit set to distinguish it.
570 *
571 * Please note that, confusingly, "page_mapping" refers to the inode
572 * address_space which maps the page from disk; whereas "page_mapped"
573 * refers to user virtual address space into which the page is mapped.
574 */
575 #define PAGE_MAPPING_ANON 1
576
577 extern struct address_space swapper_space;
578 static inline struct address_space *page_mapping(struct page *page)
579 {
580 struct address_space *mapping = page->mapping;
581
582 if (unlikely(PageSwapCache(page)))
583 mapping = &swapper_space;
584 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
585 mapping = NULL;
586 return mapping;
587 }
588
589 static inline int PageAnon(struct page *page)
590 {
591 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
592 }
593
594 /*
595 * Return the pagecache index of the passed page. Regular pagecache pages
596 * use ->index whereas swapcache pages use ->private
597 */
598 static inline pgoff_t page_index(struct page *page)
599 {
600 if (unlikely(PageSwapCache(page)))
601 return page_private(page);
602 return page->index;
603 }
604
605 /*
606 * The atomic page->_mapcount, like _count, starts from -1:
607 * so that transitions both from it and to it can be tracked,
608 * using atomic_inc_and_test and atomic_add_negative(-1).
609 */
610 static inline void reset_page_mapcount(struct page *page)
611 {
612 atomic_set(&(page)->_mapcount, -1);
613 }
614
615 static inline int page_mapcount(struct page *page)
616 {
617 return atomic_read(&(page)->_mapcount) + 1;
618 }
619
620 /*
621 * Return true if this page is mapped into pagetables.
622 */
623 static inline int page_mapped(struct page *page)
624 {
625 return atomic_read(&(page)->_mapcount) >= 0;
626 }
627
628 /*
629 * Error return values for the *_nopage functions
630 */
631 #define NOPAGE_SIGBUS (NULL)
632 #define NOPAGE_OOM ((struct page *) (-1))
633 #define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
634
635 /*
636 * Error return values for the *_nopfn functions
637 */
638 #define NOPFN_SIGBUS ((unsigned long) -1)
639 #define NOPFN_OOM ((unsigned long) -2)
640 #define NOPFN_REFAULT ((unsigned long) -3)
641
642 /*
643 * Different kinds of faults, as returned by handle_mm_fault().
644 * Used to decide whether a process gets delivered SIGBUS or
645 * just gets major/minor fault counters bumped up.
646 */
647 #define VM_FAULT_OOM 0x00
648 #define VM_FAULT_SIGBUS 0x01
649 #define VM_FAULT_MINOR 0x02
650 #define VM_FAULT_MAJOR 0x03
651
652 /*
653 * Special case for get_user_pages.
654 * Must be in a distinct bit from the above VM_FAULT_ flags.
655 */
656 #define VM_FAULT_WRITE 0x10
657
658 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
659
660 extern void show_free_areas(void);
661
662 #ifdef CONFIG_SHMEM
663 struct page *shmem_nopage(struct vm_area_struct *vma,
664 unsigned long address, int *type);
665 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
666 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
667 unsigned long addr);
668 int shmem_lock(struct file *file, int lock, struct user_struct *user);
669 #else
670 #define shmem_nopage filemap_nopage
671
672 static inline int shmem_lock(struct file *file, int lock,
673 struct user_struct *user)
674 {
675 return 0;
676 }
677
678 static inline int shmem_set_policy(struct vm_area_struct *vma,
679 struct mempolicy *new)
680 {
681 return 0;
682 }
683
684 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
685 unsigned long addr)
686 {
687 return NULL;
688 }
689 #endif
690 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
691 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
692
693 int shmem_zero_setup(struct vm_area_struct *);
694
695 #ifndef CONFIG_MMU
696 extern unsigned long shmem_get_unmapped_area(struct file *file,
697 unsigned long addr,
698 unsigned long len,
699 unsigned long pgoff,
700 unsigned long flags);
701 #endif
702
703 static inline int can_do_mlock(void)
704 {
705 if (capable(CAP_IPC_LOCK))
706 return 1;
707 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
708 return 1;
709 return 0;
710 }
711 extern int user_shm_lock(size_t, struct user_struct *);
712 extern void user_shm_unlock(size_t, struct user_struct *);
713
714 /*
715 * Parameter block passed down to zap_pte_range in exceptional cases.
716 */
717 struct zap_details {
718 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
719 struct address_space *check_mapping; /* Check page->mapping if set */
720 pgoff_t first_index; /* Lowest page->index to unmap */
721 pgoff_t last_index; /* Highest page->index to unmap */
722 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
723 unsigned long truncate_count; /* Compare vm_truncate_count */
724 };
725
726 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
727 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
728 unsigned long size, struct zap_details *);
729 unsigned long unmap_vmas(struct mmu_gather **tlb,
730 struct vm_area_struct *start_vma, unsigned long start_addr,
731 unsigned long end_addr, unsigned long *nr_accounted,
732 struct zap_details *);
733 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
734 unsigned long end, unsigned long floor, unsigned long ceiling);
735 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
736 unsigned long floor, unsigned long ceiling);
737 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
738 struct vm_area_struct *vma);
739 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
740 unsigned long size, pgprot_t prot);
741 void unmap_mapping_range(struct address_space *mapping,
742 loff_t const holebegin, loff_t const holelen, int even_cows);
743
744 static inline void unmap_shared_mapping_range(struct address_space *mapping,
745 loff_t const holebegin, loff_t const holelen)
746 {
747 unmap_mapping_range(mapping, holebegin, holelen, 0);
748 }
749
750 extern int vmtruncate(struct inode * inode, loff_t offset);
751 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
752 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
753 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
754
755 #ifdef CONFIG_MMU
756 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
757 unsigned long address, int write_access);
758
759 static inline int handle_mm_fault(struct mm_struct *mm,
760 struct vm_area_struct *vma, unsigned long address,
761 int write_access)
762 {
763 return __handle_mm_fault(mm, vma, address, write_access) &
764 (~VM_FAULT_WRITE);
765 }
766 #else
767 static inline int handle_mm_fault(struct mm_struct *mm,
768 struct vm_area_struct *vma, unsigned long address,
769 int write_access)
770 {
771 /* should never happen if there's no MMU */
772 BUG();
773 return VM_FAULT_SIGBUS;
774 }
775 #endif
776
777 extern int make_pages_present(unsigned long addr, unsigned long end);
778 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
779 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
780
781 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
782 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
783 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
784
785 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
786 extern void do_invalidatepage(struct page *page, unsigned long offset);
787
788 int __set_page_dirty_nobuffers(struct page *page);
789 int __set_page_dirty_no_writeback(struct page *page);
790 int redirty_page_for_writepage(struct writeback_control *wbc,
791 struct page *page);
792 int FASTCALL(set_page_dirty(struct page *page));
793 int set_page_dirty_lock(struct page *page);
794 int clear_page_dirty_for_io(struct page *page);
795
796 extern unsigned long do_mremap(unsigned long addr,
797 unsigned long old_len, unsigned long new_len,
798 unsigned long flags, unsigned long new_addr);
799
800 /*
801 * Prototype to add a shrinker callback for ageable caches.
802 *
803 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
804 * scan `nr_to_scan' objects, attempting to free them.
805 *
806 * The callback must return the number of objects which remain in the cache.
807 *
808 * The callback will be passed nr_to_scan == 0 when the VM is querying the
809 * cache size, so a fastpath for that case is appropriate.
810 */
811 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
812
813 /*
814 * Add an aging callback. The int is the number of 'seeks' it takes
815 * to recreate one of the objects that these functions age.
816 */
817
818 #define DEFAULT_SEEKS 2
819 struct shrinker;
820 extern struct shrinker *set_shrinker(int, shrinker_t);
821 extern void remove_shrinker(struct shrinker *shrinker);
822
823 /*
824 * Some shared mappigns will want the pages marked read-only
825 * to track write events. If so, we'll downgrade vm_page_prot
826 * to the private version (using protection_map[] without the
827 * VM_SHARED bit).
828 */
829 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
830 {
831 unsigned int vm_flags = vma->vm_flags;
832
833 /* If it was private or non-writable, the write bit is already clear */
834 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
835 return 0;
836
837 /* The backer wishes to know when pages are first written to? */
838 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
839 return 1;
840
841 /* The open routine did something to the protections already? */
842 if (pgprot_val(vma->vm_page_prot) !=
843 pgprot_val(protection_map[vm_flags &
844 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
845 return 0;
846
847 /* Specialty mapping? */
848 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
849 return 0;
850
851 /* Can the mapping track the dirty pages? */
852 return vma->vm_file && vma->vm_file->f_mapping &&
853 mapping_cap_account_dirty(vma->vm_file->f_mapping);
854 }
855
856 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
857
858 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
859 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
860 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
861 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
862
863 /*
864 * The following ifdef needed to get the 4level-fixup.h header to work.
865 * Remove it when 4level-fixup.h has been removed.
866 */
867 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
868 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
869 {
870 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
871 NULL: pud_offset(pgd, address);
872 }
873
874 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
875 {
876 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
877 NULL: pmd_offset(pud, address);
878 }
879 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
880
881 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
882 /*
883 * We tuck a spinlock to guard each pagetable page into its struct page,
884 * at page->private, with BUILD_BUG_ON to make sure that this will not
885 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
886 * When freeing, reset page->mapping so free_pages_check won't complain.
887 */
888 #define __pte_lockptr(page) &((page)->ptl)
889 #define pte_lock_init(_page) do { \
890 spin_lock_init(__pte_lockptr(_page)); \
891 } while (0)
892 #define pte_lock_deinit(page) ((page)->mapping = NULL)
893 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
894 #else
895 /*
896 * We use mm->page_table_lock to guard all pagetable pages of the mm.
897 */
898 #define pte_lock_init(page) do {} while (0)
899 #define pte_lock_deinit(page) do {} while (0)
900 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
901 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
902
903 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
904 ({ \
905 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
906 pte_t *__pte = pte_offset_map(pmd, address); \
907 *(ptlp) = __ptl; \
908 spin_lock(__ptl); \
909 __pte; \
910 })
911
912 #define pte_unmap_unlock(pte, ptl) do { \
913 spin_unlock(ptl); \
914 pte_unmap(pte); \
915 } while (0)
916
917 #define pte_alloc_map(mm, pmd, address) \
918 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
919 NULL: pte_offset_map(pmd, address))
920
921 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
922 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
923 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
924
925 #define pte_alloc_kernel(pmd, address) \
926 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
927 NULL: pte_offset_kernel(pmd, address))
928
929 extern void free_area_init(unsigned long * zones_size);
930 extern void free_area_init_node(int nid, pg_data_t *pgdat,
931 unsigned long * zones_size, unsigned long zone_start_pfn,
932 unsigned long *zholes_size);
933 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
934 /*
935 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
936 * zones, allocate the backing mem_map and account for memory holes in a more
937 * architecture independent manner. This is a substitute for creating the
938 * zone_sizes[] and zholes_size[] arrays and passing them to
939 * free_area_init_node()
940 *
941 * An architecture is expected to register range of page frames backed by
942 * physical memory with add_active_range() before calling
943 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
944 * usage, an architecture is expected to do something like
945 *
946 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
947 * max_highmem_pfn};
948 * for_each_valid_physical_page_range()
949 * add_active_range(node_id, start_pfn, end_pfn)
950 * free_area_init_nodes(max_zone_pfns);
951 *
952 * If the architecture guarantees that there are no holes in the ranges
953 * registered with add_active_range(), free_bootmem_active_regions()
954 * will call free_bootmem_node() for each registered physical page range.
955 * Similarly sparse_memory_present_with_active_regions() calls
956 * memory_present() for each range when SPARSEMEM is enabled.
957 *
958 * See mm/page_alloc.c for more information on each function exposed by
959 * CONFIG_ARCH_POPULATES_NODE_MAP
960 */
961 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
962 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
963 unsigned long end_pfn);
964 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
965 unsigned long new_end_pfn);
966 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
967 unsigned long end_pfn);
968 extern void remove_all_active_ranges(void);
969 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
970 unsigned long end_pfn);
971 extern void get_pfn_range_for_nid(unsigned int nid,
972 unsigned long *start_pfn, unsigned long *end_pfn);
973 extern unsigned long find_min_pfn_with_active_regions(void);
974 extern unsigned long find_max_pfn_with_active_regions(void);
975 extern void free_bootmem_with_active_regions(int nid,
976 unsigned long max_low_pfn);
977 extern void sparse_memory_present_with_active_regions(int nid);
978 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
979 extern int early_pfn_to_nid(unsigned long pfn);
980 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
981 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
982 extern void set_dma_reserve(unsigned long new_dma_reserve);
983 extern void memmap_init_zone(unsigned long, int, unsigned long,
984 unsigned long, enum memmap_context);
985 extern void setup_per_zone_pages_min(void);
986 extern void mem_init(void);
987 extern void show_mem(void);
988 extern void si_meminfo(struct sysinfo * val);
989 extern void si_meminfo_node(struct sysinfo *val, int nid);
990
991 #ifdef CONFIG_NUMA
992 extern void setup_per_cpu_pageset(void);
993 #else
994 static inline void setup_per_cpu_pageset(void) {}
995 #endif
996
997 /* prio_tree.c */
998 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
999 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1000 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1001 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1002 struct prio_tree_iter *iter);
1003
1004 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1005 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1006 (vma = vma_prio_tree_next(vma, iter)); )
1007
1008 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1009 struct list_head *list)
1010 {
1011 vma->shared.vm_set.parent = NULL;
1012 list_add_tail(&vma->shared.vm_set.list, list);
1013 }
1014
1015 /* mmap.c */
1016 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1017 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1018 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1019 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1020 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1021 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1022 struct mempolicy *);
1023 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1024 extern int split_vma(struct mm_struct *,
1025 struct vm_area_struct *, unsigned long addr, int new_below);
1026 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1027 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1028 struct rb_node **, struct rb_node *);
1029 extern void unlink_file_vma(struct vm_area_struct *);
1030 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1031 unsigned long addr, unsigned long len, pgoff_t pgoff);
1032 extern void exit_mmap(struct mm_struct *);
1033 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1034 extern int install_special_mapping(struct mm_struct *mm,
1035 unsigned long addr, unsigned long len,
1036 unsigned long flags, struct page **pages);
1037
1038 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1039
1040 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1041 unsigned long len, unsigned long prot,
1042 unsigned long flag, unsigned long pgoff);
1043
1044 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1045 unsigned long len, unsigned long prot,
1046 unsigned long flag, unsigned long offset)
1047 {
1048 unsigned long ret = -EINVAL;
1049 if ((offset + PAGE_ALIGN(len)) < offset)
1050 goto out;
1051 if (!(offset & ~PAGE_MASK))
1052 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1053 out:
1054 return ret;
1055 }
1056
1057 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1058
1059 extern unsigned long do_brk(unsigned long, unsigned long);
1060
1061 /* filemap.c */
1062 extern unsigned long page_unuse(struct page *);
1063 extern void truncate_inode_pages(struct address_space *, loff_t);
1064 extern void truncate_inode_pages_range(struct address_space *,
1065 loff_t lstart, loff_t lend);
1066
1067 /* generic vm_area_ops exported for stackable file systems */
1068 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1069 extern int filemap_populate(struct vm_area_struct *, unsigned long,
1070 unsigned long, pgprot_t, unsigned long, int);
1071
1072 /* mm/page-writeback.c */
1073 int write_one_page(struct page *page, int wait);
1074
1075 /* readahead.c */
1076 #define VM_MAX_READAHEAD 128 /* kbytes */
1077 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1078 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1079 * turning readahead off */
1080
1081 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1082 pgoff_t offset, unsigned long nr_to_read);
1083 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1084 pgoff_t offset, unsigned long nr_to_read);
1085 unsigned long page_cache_readahead(struct address_space *mapping,
1086 struct file_ra_state *ra,
1087 struct file *filp,
1088 pgoff_t offset,
1089 unsigned long size);
1090 void handle_ra_miss(struct address_space *mapping,
1091 struct file_ra_state *ra, pgoff_t offset);
1092 unsigned long max_sane_readahead(unsigned long nr);
1093
1094 /* Do stack extension */
1095 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1096 #ifdef CONFIG_IA64
1097 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1098 #endif
1099
1100 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1101 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1102 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1103 struct vm_area_struct **pprev);
1104
1105 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1106 NULL if none. Assume start_addr < end_addr. */
1107 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1108 {
1109 struct vm_area_struct * vma = find_vma(mm,start_addr);
1110
1111 if (vma && end_addr <= vma->vm_start)
1112 vma = NULL;
1113 return vma;
1114 }
1115
1116 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1117 {
1118 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1119 }
1120
1121 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1122 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1123 struct page *vmalloc_to_page(void *addr);
1124 unsigned long vmalloc_to_pfn(void *addr);
1125 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1126 unsigned long pfn, unsigned long size, pgprot_t);
1127 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1128 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1129 unsigned long pfn);
1130
1131 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1132 unsigned int foll_flags);
1133 #define FOLL_WRITE 0x01 /* check pte is writable */
1134 #define FOLL_TOUCH 0x02 /* mark page accessed */
1135 #define FOLL_GET 0x04 /* do get_page on page */
1136 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1137
1138 #ifdef CONFIG_PROC_FS
1139 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1140 #else
1141 static inline void vm_stat_account(struct mm_struct *mm,
1142 unsigned long flags, struct file *file, long pages)
1143 {
1144 }
1145 #endif /* CONFIG_PROC_FS */
1146
1147 #ifndef CONFIG_DEBUG_PAGEALLOC
1148 static inline void
1149 kernel_map_pages(struct page *page, int numpages, int enable) {}
1150 #endif
1151
1152 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1153 #ifdef __HAVE_ARCH_GATE_AREA
1154 int in_gate_area_no_task(unsigned long addr);
1155 int in_gate_area(struct task_struct *task, unsigned long addr);
1156 #else
1157 int in_gate_area_no_task(unsigned long addr);
1158 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1159 #endif /* __HAVE_ARCH_GATE_AREA */
1160
1161 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1162 void __user *, size_t *, loff_t *);
1163 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1164 unsigned long lru_pages);
1165 void drop_pagecache(void);
1166 void drop_slab(void);
1167
1168 #ifndef CONFIG_MMU
1169 #define randomize_va_space 0
1170 #else
1171 extern int randomize_va_space;
1172 #endif
1173
1174 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1175
1176 #endif /* __KERNEL__ */
1177 #endif /* _LINUX_MM_H */