Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
105
106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
110
111 #if defined(CONFIG_X86)
112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP VM_ARCH_1
117 #elif defined(CONFIG_METAG)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif defined(CONFIG_IA64)
120 # define VM_GROWSUP VM_ARCH_1
121 #elif !defined(CONFIG_MMU)
122 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
123 #endif
124
125 #ifndef VM_GROWSUP
126 # define VM_GROWSUP VM_NONE
127 #endif
128
129 /* Bits set in the VMA until the stack is in its final location */
130 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
131
132 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
133 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
134 #endif
135
136 #ifdef CONFIG_STACK_GROWSUP
137 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #else
139 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140 #endif
141
142 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
143 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
144 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
145 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
146 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
147
148 /*
149 * Special vmas that are non-mergable, non-mlock()able.
150 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
151 */
152 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
153
154 /*
155 * mapping from the currently active vm_flags protection bits (the
156 * low four bits) to a page protection mask..
157 */
158 extern pgprot_t protection_map[16];
159
160 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
161 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
162 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
163 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
164 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
165 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
166 #define FAULT_FLAG_TRIED 0x40 /* second try */
167
168 /*
169 * vm_fault is filled by the the pagefault handler and passed to the vma's
170 * ->fault function. The vma's ->fault is responsible for returning a bitmask
171 * of VM_FAULT_xxx flags that give details about how the fault was handled.
172 *
173 * pgoff should be used in favour of virtual_address, if possible. If pgoff
174 * is used, one may implement ->remap_pages to get nonlinear mapping support.
175 */
176 struct vm_fault {
177 unsigned int flags; /* FAULT_FLAG_xxx flags */
178 pgoff_t pgoff; /* Logical page offset based on vma */
179 void __user *virtual_address; /* Faulting virtual address */
180
181 struct page *page; /* ->fault handlers should return a
182 * page here, unless VM_FAULT_NOPAGE
183 * is set (which is also implied by
184 * VM_FAULT_ERROR).
185 */
186 };
187
188 /*
189 * These are the virtual MM functions - opening of an area, closing and
190 * unmapping it (needed to keep files on disk up-to-date etc), pointer
191 * to the functions called when a no-page or a wp-page exception occurs.
192 */
193 struct vm_operations_struct {
194 void (*open)(struct vm_area_struct * area);
195 void (*close)(struct vm_area_struct * area);
196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
197
198 /* notification that a previously read-only page is about to become
199 * writable, if an error is returned it will cause a SIGBUS */
200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
201
202 /* called by access_process_vm when get_user_pages() fails, typically
203 * for use by special VMAs that can switch between memory and hardware
204 */
205 int (*access)(struct vm_area_struct *vma, unsigned long addr,
206 void *buf, int len, int write);
207 #ifdef CONFIG_NUMA
208 /*
209 * set_policy() op must add a reference to any non-NULL @new mempolicy
210 * to hold the policy upon return. Caller should pass NULL @new to
211 * remove a policy and fall back to surrounding context--i.e. do not
212 * install a MPOL_DEFAULT policy, nor the task or system default
213 * mempolicy.
214 */
215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
216
217 /*
218 * get_policy() op must add reference [mpol_get()] to any policy at
219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
220 * in mm/mempolicy.c will do this automatically.
221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
224 * must return NULL--i.e., do not "fallback" to task or system default
225 * policy.
226 */
227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
228 unsigned long addr);
229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
230 const nodemask_t *to, unsigned long flags);
231 #endif
232 /* called by sys_remap_file_pages() to populate non-linear mapping */
233 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
234 unsigned long size, pgoff_t pgoff);
235 };
236
237 struct mmu_gather;
238 struct inode;
239
240 #define page_private(page) ((page)->private)
241 #define set_page_private(page, v) ((page)->private = (v))
242
243 /* It's valid only if the page is free path or free_list */
244 static inline void set_freepage_migratetype(struct page *page, int migratetype)
245 {
246 page->index = migratetype;
247 }
248
249 /* It's valid only if the page is free path or free_list */
250 static inline int get_freepage_migratetype(struct page *page)
251 {
252 return page->index;
253 }
254
255 /*
256 * FIXME: take this include out, include page-flags.h in
257 * files which need it (119 of them)
258 */
259 #include <linux/page-flags.h>
260 #include <linux/huge_mm.h>
261
262 /*
263 * Methods to modify the page usage count.
264 *
265 * What counts for a page usage:
266 * - cache mapping (page->mapping)
267 * - private data (page->private)
268 * - page mapped in a task's page tables, each mapping
269 * is counted separately
270 *
271 * Also, many kernel routines increase the page count before a critical
272 * routine so they can be sure the page doesn't go away from under them.
273 */
274
275 /*
276 * Drop a ref, return true if the refcount fell to zero (the page has no users)
277 */
278 static inline int put_page_testzero(struct page *page)
279 {
280 VM_BUG_ON(atomic_read(&page->_count) == 0);
281 return atomic_dec_and_test(&page->_count);
282 }
283
284 /*
285 * Try to grab a ref unless the page has a refcount of zero, return false if
286 * that is the case.
287 */
288 static inline int get_page_unless_zero(struct page *page)
289 {
290 return atomic_inc_not_zero(&page->_count);
291 }
292
293 extern int page_is_ram(unsigned long pfn);
294
295 /* Support for virtually mapped pages */
296 struct page *vmalloc_to_page(const void *addr);
297 unsigned long vmalloc_to_pfn(const void *addr);
298
299 /*
300 * Determine if an address is within the vmalloc range
301 *
302 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
303 * is no special casing required.
304 */
305 static inline int is_vmalloc_addr(const void *x)
306 {
307 #ifdef CONFIG_MMU
308 unsigned long addr = (unsigned long)x;
309
310 return addr >= VMALLOC_START && addr < VMALLOC_END;
311 #else
312 return 0;
313 #endif
314 }
315 #ifdef CONFIG_MMU
316 extern int is_vmalloc_or_module_addr(const void *x);
317 #else
318 static inline int is_vmalloc_or_module_addr(const void *x)
319 {
320 return 0;
321 }
322 #endif
323
324 static inline void compound_lock(struct page *page)
325 {
326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 VM_BUG_ON(PageSlab(page));
328 bit_spin_lock(PG_compound_lock, &page->flags);
329 #endif
330 }
331
332 static inline void compound_unlock(struct page *page)
333 {
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 VM_BUG_ON(PageSlab(page));
336 bit_spin_unlock(PG_compound_lock, &page->flags);
337 #endif
338 }
339
340 static inline unsigned long compound_lock_irqsave(struct page *page)
341 {
342 unsigned long uninitialized_var(flags);
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 local_irq_save(flags);
345 compound_lock(page);
346 #endif
347 return flags;
348 }
349
350 static inline void compound_unlock_irqrestore(struct page *page,
351 unsigned long flags)
352 {
353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
354 compound_unlock(page);
355 local_irq_restore(flags);
356 #endif
357 }
358
359 static inline struct page *compound_head(struct page *page)
360 {
361 if (unlikely(PageTail(page)))
362 return page->first_page;
363 return page;
364 }
365
366 /*
367 * The atomic page->_mapcount, starts from -1: so that transitions
368 * both from it and to it can be tracked, using atomic_inc_and_test
369 * and atomic_add_negative(-1).
370 */
371 static inline void page_mapcount_reset(struct page *page)
372 {
373 atomic_set(&(page)->_mapcount, -1);
374 }
375
376 static inline int page_mapcount(struct page *page)
377 {
378 return atomic_read(&(page)->_mapcount) + 1;
379 }
380
381 static inline int page_count(struct page *page)
382 {
383 return atomic_read(&compound_head(page)->_count);
384 }
385
386 static inline void get_huge_page_tail(struct page *page)
387 {
388 /*
389 * __split_huge_page_refcount() cannot run
390 * from under us.
391 */
392 VM_BUG_ON(page_mapcount(page) < 0);
393 VM_BUG_ON(atomic_read(&page->_count) != 0);
394 atomic_inc(&page->_mapcount);
395 }
396
397 extern bool __get_page_tail(struct page *page);
398
399 static inline void get_page(struct page *page)
400 {
401 if (unlikely(PageTail(page)))
402 if (likely(__get_page_tail(page)))
403 return;
404 /*
405 * Getting a normal page or the head of a compound page
406 * requires to already have an elevated page->_count.
407 */
408 VM_BUG_ON(atomic_read(&page->_count) <= 0);
409 atomic_inc(&page->_count);
410 }
411
412 static inline struct page *virt_to_head_page(const void *x)
413 {
414 struct page *page = virt_to_page(x);
415 return compound_head(page);
416 }
417
418 /*
419 * Setup the page count before being freed into the page allocator for
420 * the first time (boot or memory hotplug)
421 */
422 static inline void init_page_count(struct page *page)
423 {
424 atomic_set(&page->_count, 1);
425 }
426
427 /*
428 * PageBuddy() indicate that the page is free and in the buddy system
429 * (see mm/page_alloc.c).
430 *
431 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
432 * -2 so that an underflow of the page_mapcount() won't be mistaken
433 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
434 * efficiently by most CPU architectures.
435 */
436 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
437
438 static inline int PageBuddy(struct page *page)
439 {
440 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
441 }
442
443 static inline void __SetPageBuddy(struct page *page)
444 {
445 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
446 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
447 }
448
449 static inline void __ClearPageBuddy(struct page *page)
450 {
451 VM_BUG_ON(!PageBuddy(page));
452 atomic_set(&page->_mapcount, -1);
453 }
454
455 void put_page(struct page *page);
456 void put_pages_list(struct list_head *pages);
457
458 void split_page(struct page *page, unsigned int order);
459 int split_free_page(struct page *page);
460
461 /*
462 * Compound pages have a destructor function. Provide a
463 * prototype for that function and accessor functions.
464 * These are _only_ valid on the head of a PG_compound page.
465 */
466 typedef void compound_page_dtor(struct page *);
467
468 static inline void set_compound_page_dtor(struct page *page,
469 compound_page_dtor *dtor)
470 {
471 page[1].lru.next = (void *)dtor;
472 }
473
474 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
475 {
476 return (compound_page_dtor *)page[1].lru.next;
477 }
478
479 static inline int compound_order(struct page *page)
480 {
481 if (!PageHead(page))
482 return 0;
483 return (unsigned long)page[1].lru.prev;
484 }
485
486 static inline int compound_trans_order(struct page *page)
487 {
488 int order;
489 unsigned long flags;
490
491 if (!PageHead(page))
492 return 0;
493
494 flags = compound_lock_irqsave(page);
495 order = compound_order(page);
496 compound_unlock_irqrestore(page, flags);
497 return order;
498 }
499
500 static inline void set_compound_order(struct page *page, unsigned long order)
501 {
502 page[1].lru.prev = (void *)order;
503 }
504
505 #ifdef CONFIG_MMU
506 /*
507 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
508 * servicing faults for write access. In the normal case, do always want
509 * pte_mkwrite. But get_user_pages can cause write faults for mappings
510 * that do not have writing enabled, when used by access_process_vm.
511 */
512 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
513 {
514 if (likely(vma->vm_flags & VM_WRITE))
515 pte = pte_mkwrite(pte);
516 return pte;
517 }
518 #endif
519
520 /*
521 * Multiple processes may "see" the same page. E.g. for untouched
522 * mappings of /dev/null, all processes see the same page full of
523 * zeroes, and text pages of executables and shared libraries have
524 * only one copy in memory, at most, normally.
525 *
526 * For the non-reserved pages, page_count(page) denotes a reference count.
527 * page_count() == 0 means the page is free. page->lru is then used for
528 * freelist management in the buddy allocator.
529 * page_count() > 0 means the page has been allocated.
530 *
531 * Pages are allocated by the slab allocator in order to provide memory
532 * to kmalloc and kmem_cache_alloc. In this case, the management of the
533 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
534 * unless a particular usage is carefully commented. (the responsibility of
535 * freeing the kmalloc memory is the caller's, of course).
536 *
537 * A page may be used by anyone else who does a __get_free_page().
538 * In this case, page_count still tracks the references, and should only
539 * be used through the normal accessor functions. The top bits of page->flags
540 * and page->virtual store page management information, but all other fields
541 * are unused and could be used privately, carefully. The management of this
542 * page is the responsibility of the one who allocated it, and those who have
543 * subsequently been given references to it.
544 *
545 * The other pages (we may call them "pagecache pages") are completely
546 * managed by the Linux memory manager: I/O, buffers, swapping etc.
547 * The following discussion applies only to them.
548 *
549 * A pagecache page contains an opaque `private' member, which belongs to the
550 * page's address_space. Usually, this is the address of a circular list of
551 * the page's disk buffers. PG_private must be set to tell the VM to call
552 * into the filesystem to release these pages.
553 *
554 * A page may belong to an inode's memory mapping. In this case, page->mapping
555 * is the pointer to the inode, and page->index is the file offset of the page,
556 * in units of PAGE_CACHE_SIZE.
557 *
558 * If pagecache pages are not associated with an inode, they are said to be
559 * anonymous pages. These may become associated with the swapcache, and in that
560 * case PG_swapcache is set, and page->private is an offset into the swapcache.
561 *
562 * In either case (swapcache or inode backed), the pagecache itself holds one
563 * reference to the page. Setting PG_private should also increment the
564 * refcount. The each user mapping also has a reference to the page.
565 *
566 * The pagecache pages are stored in a per-mapping radix tree, which is
567 * rooted at mapping->page_tree, and indexed by offset.
568 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
569 * lists, we instead now tag pages as dirty/writeback in the radix tree.
570 *
571 * All pagecache pages may be subject to I/O:
572 * - inode pages may need to be read from disk,
573 * - inode pages which have been modified and are MAP_SHARED may need
574 * to be written back to the inode on disk,
575 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
576 * modified may need to be swapped out to swap space and (later) to be read
577 * back into memory.
578 */
579
580 /*
581 * The zone field is never updated after free_area_init_core()
582 * sets it, so none of the operations on it need to be atomic.
583 */
584
585 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
586 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
587 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
588 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
589 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
590
591 /*
592 * Define the bit shifts to access each section. For non-existent
593 * sections we define the shift as 0; that plus a 0 mask ensures
594 * the compiler will optimise away reference to them.
595 */
596 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
597 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
598 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
599 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
600
601 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
602 #ifdef NODE_NOT_IN_PAGE_FLAGS
603 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
604 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
605 SECTIONS_PGOFF : ZONES_PGOFF)
606 #else
607 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
608 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
609 NODES_PGOFF : ZONES_PGOFF)
610 #endif
611
612 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
613
614 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
616 #endif
617
618 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
619 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
620 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
621 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
622 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
623
624 static inline enum zone_type page_zonenum(const struct page *page)
625 {
626 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
627 }
628
629 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
630 #define SECTION_IN_PAGE_FLAGS
631 #endif
632
633 /*
634 * The identification function is only used by the buddy allocator for
635 * determining if two pages could be buddies. We are not really
636 * identifying a zone since we could be using a the section number
637 * id if we have not node id available in page flags.
638 * We guarantee only that it will return the same value for two
639 * combinable pages in a zone.
640 */
641 static inline int page_zone_id(struct page *page)
642 {
643 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
644 }
645
646 static inline int zone_to_nid(struct zone *zone)
647 {
648 #ifdef CONFIG_NUMA
649 return zone->node;
650 #else
651 return 0;
652 #endif
653 }
654
655 #ifdef NODE_NOT_IN_PAGE_FLAGS
656 extern int page_to_nid(const struct page *page);
657 #else
658 static inline int page_to_nid(const struct page *page)
659 {
660 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
661 }
662 #endif
663
664 #ifdef CONFIG_NUMA_BALANCING
665 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
666 static inline int page_nid_xchg_last(struct page *page, int nid)
667 {
668 return xchg(&page->_last_nid, nid);
669 }
670
671 static inline int page_nid_last(struct page *page)
672 {
673 return page->_last_nid;
674 }
675 static inline void page_nid_reset_last(struct page *page)
676 {
677 page->_last_nid = -1;
678 }
679 #else
680 static inline int page_nid_last(struct page *page)
681 {
682 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
683 }
684
685 extern int page_nid_xchg_last(struct page *page, int nid);
686
687 static inline void page_nid_reset_last(struct page *page)
688 {
689 int nid = (1 << LAST_NID_SHIFT) - 1;
690
691 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
692 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
693 }
694 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
695 #else
696 static inline int page_nid_xchg_last(struct page *page, int nid)
697 {
698 return page_to_nid(page);
699 }
700
701 static inline int page_nid_last(struct page *page)
702 {
703 return page_to_nid(page);
704 }
705
706 static inline void page_nid_reset_last(struct page *page)
707 {
708 }
709 #endif
710
711 static inline struct zone *page_zone(const struct page *page)
712 {
713 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
714 }
715
716 #ifdef SECTION_IN_PAGE_FLAGS
717 static inline void set_page_section(struct page *page, unsigned long section)
718 {
719 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
720 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
721 }
722
723 static inline unsigned long page_to_section(const struct page *page)
724 {
725 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
726 }
727 #endif
728
729 static inline void set_page_zone(struct page *page, enum zone_type zone)
730 {
731 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
732 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
733 }
734
735 static inline void set_page_node(struct page *page, unsigned long node)
736 {
737 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
738 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
739 }
740
741 static inline void set_page_links(struct page *page, enum zone_type zone,
742 unsigned long node, unsigned long pfn)
743 {
744 set_page_zone(page, zone);
745 set_page_node(page, node);
746 #ifdef SECTION_IN_PAGE_FLAGS
747 set_page_section(page, pfn_to_section_nr(pfn));
748 #endif
749 }
750
751 /*
752 * Some inline functions in vmstat.h depend on page_zone()
753 */
754 #include <linux/vmstat.h>
755
756 static __always_inline void *lowmem_page_address(const struct page *page)
757 {
758 return __va(PFN_PHYS(page_to_pfn(page)));
759 }
760
761 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
762 #define HASHED_PAGE_VIRTUAL
763 #endif
764
765 #if defined(WANT_PAGE_VIRTUAL)
766 #define page_address(page) ((page)->virtual)
767 #define set_page_address(page, address) \
768 do { \
769 (page)->virtual = (address); \
770 } while(0)
771 #define page_address_init() do { } while(0)
772 #endif
773
774 #if defined(HASHED_PAGE_VIRTUAL)
775 void *page_address(const struct page *page);
776 void set_page_address(struct page *page, void *virtual);
777 void page_address_init(void);
778 #endif
779
780 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
781 #define page_address(page) lowmem_page_address(page)
782 #define set_page_address(page, address) do { } while(0)
783 #define page_address_init() do { } while(0)
784 #endif
785
786 /*
787 * On an anonymous page mapped into a user virtual memory area,
788 * page->mapping points to its anon_vma, not to a struct address_space;
789 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
790 *
791 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
792 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
793 * and then page->mapping points, not to an anon_vma, but to a private
794 * structure which KSM associates with that merged page. See ksm.h.
795 *
796 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
797 *
798 * Please note that, confusingly, "page_mapping" refers to the inode
799 * address_space which maps the page from disk; whereas "page_mapped"
800 * refers to user virtual address space into which the page is mapped.
801 */
802 #define PAGE_MAPPING_ANON 1
803 #define PAGE_MAPPING_KSM 2
804 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
805
806 extern struct address_space *page_mapping(struct page *page);
807
808 /* Neutral page->mapping pointer to address_space or anon_vma or other */
809 static inline void *page_rmapping(struct page *page)
810 {
811 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
812 }
813
814 extern struct address_space *__page_file_mapping(struct page *);
815
816 static inline
817 struct address_space *page_file_mapping(struct page *page)
818 {
819 if (unlikely(PageSwapCache(page)))
820 return __page_file_mapping(page);
821
822 return page->mapping;
823 }
824
825 static inline int PageAnon(struct page *page)
826 {
827 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
828 }
829
830 /*
831 * Return the pagecache index of the passed page. Regular pagecache pages
832 * use ->index whereas swapcache pages use ->private
833 */
834 static inline pgoff_t page_index(struct page *page)
835 {
836 if (unlikely(PageSwapCache(page)))
837 return page_private(page);
838 return page->index;
839 }
840
841 extern pgoff_t __page_file_index(struct page *page);
842
843 /*
844 * Return the file index of the page. Regular pagecache pages use ->index
845 * whereas swapcache pages use swp_offset(->private)
846 */
847 static inline pgoff_t page_file_index(struct page *page)
848 {
849 if (unlikely(PageSwapCache(page)))
850 return __page_file_index(page);
851
852 return page->index;
853 }
854
855 /*
856 * Return true if this page is mapped into pagetables.
857 */
858 static inline int page_mapped(struct page *page)
859 {
860 return atomic_read(&(page)->_mapcount) >= 0;
861 }
862
863 /*
864 * Different kinds of faults, as returned by handle_mm_fault().
865 * Used to decide whether a process gets delivered SIGBUS or
866 * just gets major/minor fault counters bumped up.
867 */
868
869 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
870
871 #define VM_FAULT_OOM 0x0001
872 #define VM_FAULT_SIGBUS 0x0002
873 #define VM_FAULT_MAJOR 0x0004
874 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
875 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
876 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
877
878 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
879 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
880 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
881
882 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
883
884 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
885 VM_FAULT_HWPOISON_LARGE)
886
887 /* Encode hstate index for a hwpoisoned large page */
888 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
889 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
890
891 /*
892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
893 */
894 extern void pagefault_out_of_memory(void);
895
896 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
897
898 /*
899 * Flags passed to show_mem() and show_free_areas() to suppress output in
900 * various contexts.
901 */
902 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
903
904 extern void show_free_areas(unsigned int flags);
905 extern bool skip_free_areas_node(unsigned int flags, int nid);
906
907 int shmem_zero_setup(struct vm_area_struct *);
908
909 extern int can_do_mlock(void);
910 extern int user_shm_lock(size_t, struct user_struct *);
911 extern void user_shm_unlock(size_t, struct user_struct *);
912
913 /*
914 * Parameter block passed down to zap_pte_range in exceptional cases.
915 */
916 struct zap_details {
917 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
918 struct address_space *check_mapping; /* Check page->mapping if set */
919 pgoff_t first_index; /* Lowest page->index to unmap */
920 pgoff_t last_index; /* Highest page->index to unmap */
921 };
922
923 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
924 pte_t pte);
925
926 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
927 unsigned long size);
928 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
929 unsigned long size, struct zap_details *);
930 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
931 unsigned long start, unsigned long end);
932
933 /**
934 * mm_walk - callbacks for walk_page_range
935 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
936 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
937 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
938 * this handler is required to be able to handle
939 * pmd_trans_huge() pmds. They may simply choose to
940 * split_huge_page() instead of handling it explicitly.
941 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
942 * @pte_hole: if set, called for each hole at all levels
943 * @hugetlb_entry: if set, called for each hugetlb entry
944 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
945 * is used.
946 *
947 * (see walk_page_range for more details)
948 */
949 struct mm_walk {
950 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
951 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
952 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
953 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
954 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
955 int (*hugetlb_entry)(pte_t *, unsigned long,
956 unsigned long, unsigned long, struct mm_walk *);
957 struct mm_struct *mm;
958 void *private;
959 };
960
961 int walk_page_range(unsigned long addr, unsigned long end,
962 struct mm_walk *walk);
963 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
964 unsigned long end, unsigned long floor, unsigned long ceiling);
965 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
966 struct vm_area_struct *vma);
967 void unmap_mapping_range(struct address_space *mapping,
968 loff_t const holebegin, loff_t const holelen, int even_cows);
969 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
970 unsigned long *pfn);
971 int follow_phys(struct vm_area_struct *vma, unsigned long address,
972 unsigned int flags, unsigned long *prot, resource_size_t *phys);
973 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
974 void *buf, int len, int write);
975
976 static inline void unmap_shared_mapping_range(struct address_space *mapping,
977 loff_t const holebegin, loff_t const holelen)
978 {
979 unmap_mapping_range(mapping, holebegin, holelen, 0);
980 }
981
982 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
983 extern void truncate_setsize(struct inode *inode, loff_t newsize);
984 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
985 int truncate_inode_page(struct address_space *mapping, struct page *page);
986 int generic_error_remove_page(struct address_space *mapping, struct page *page);
987 int invalidate_inode_page(struct page *page);
988
989 #ifdef CONFIG_MMU
990 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
991 unsigned long address, unsigned int flags);
992 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long address, unsigned int fault_flags);
994 #else
995 static inline int handle_mm_fault(struct mm_struct *mm,
996 struct vm_area_struct *vma, unsigned long address,
997 unsigned int flags)
998 {
999 /* should never happen if there's no MMU */
1000 BUG();
1001 return VM_FAULT_SIGBUS;
1002 }
1003 static inline int fixup_user_fault(struct task_struct *tsk,
1004 struct mm_struct *mm, unsigned long address,
1005 unsigned int fault_flags)
1006 {
1007 /* should never happen if there's no MMU */
1008 BUG();
1009 return -EFAULT;
1010 }
1011 #endif
1012
1013 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1014 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1015 void *buf, int len, int write);
1016
1017 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long start, unsigned long nr_pages,
1019 unsigned int foll_flags, struct page **pages,
1020 struct vm_area_struct **vmas, int *nonblocking);
1021 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long start, unsigned long nr_pages,
1023 int write, int force, struct page **pages,
1024 struct vm_area_struct **vmas);
1025 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1026 struct page **pages);
1027 struct kvec;
1028 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1029 struct page **pages);
1030 int get_kernel_page(unsigned long start, int write, struct page **pages);
1031 struct page *get_dump_page(unsigned long addr);
1032
1033 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1034 extern void do_invalidatepage(struct page *page, unsigned long offset);
1035
1036 int __set_page_dirty_nobuffers(struct page *page);
1037 int __set_page_dirty_no_writeback(struct page *page);
1038 int redirty_page_for_writepage(struct writeback_control *wbc,
1039 struct page *page);
1040 void account_page_dirtied(struct page *page, struct address_space *mapping);
1041 void account_page_writeback(struct page *page);
1042 int set_page_dirty(struct page *page);
1043 int set_page_dirty_lock(struct page *page);
1044 int clear_page_dirty_for_io(struct page *page);
1045
1046 /* Is the vma a continuation of the stack vma above it? */
1047 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1048 {
1049 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1050 }
1051
1052 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1053 unsigned long addr)
1054 {
1055 return (vma->vm_flags & VM_GROWSDOWN) &&
1056 (vma->vm_start == addr) &&
1057 !vma_growsdown(vma->vm_prev, addr);
1058 }
1059
1060 /* Is the vma a continuation of the stack vma below it? */
1061 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1062 {
1063 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1064 }
1065
1066 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1067 unsigned long addr)
1068 {
1069 return (vma->vm_flags & VM_GROWSUP) &&
1070 (vma->vm_end == addr) &&
1071 !vma_growsup(vma->vm_next, addr);
1072 }
1073
1074 extern pid_t
1075 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1076
1077 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1078 unsigned long old_addr, struct vm_area_struct *new_vma,
1079 unsigned long new_addr, unsigned long len,
1080 bool need_rmap_locks);
1081 extern unsigned long do_mremap(unsigned long addr,
1082 unsigned long old_len, unsigned long new_len,
1083 unsigned long flags, unsigned long new_addr);
1084 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1085 unsigned long end, pgprot_t newprot,
1086 int dirty_accountable, int prot_numa);
1087 extern int mprotect_fixup(struct vm_area_struct *vma,
1088 struct vm_area_struct **pprev, unsigned long start,
1089 unsigned long end, unsigned long newflags);
1090
1091 /*
1092 * doesn't attempt to fault and will return short.
1093 */
1094 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1095 struct page **pages);
1096 /*
1097 * per-process(per-mm_struct) statistics.
1098 */
1099 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1100 {
1101 long val = atomic_long_read(&mm->rss_stat.count[member]);
1102
1103 #ifdef SPLIT_RSS_COUNTING
1104 /*
1105 * counter is updated in asynchronous manner and may go to minus.
1106 * But it's never be expected number for users.
1107 */
1108 if (val < 0)
1109 val = 0;
1110 #endif
1111 return (unsigned long)val;
1112 }
1113
1114 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1115 {
1116 atomic_long_add(value, &mm->rss_stat.count[member]);
1117 }
1118
1119 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1120 {
1121 atomic_long_inc(&mm->rss_stat.count[member]);
1122 }
1123
1124 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1125 {
1126 atomic_long_dec(&mm->rss_stat.count[member]);
1127 }
1128
1129 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1130 {
1131 return get_mm_counter(mm, MM_FILEPAGES) +
1132 get_mm_counter(mm, MM_ANONPAGES);
1133 }
1134
1135 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1136 {
1137 return max(mm->hiwater_rss, get_mm_rss(mm));
1138 }
1139
1140 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1141 {
1142 return max(mm->hiwater_vm, mm->total_vm);
1143 }
1144
1145 static inline void update_hiwater_rss(struct mm_struct *mm)
1146 {
1147 unsigned long _rss = get_mm_rss(mm);
1148
1149 if ((mm)->hiwater_rss < _rss)
1150 (mm)->hiwater_rss = _rss;
1151 }
1152
1153 static inline void update_hiwater_vm(struct mm_struct *mm)
1154 {
1155 if (mm->hiwater_vm < mm->total_vm)
1156 mm->hiwater_vm = mm->total_vm;
1157 }
1158
1159 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1160 struct mm_struct *mm)
1161 {
1162 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1163
1164 if (*maxrss < hiwater_rss)
1165 *maxrss = hiwater_rss;
1166 }
1167
1168 #if defined(SPLIT_RSS_COUNTING)
1169 void sync_mm_rss(struct mm_struct *mm);
1170 #else
1171 static inline void sync_mm_rss(struct mm_struct *mm)
1172 {
1173 }
1174 #endif
1175
1176 int vma_wants_writenotify(struct vm_area_struct *vma);
1177
1178 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1179 spinlock_t **ptl);
1180 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1181 spinlock_t **ptl)
1182 {
1183 pte_t *ptep;
1184 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1185 return ptep;
1186 }
1187
1188 #ifdef __PAGETABLE_PUD_FOLDED
1189 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1190 unsigned long address)
1191 {
1192 return 0;
1193 }
1194 #else
1195 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1196 #endif
1197
1198 #ifdef __PAGETABLE_PMD_FOLDED
1199 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1200 unsigned long address)
1201 {
1202 return 0;
1203 }
1204 #else
1205 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1206 #endif
1207
1208 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1209 pmd_t *pmd, unsigned long address);
1210 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1211
1212 /*
1213 * The following ifdef needed to get the 4level-fixup.h header to work.
1214 * Remove it when 4level-fixup.h has been removed.
1215 */
1216 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1217 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1218 {
1219 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1220 NULL: pud_offset(pgd, address);
1221 }
1222
1223 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1224 {
1225 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1226 NULL: pmd_offset(pud, address);
1227 }
1228 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1229
1230 #if USE_SPLIT_PTLOCKS
1231 /*
1232 * We tuck a spinlock to guard each pagetable page into its struct page,
1233 * at page->private, with BUILD_BUG_ON to make sure that this will not
1234 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1235 * When freeing, reset page->mapping so free_pages_check won't complain.
1236 */
1237 #define __pte_lockptr(page) &((page)->ptl)
1238 #define pte_lock_init(_page) do { \
1239 spin_lock_init(__pte_lockptr(_page)); \
1240 } while (0)
1241 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1242 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1243 #else /* !USE_SPLIT_PTLOCKS */
1244 /*
1245 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1246 */
1247 #define pte_lock_init(page) do {} while (0)
1248 #define pte_lock_deinit(page) do {} while (0)
1249 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1250 #endif /* USE_SPLIT_PTLOCKS */
1251
1252 static inline void pgtable_page_ctor(struct page *page)
1253 {
1254 pte_lock_init(page);
1255 inc_zone_page_state(page, NR_PAGETABLE);
1256 }
1257
1258 static inline void pgtable_page_dtor(struct page *page)
1259 {
1260 pte_lock_deinit(page);
1261 dec_zone_page_state(page, NR_PAGETABLE);
1262 }
1263
1264 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1265 ({ \
1266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1267 pte_t *__pte = pte_offset_map(pmd, address); \
1268 *(ptlp) = __ptl; \
1269 spin_lock(__ptl); \
1270 __pte; \
1271 })
1272
1273 #define pte_unmap_unlock(pte, ptl) do { \
1274 spin_unlock(ptl); \
1275 pte_unmap(pte); \
1276 } while (0)
1277
1278 #define pte_alloc_map(mm, vma, pmd, address) \
1279 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1280 pmd, address))? \
1281 NULL: pte_offset_map(pmd, address))
1282
1283 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1285 pmd, address))? \
1286 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1287
1288 #define pte_alloc_kernel(pmd, address) \
1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1290 NULL: pte_offset_kernel(pmd, address))
1291
1292 extern void free_area_init(unsigned long * zones_size);
1293 extern void free_area_init_node(int nid, unsigned long * zones_size,
1294 unsigned long zone_start_pfn, unsigned long *zholes_size);
1295 extern void free_initmem(void);
1296
1297 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1298 /*
1299 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1300 * zones, allocate the backing mem_map and account for memory holes in a more
1301 * architecture independent manner. This is a substitute for creating the
1302 * zone_sizes[] and zholes_size[] arrays and passing them to
1303 * free_area_init_node()
1304 *
1305 * An architecture is expected to register range of page frames backed by
1306 * physical memory with memblock_add[_node]() before calling
1307 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1308 * usage, an architecture is expected to do something like
1309 *
1310 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1311 * max_highmem_pfn};
1312 * for_each_valid_physical_page_range()
1313 * memblock_add_node(base, size, nid)
1314 * free_area_init_nodes(max_zone_pfns);
1315 *
1316 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1317 * registered physical page range. Similarly
1318 * sparse_memory_present_with_active_regions() calls memory_present() for
1319 * each range when SPARSEMEM is enabled.
1320 *
1321 * See mm/page_alloc.c for more information on each function exposed by
1322 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1323 */
1324 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1325 unsigned long node_map_pfn_alignment(void);
1326 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1327 unsigned long end_pfn);
1328 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1329 unsigned long end_pfn);
1330 extern void get_pfn_range_for_nid(unsigned int nid,
1331 unsigned long *start_pfn, unsigned long *end_pfn);
1332 extern unsigned long find_min_pfn_with_active_regions(void);
1333 extern void free_bootmem_with_active_regions(int nid,
1334 unsigned long max_low_pfn);
1335 extern void sparse_memory_present_with_active_regions(int nid);
1336
1337 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1338
1339 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1340 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1341 static inline int __early_pfn_to_nid(unsigned long pfn)
1342 {
1343 return 0;
1344 }
1345 #else
1346 /* please see mm/page_alloc.c */
1347 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1348 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1349 /* there is a per-arch backend function. */
1350 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1351 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1352 #endif
1353
1354 extern void set_dma_reserve(unsigned long new_dma_reserve);
1355 extern void memmap_init_zone(unsigned long, int, unsigned long,
1356 unsigned long, enum memmap_context);
1357 extern void setup_per_zone_wmarks(void);
1358 extern int __meminit init_per_zone_wmark_min(void);
1359 extern void mem_init(void);
1360 extern void __init mmap_init(void);
1361 extern void show_mem(unsigned int flags);
1362 extern void si_meminfo(struct sysinfo * val);
1363 extern void si_meminfo_node(struct sysinfo *val, int nid);
1364
1365 extern __printf(3, 4)
1366 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1367
1368 extern void setup_per_cpu_pageset(void);
1369
1370 extern void zone_pcp_update(struct zone *zone);
1371 extern void zone_pcp_reset(struct zone *zone);
1372
1373 /* page_alloc.c */
1374 extern int min_free_kbytes;
1375
1376 /* nommu.c */
1377 extern atomic_long_t mmap_pages_allocated;
1378 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1379
1380 /* interval_tree.c */
1381 void vma_interval_tree_insert(struct vm_area_struct *node,
1382 struct rb_root *root);
1383 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1384 struct vm_area_struct *prev,
1385 struct rb_root *root);
1386 void vma_interval_tree_remove(struct vm_area_struct *node,
1387 struct rb_root *root);
1388 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1389 unsigned long start, unsigned long last);
1390 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1391 unsigned long start, unsigned long last);
1392
1393 #define vma_interval_tree_foreach(vma, root, start, last) \
1394 for (vma = vma_interval_tree_iter_first(root, start, last); \
1395 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1396
1397 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1398 struct list_head *list)
1399 {
1400 list_add_tail(&vma->shared.nonlinear, list);
1401 }
1402
1403 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1404 struct rb_root *root);
1405 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1406 struct rb_root *root);
1407 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1408 struct rb_root *root, unsigned long start, unsigned long last);
1409 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1410 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1411 #ifdef CONFIG_DEBUG_VM_RB
1412 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1413 #endif
1414
1415 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1416 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1417 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1418
1419 /* mmap.c */
1420 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1421 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1422 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1423 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1424 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1425 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1426 struct mempolicy *);
1427 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1428 extern int split_vma(struct mm_struct *,
1429 struct vm_area_struct *, unsigned long addr, int new_below);
1430 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1431 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1432 struct rb_node **, struct rb_node *);
1433 extern void unlink_file_vma(struct vm_area_struct *);
1434 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1435 unsigned long addr, unsigned long len, pgoff_t pgoff,
1436 bool *need_rmap_locks);
1437 extern void exit_mmap(struct mm_struct *);
1438
1439 extern int mm_take_all_locks(struct mm_struct *mm);
1440 extern void mm_drop_all_locks(struct mm_struct *mm);
1441
1442 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1443 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1444
1445 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1446 extern int install_special_mapping(struct mm_struct *mm,
1447 unsigned long addr, unsigned long len,
1448 unsigned long flags, struct page **pages);
1449
1450 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1451
1452 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1453 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1454 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1455 unsigned long len, unsigned long prot, unsigned long flags,
1456 unsigned long pgoff, unsigned long *populate);
1457 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1458
1459 #ifdef CONFIG_MMU
1460 extern int __mm_populate(unsigned long addr, unsigned long len,
1461 int ignore_errors);
1462 static inline void mm_populate(unsigned long addr, unsigned long len)
1463 {
1464 /* Ignore errors */
1465 (void) __mm_populate(addr, len, 1);
1466 }
1467 #else
1468 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1469 #endif
1470
1471 /* These take the mm semaphore themselves */
1472 extern unsigned long vm_brk(unsigned long, unsigned long);
1473 extern int vm_munmap(unsigned long, size_t);
1474 extern unsigned long vm_mmap(struct file *, unsigned long,
1475 unsigned long, unsigned long,
1476 unsigned long, unsigned long);
1477
1478 struct vm_unmapped_area_info {
1479 #define VM_UNMAPPED_AREA_TOPDOWN 1
1480 unsigned long flags;
1481 unsigned long length;
1482 unsigned long low_limit;
1483 unsigned long high_limit;
1484 unsigned long align_mask;
1485 unsigned long align_offset;
1486 };
1487
1488 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1489 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1490
1491 /*
1492 * Search for an unmapped address range.
1493 *
1494 * We are looking for a range that:
1495 * - does not intersect with any VMA;
1496 * - is contained within the [low_limit, high_limit) interval;
1497 * - is at least the desired size.
1498 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1499 */
1500 static inline unsigned long
1501 vm_unmapped_area(struct vm_unmapped_area_info *info)
1502 {
1503 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1504 return unmapped_area(info);
1505 else
1506 return unmapped_area_topdown(info);
1507 }
1508
1509 /* truncate.c */
1510 extern void truncate_inode_pages(struct address_space *, loff_t);
1511 extern void truncate_inode_pages_range(struct address_space *,
1512 loff_t lstart, loff_t lend);
1513
1514 /* generic vm_area_ops exported for stackable file systems */
1515 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1516 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1517
1518 /* mm/page-writeback.c */
1519 int write_one_page(struct page *page, int wait);
1520 void task_dirty_inc(struct task_struct *tsk);
1521
1522 /* readahead.c */
1523 #define VM_MAX_READAHEAD 128 /* kbytes */
1524 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1525
1526 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1527 pgoff_t offset, unsigned long nr_to_read);
1528
1529 void page_cache_sync_readahead(struct address_space *mapping,
1530 struct file_ra_state *ra,
1531 struct file *filp,
1532 pgoff_t offset,
1533 unsigned long size);
1534
1535 void page_cache_async_readahead(struct address_space *mapping,
1536 struct file_ra_state *ra,
1537 struct file *filp,
1538 struct page *pg,
1539 pgoff_t offset,
1540 unsigned long size);
1541
1542 unsigned long max_sane_readahead(unsigned long nr);
1543 unsigned long ra_submit(struct file_ra_state *ra,
1544 struct address_space *mapping,
1545 struct file *filp);
1546
1547 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1548 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1549
1550 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1551 extern int expand_downwards(struct vm_area_struct *vma,
1552 unsigned long address);
1553 #if VM_GROWSUP
1554 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1555 #else
1556 #define expand_upwards(vma, address) do { } while (0)
1557 #endif
1558
1559 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1560 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1561 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1562 struct vm_area_struct **pprev);
1563
1564 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1565 NULL if none. Assume start_addr < end_addr. */
1566 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1567 {
1568 struct vm_area_struct * vma = find_vma(mm,start_addr);
1569
1570 if (vma && end_addr <= vma->vm_start)
1571 vma = NULL;
1572 return vma;
1573 }
1574
1575 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1576 {
1577 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1578 }
1579
1580 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1581 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1582 unsigned long vm_start, unsigned long vm_end)
1583 {
1584 struct vm_area_struct *vma = find_vma(mm, vm_start);
1585
1586 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1587 vma = NULL;
1588
1589 return vma;
1590 }
1591
1592 #ifdef CONFIG_MMU
1593 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1594 #else
1595 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1596 {
1597 return __pgprot(0);
1598 }
1599 #endif
1600
1601 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1602 unsigned long change_prot_numa(struct vm_area_struct *vma,
1603 unsigned long start, unsigned long end);
1604 #endif
1605
1606 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1607 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1608 unsigned long pfn, unsigned long size, pgprot_t);
1609 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1610 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1611 unsigned long pfn);
1612 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn);
1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1615
1616
1617 struct page *follow_page_mask(struct vm_area_struct *vma,
1618 unsigned long address, unsigned int foll_flags,
1619 unsigned int *page_mask);
1620
1621 static inline struct page *follow_page(struct vm_area_struct *vma,
1622 unsigned long address, unsigned int foll_flags)
1623 {
1624 unsigned int unused_page_mask;
1625 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1626 }
1627
1628 #define FOLL_WRITE 0x01 /* check pte is writable */
1629 #define FOLL_TOUCH 0x02 /* mark page accessed */
1630 #define FOLL_GET 0x04 /* do get_page on page */
1631 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1632 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1633 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1634 * and return without waiting upon it */
1635 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1636 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1637 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1638 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1639 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1640
1641 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1642 void *data);
1643 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1644 unsigned long size, pte_fn_t fn, void *data);
1645
1646 #ifdef CONFIG_PROC_FS
1647 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1648 #else
1649 static inline void vm_stat_account(struct mm_struct *mm,
1650 unsigned long flags, struct file *file, long pages)
1651 {
1652 mm->total_vm += pages;
1653 }
1654 #endif /* CONFIG_PROC_FS */
1655
1656 #ifdef CONFIG_DEBUG_PAGEALLOC
1657 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1658 #ifdef CONFIG_HIBERNATION
1659 extern bool kernel_page_present(struct page *page);
1660 #endif /* CONFIG_HIBERNATION */
1661 #else
1662 static inline void
1663 kernel_map_pages(struct page *page, int numpages, int enable) {}
1664 #ifdef CONFIG_HIBERNATION
1665 static inline bool kernel_page_present(struct page *page) { return true; }
1666 #endif /* CONFIG_HIBERNATION */
1667 #endif
1668
1669 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1670 #ifdef __HAVE_ARCH_GATE_AREA
1671 int in_gate_area_no_mm(unsigned long addr);
1672 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1673 #else
1674 int in_gate_area_no_mm(unsigned long addr);
1675 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1676 #endif /* __HAVE_ARCH_GATE_AREA */
1677
1678 int drop_caches_sysctl_handler(struct ctl_table *, int,
1679 void __user *, size_t *, loff_t *);
1680 unsigned long shrink_slab(struct shrink_control *shrink,
1681 unsigned long nr_pages_scanned,
1682 unsigned long lru_pages);
1683
1684 #ifndef CONFIG_MMU
1685 #define randomize_va_space 0
1686 #else
1687 extern int randomize_va_space;
1688 #endif
1689
1690 const char * arch_vma_name(struct vm_area_struct *vma);
1691 void print_vma_addr(char *prefix, unsigned long rip);
1692
1693 void sparse_mem_maps_populate_node(struct page **map_map,
1694 unsigned long pnum_begin,
1695 unsigned long pnum_end,
1696 unsigned long map_count,
1697 int nodeid);
1698
1699 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1700 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1701 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1702 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1703 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1704 void *vmemmap_alloc_block(unsigned long size, int node);
1705 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1706 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1707 int vmemmap_populate_basepages(struct page *start_page,
1708 unsigned long pages, int node);
1709 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1710 void vmemmap_populate_print_last(void);
1711 #ifdef CONFIG_MEMORY_HOTPLUG
1712 void vmemmap_free(struct page *memmap, unsigned long nr_pages);
1713 #endif
1714 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1715 unsigned long size);
1716
1717 enum mf_flags {
1718 MF_COUNT_INCREASED = 1 << 0,
1719 MF_ACTION_REQUIRED = 1 << 1,
1720 MF_MUST_KILL = 1 << 2,
1721 };
1722 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1723 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1724 extern int unpoison_memory(unsigned long pfn);
1725 extern int sysctl_memory_failure_early_kill;
1726 extern int sysctl_memory_failure_recovery;
1727 extern void shake_page(struct page *p, int access);
1728 extern atomic_long_t num_poisoned_pages;
1729 extern int soft_offline_page(struct page *page, int flags);
1730
1731 extern void dump_page(struct page *page);
1732
1733 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1734 extern void clear_huge_page(struct page *page,
1735 unsigned long addr,
1736 unsigned int pages_per_huge_page);
1737 extern void copy_user_huge_page(struct page *dst, struct page *src,
1738 unsigned long addr, struct vm_area_struct *vma,
1739 unsigned int pages_per_huge_page);
1740 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1741
1742 #ifdef CONFIG_DEBUG_PAGEALLOC
1743 extern unsigned int _debug_guardpage_minorder;
1744
1745 static inline unsigned int debug_guardpage_minorder(void)
1746 {
1747 return _debug_guardpage_minorder;
1748 }
1749
1750 static inline bool page_is_guard(struct page *page)
1751 {
1752 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1753 }
1754 #else
1755 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1756 static inline bool page_is_guard(struct page *page) { return false; }
1757 #endif /* CONFIG_DEBUG_PAGEALLOC */
1758
1759 #endif /* __KERNEL__ */
1760 #endif /* _LINUX_MM_H */