Drop some headers from mm.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21
22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39
40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
41
42 /*
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
49 */
50
51 extern struct kmem_cache *vm_area_cachep;
52
53 /*
54 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
55 * disabled, then there's a single shared list of VMAs maintained by the
56 * system, and mm's subscribe to these individually
57 */
58 struct vm_list_struct {
59 struct vm_list_struct *next;
60 struct vm_area_struct *vma;
61 };
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_vma_tree;
65 extern struct rw_semaphore nommu_vma_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags..
72 */
73 #define VM_READ 0x00000001 /* currently active flags */
74 #define VM_WRITE 0x00000002
75 #define VM_EXEC 0x00000004
76 #define VM_SHARED 0x00000008
77
78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80 #define VM_MAYWRITE 0x00000020
81 #define VM_MAYEXEC 0x00000040
82 #define VM_MAYSHARE 0x00000080
83
84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
85 #define VM_GROWSUP 0x00000200
86 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
87 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88
89 #define VM_EXECUTABLE 0x00001000
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
104 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
105 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
106
107 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
108
109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111 #endif
112
113 #ifdef CONFIG_STACK_GROWSUP
114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115 #else
116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #endif
118
119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124
125 /*
126 * mapping from the currently active vm_flags protection bits (the
127 * low four bits) to a page protection mask..
128 */
129 extern pgprot_t protection_map[16];
130
131 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
132 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
133
134
135 /*
136 * vm_fault is filled by the the pagefault handler and passed to the vma's
137 * ->fault function. The vma's ->fault is responsible for returning a bitmask
138 * of VM_FAULT_xxx flags that give details about how the fault was handled.
139 *
140 * pgoff should be used in favour of virtual_address, if possible. If pgoff
141 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
142 * mapping support.
143 */
144 struct vm_fault {
145 unsigned int flags; /* FAULT_FLAG_xxx flags */
146 pgoff_t pgoff; /* Logical page offset based on vma */
147 void __user *virtual_address; /* Faulting virtual address */
148
149 struct page *page; /* ->fault handlers should return a
150 * page here, unless VM_FAULT_NOPAGE
151 * is set (which is also implied by
152 * VM_FAULT_ERROR).
153 */
154 };
155
156 /*
157 * These are the virtual MM functions - opening of an area, closing and
158 * unmapping it (needed to keep files on disk up-to-date etc), pointer
159 * to the functions called when a no-page or a wp-page exception occurs.
160 */
161 struct vm_operations_struct {
162 void (*open)(struct vm_area_struct * area);
163 void (*close)(struct vm_area_struct * area);
164 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
165 struct page *(*nopage)(struct vm_area_struct *area,
166 unsigned long address, int *type);
167 unsigned long (*nopfn)(struct vm_area_struct *area,
168 unsigned long address);
169
170 /* notification that a previously read-only page is about to become
171 * writable, if an error is returned it will cause a SIGBUS */
172 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
173 #ifdef CONFIG_NUMA
174 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
175 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
176 unsigned long addr);
177 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
178 const nodemask_t *to, unsigned long flags);
179 #endif
180 };
181
182 struct mmu_gather;
183 struct inode;
184
185 #define page_private(page) ((page)->private)
186 #define set_page_private(page, v) ((page)->private = (v))
187
188 /*
189 * FIXME: take this include out, include page-flags.h in
190 * files which need it (119 of them)
191 */
192 #include <linux/page-flags.h>
193
194 #ifdef CONFIG_DEBUG_VM
195 #define VM_BUG_ON(cond) BUG_ON(cond)
196 #else
197 #define VM_BUG_ON(condition) do { } while(0)
198 #endif
199
200 /*
201 * Methods to modify the page usage count.
202 *
203 * What counts for a page usage:
204 * - cache mapping (page->mapping)
205 * - private data (page->private)
206 * - page mapped in a task's page tables, each mapping
207 * is counted separately
208 *
209 * Also, many kernel routines increase the page count before a critical
210 * routine so they can be sure the page doesn't go away from under them.
211 */
212
213 /*
214 * Drop a ref, return true if the refcount fell to zero (the page has no users)
215 */
216 static inline int put_page_testzero(struct page *page)
217 {
218 VM_BUG_ON(atomic_read(&page->_count) == 0);
219 return atomic_dec_and_test(&page->_count);
220 }
221
222 /*
223 * Try to grab a ref unless the page has a refcount of zero, return false if
224 * that is the case.
225 */
226 static inline int get_page_unless_zero(struct page *page)
227 {
228 VM_BUG_ON(PageCompound(page));
229 return atomic_inc_not_zero(&page->_count);
230 }
231
232 static inline struct page *compound_head(struct page *page)
233 {
234 if (unlikely(PageTail(page)))
235 return page->first_page;
236 return page;
237 }
238
239 static inline int page_count(struct page *page)
240 {
241 return atomic_read(&compound_head(page)->_count);
242 }
243
244 static inline void get_page(struct page *page)
245 {
246 page = compound_head(page);
247 VM_BUG_ON(atomic_read(&page->_count) == 0);
248 atomic_inc(&page->_count);
249 }
250
251 static inline struct page *virt_to_head_page(const void *x)
252 {
253 struct page *page = virt_to_page(x);
254 return compound_head(page);
255 }
256
257 /*
258 * Setup the page count before being freed into the page allocator for
259 * the first time (boot or memory hotplug)
260 */
261 static inline void init_page_count(struct page *page)
262 {
263 atomic_set(&page->_count, 1);
264 }
265
266 void put_page(struct page *page);
267 void put_pages_list(struct list_head *pages);
268
269 void split_page(struct page *page, unsigned int order);
270
271 /*
272 * Compound pages have a destructor function. Provide a
273 * prototype for that function and accessor functions.
274 * These are _only_ valid on the head of a PG_compound page.
275 */
276 typedef void compound_page_dtor(struct page *);
277
278 static inline void set_compound_page_dtor(struct page *page,
279 compound_page_dtor *dtor)
280 {
281 page[1].lru.next = (void *)dtor;
282 }
283
284 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
285 {
286 return (compound_page_dtor *)page[1].lru.next;
287 }
288
289 static inline int compound_order(struct page *page)
290 {
291 if (!PageHead(page))
292 return 0;
293 return (unsigned long)page[1].lru.prev;
294 }
295
296 static inline void set_compound_order(struct page *page, unsigned long order)
297 {
298 page[1].lru.prev = (void *)order;
299 }
300
301 /*
302 * Multiple processes may "see" the same page. E.g. for untouched
303 * mappings of /dev/null, all processes see the same page full of
304 * zeroes, and text pages of executables and shared libraries have
305 * only one copy in memory, at most, normally.
306 *
307 * For the non-reserved pages, page_count(page) denotes a reference count.
308 * page_count() == 0 means the page is free. page->lru is then used for
309 * freelist management in the buddy allocator.
310 * page_count() > 0 means the page has been allocated.
311 *
312 * Pages are allocated by the slab allocator in order to provide memory
313 * to kmalloc and kmem_cache_alloc. In this case, the management of the
314 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
315 * unless a particular usage is carefully commented. (the responsibility of
316 * freeing the kmalloc memory is the caller's, of course).
317 *
318 * A page may be used by anyone else who does a __get_free_page().
319 * In this case, page_count still tracks the references, and should only
320 * be used through the normal accessor functions. The top bits of page->flags
321 * and page->virtual store page management information, but all other fields
322 * are unused and could be used privately, carefully. The management of this
323 * page is the responsibility of the one who allocated it, and those who have
324 * subsequently been given references to it.
325 *
326 * The other pages (we may call them "pagecache pages") are completely
327 * managed by the Linux memory manager: I/O, buffers, swapping etc.
328 * The following discussion applies only to them.
329 *
330 * A pagecache page contains an opaque `private' member, which belongs to the
331 * page's address_space. Usually, this is the address of a circular list of
332 * the page's disk buffers. PG_private must be set to tell the VM to call
333 * into the filesystem to release these pages.
334 *
335 * A page may belong to an inode's memory mapping. In this case, page->mapping
336 * is the pointer to the inode, and page->index is the file offset of the page,
337 * in units of PAGE_CACHE_SIZE.
338 *
339 * If pagecache pages are not associated with an inode, they are said to be
340 * anonymous pages. These may become associated with the swapcache, and in that
341 * case PG_swapcache is set, and page->private is an offset into the swapcache.
342 *
343 * In either case (swapcache or inode backed), the pagecache itself holds one
344 * reference to the page. Setting PG_private should also increment the
345 * refcount. The each user mapping also has a reference to the page.
346 *
347 * The pagecache pages are stored in a per-mapping radix tree, which is
348 * rooted at mapping->page_tree, and indexed by offset.
349 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
350 * lists, we instead now tag pages as dirty/writeback in the radix tree.
351 *
352 * All pagecache pages may be subject to I/O:
353 * - inode pages may need to be read from disk,
354 * - inode pages which have been modified and are MAP_SHARED may need
355 * to be written back to the inode on disk,
356 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
357 * modified may need to be swapped out to swap space and (later) to be read
358 * back into memory.
359 */
360
361 /*
362 * The zone field is never updated after free_area_init_core()
363 * sets it, so none of the operations on it need to be atomic.
364 */
365
366
367 /*
368 * page->flags layout:
369 *
370 * There are three possibilities for how page->flags get
371 * laid out. The first is for the normal case, without
372 * sparsemem. The second is for sparsemem when there is
373 * plenty of space for node and section. The last is when
374 * we have run out of space and have to fall back to an
375 * alternate (slower) way of determining the node.
376 *
377 * No sparsemem: | NODE | ZONE | ... | FLAGS |
378 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
379 * no space for node: | SECTION | ZONE | ... | FLAGS |
380 */
381 #ifdef CONFIG_SPARSEMEM
382 #define SECTIONS_WIDTH SECTIONS_SHIFT
383 #else
384 #define SECTIONS_WIDTH 0
385 #endif
386
387 #define ZONES_WIDTH ZONES_SHIFT
388
389 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
390 #define NODES_WIDTH NODES_SHIFT
391 #else
392 #define NODES_WIDTH 0
393 #endif
394
395 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
396 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
397 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
398 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
399
400 /*
401 * We are going to use the flags for the page to node mapping if its in
402 * there. This includes the case where there is no node, so it is implicit.
403 */
404 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
405 #define NODE_NOT_IN_PAGE_FLAGS
406 #endif
407
408 #ifndef PFN_SECTION_SHIFT
409 #define PFN_SECTION_SHIFT 0
410 #endif
411
412 /*
413 * Define the bit shifts to access each section. For non-existant
414 * sections we define the shift as 0; that plus a 0 mask ensures
415 * the compiler will optimise away reference to them.
416 */
417 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
418 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
419 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
420
421 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
422 #ifdef NODE_NOT_IN_PAGEFLAGS
423 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
424 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
425 SECTIONS_PGOFF : ZONES_PGOFF)
426 #else
427 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
428 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
429 NODES_PGOFF : ZONES_PGOFF)
430 #endif
431
432 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
433
434 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
435 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
436 #endif
437
438 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
439 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
440 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
441 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
442
443 static inline enum zone_type page_zonenum(struct page *page)
444 {
445 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
446 }
447
448 /*
449 * The identification function is only used by the buddy allocator for
450 * determining if two pages could be buddies. We are not really
451 * identifying a zone since we could be using a the section number
452 * id if we have not node id available in page flags.
453 * We guarantee only that it will return the same value for two
454 * combinable pages in a zone.
455 */
456 static inline int page_zone_id(struct page *page)
457 {
458 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
459 }
460
461 static inline int zone_to_nid(struct zone *zone)
462 {
463 #ifdef CONFIG_NUMA
464 return zone->node;
465 #else
466 return 0;
467 #endif
468 }
469
470 #ifdef NODE_NOT_IN_PAGE_FLAGS
471 extern int page_to_nid(struct page *page);
472 #else
473 static inline int page_to_nid(struct page *page)
474 {
475 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
476 }
477 #endif
478
479 static inline struct zone *page_zone(struct page *page)
480 {
481 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
482 }
483
484 static inline unsigned long page_to_section(struct page *page)
485 {
486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
487 }
488
489 static inline void set_page_zone(struct page *page, enum zone_type zone)
490 {
491 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
492 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
493 }
494
495 static inline void set_page_node(struct page *page, unsigned long node)
496 {
497 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
498 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
499 }
500
501 static inline void set_page_section(struct page *page, unsigned long section)
502 {
503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
505 }
506
507 static inline void set_page_links(struct page *page, enum zone_type zone,
508 unsigned long node, unsigned long pfn)
509 {
510 set_page_zone(page, zone);
511 set_page_node(page, node);
512 set_page_section(page, pfn_to_section_nr(pfn));
513 }
514
515 /*
516 * Some inline functions in vmstat.h depend on page_zone()
517 */
518 #include <linux/vmstat.h>
519
520 static __always_inline void *lowmem_page_address(struct page *page)
521 {
522 return __va(page_to_pfn(page) << PAGE_SHIFT);
523 }
524
525 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
526 #define HASHED_PAGE_VIRTUAL
527 #endif
528
529 #if defined(WANT_PAGE_VIRTUAL)
530 #define page_address(page) ((page)->virtual)
531 #define set_page_address(page, address) \
532 do { \
533 (page)->virtual = (address); \
534 } while(0)
535 #define page_address_init() do { } while(0)
536 #endif
537
538 #if defined(HASHED_PAGE_VIRTUAL)
539 void *page_address(struct page *page);
540 void set_page_address(struct page *page, void *virtual);
541 void page_address_init(void);
542 #endif
543
544 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
545 #define page_address(page) lowmem_page_address(page)
546 #define set_page_address(page, address) do { } while(0)
547 #define page_address_init() do { } while(0)
548 #endif
549
550 /*
551 * On an anonymous page mapped into a user virtual memory area,
552 * page->mapping points to its anon_vma, not to a struct address_space;
553 * with the PAGE_MAPPING_ANON bit set to distinguish it.
554 *
555 * Please note that, confusingly, "page_mapping" refers to the inode
556 * address_space which maps the page from disk; whereas "page_mapped"
557 * refers to user virtual address space into which the page is mapped.
558 */
559 #define PAGE_MAPPING_ANON 1
560
561 extern struct address_space swapper_space;
562 static inline struct address_space *page_mapping(struct page *page)
563 {
564 struct address_space *mapping = page->mapping;
565
566 VM_BUG_ON(PageSlab(page));
567 if (unlikely(PageSwapCache(page)))
568 mapping = &swapper_space;
569 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
570 mapping = NULL;
571 return mapping;
572 }
573
574 static inline int PageAnon(struct page *page)
575 {
576 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
577 }
578
579 /*
580 * Return the pagecache index of the passed page. Regular pagecache pages
581 * use ->index whereas swapcache pages use ->private
582 */
583 static inline pgoff_t page_index(struct page *page)
584 {
585 if (unlikely(PageSwapCache(page)))
586 return page_private(page);
587 return page->index;
588 }
589
590 /*
591 * The atomic page->_mapcount, like _count, starts from -1:
592 * so that transitions both from it and to it can be tracked,
593 * using atomic_inc_and_test and atomic_add_negative(-1).
594 */
595 static inline void reset_page_mapcount(struct page *page)
596 {
597 atomic_set(&(page)->_mapcount, -1);
598 }
599
600 static inline int page_mapcount(struct page *page)
601 {
602 return atomic_read(&(page)->_mapcount) + 1;
603 }
604
605 /*
606 * Return true if this page is mapped into pagetables.
607 */
608 static inline int page_mapped(struct page *page)
609 {
610 return atomic_read(&(page)->_mapcount) >= 0;
611 }
612
613 /*
614 * Error return values for the *_nopage functions
615 */
616 #define NOPAGE_SIGBUS (NULL)
617 #define NOPAGE_OOM ((struct page *) (-1))
618
619 /*
620 * Error return values for the *_nopfn functions
621 */
622 #define NOPFN_SIGBUS ((unsigned long) -1)
623 #define NOPFN_OOM ((unsigned long) -2)
624 #define NOPFN_REFAULT ((unsigned long) -3)
625
626 /*
627 * Different kinds of faults, as returned by handle_mm_fault().
628 * Used to decide whether a process gets delivered SIGBUS or
629 * just gets major/minor fault counters bumped up.
630 */
631
632 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
633
634 #define VM_FAULT_OOM 0x0001
635 #define VM_FAULT_SIGBUS 0x0002
636 #define VM_FAULT_MAJOR 0x0004
637 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
638
639 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
640 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
641
642 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
643
644 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
645
646 extern void show_free_areas(void);
647
648 #ifdef CONFIG_SHMEM
649 int shmem_lock(struct file *file, int lock, struct user_struct *user);
650 #else
651 static inline int shmem_lock(struct file *file, int lock,
652 struct user_struct *user)
653 {
654 return 0;
655 }
656 #endif
657 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
658
659 int shmem_zero_setup(struct vm_area_struct *);
660
661 #ifndef CONFIG_MMU
662 extern unsigned long shmem_get_unmapped_area(struct file *file,
663 unsigned long addr,
664 unsigned long len,
665 unsigned long pgoff,
666 unsigned long flags);
667 #endif
668
669 extern int can_do_mlock(void);
670 extern int user_shm_lock(size_t, struct user_struct *);
671 extern void user_shm_unlock(size_t, struct user_struct *);
672
673 /*
674 * Parameter block passed down to zap_pte_range in exceptional cases.
675 */
676 struct zap_details {
677 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
678 struct address_space *check_mapping; /* Check page->mapping if set */
679 pgoff_t first_index; /* Lowest page->index to unmap */
680 pgoff_t last_index; /* Highest page->index to unmap */
681 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
682 unsigned long truncate_count; /* Compare vm_truncate_count */
683 };
684
685 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
686 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
687 unsigned long size, struct zap_details *);
688 unsigned long unmap_vmas(struct mmu_gather **tlb,
689 struct vm_area_struct *start_vma, unsigned long start_addr,
690 unsigned long end_addr, unsigned long *nr_accounted,
691 struct zap_details *);
692 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
693 unsigned long end, unsigned long floor, unsigned long ceiling);
694 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
695 unsigned long floor, unsigned long ceiling);
696 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
697 struct vm_area_struct *vma);
698 void unmap_mapping_range(struct address_space *mapping,
699 loff_t const holebegin, loff_t const holelen, int even_cows);
700
701 static inline void unmap_shared_mapping_range(struct address_space *mapping,
702 loff_t const holebegin, loff_t const holelen)
703 {
704 unmap_mapping_range(mapping, holebegin, holelen, 0);
705 }
706
707 extern int vmtruncate(struct inode * inode, loff_t offset);
708 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
709
710 #ifdef CONFIG_MMU
711 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
712 unsigned long address, int write_access);
713 #else
714 static inline int handle_mm_fault(struct mm_struct *mm,
715 struct vm_area_struct *vma, unsigned long address,
716 int write_access)
717 {
718 /* should never happen if there's no MMU */
719 BUG();
720 return VM_FAULT_SIGBUS;
721 }
722 #endif
723
724 extern int make_pages_present(unsigned long addr, unsigned long end);
725 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
726
727 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
728 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
729 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
730
731 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
732 extern void do_invalidatepage(struct page *page, unsigned long offset);
733
734 int __set_page_dirty_nobuffers(struct page *page);
735 int __set_page_dirty_no_writeback(struct page *page);
736 int redirty_page_for_writepage(struct writeback_control *wbc,
737 struct page *page);
738 int FASTCALL(set_page_dirty(struct page *page));
739 int set_page_dirty_lock(struct page *page);
740 int clear_page_dirty_for_io(struct page *page);
741
742 extern unsigned long move_page_tables(struct vm_area_struct *vma,
743 unsigned long old_addr, struct vm_area_struct *new_vma,
744 unsigned long new_addr, unsigned long len);
745 extern unsigned long do_mremap(unsigned long addr,
746 unsigned long old_len, unsigned long new_len,
747 unsigned long flags, unsigned long new_addr);
748 extern int mprotect_fixup(struct vm_area_struct *vma,
749 struct vm_area_struct **pprev, unsigned long start,
750 unsigned long end, unsigned long newflags);
751
752 /*
753 * A callback you can register to apply pressure to ageable caches.
754 *
755 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
756 * look through the least-recently-used 'nr_to_scan' entries and
757 * attempt to free them up. It should return the number of objects
758 * which remain in the cache. If it returns -1, it means it cannot do
759 * any scanning at this time (eg. there is a risk of deadlock).
760 *
761 * The 'gfpmask' refers to the allocation we are currently trying to
762 * fulfil.
763 *
764 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
765 * querying the cache size, so a fastpath for that case is appropriate.
766 */
767 struct shrinker {
768 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
769 int seeks; /* seeks to recreate an obj */
770
771 /* These are for internal use */
772 struct list_head list;
773 long nr; /* objs pending delete */
774 };
775 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
776 extern void register_shrinker(struct shrinker *);
777 extern void unregister_shrinker(struct shrinker *);
778
779 int vma_wants_writenotify(struct vm_area_struct *vma);
780
781 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
782
783 #ifdef __PAGETABLE_PUD_FOLDED
784 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
785 unsigned long address)
786 {
787 return 0;
788 }
789 #else
790 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
791 #endif
792
793 #ifdef __PAGETABLE_PMD_FOLDED
794 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
795 unsigned long address)
796 {
797 return 0;
798 }
799 #else
800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
801 #endif
802
803 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
804 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
805
806 /*
807 * The following ifdef needed to get the 4level-fixup.h header to work.
808 * Remove it when 4level-fixup.h has been removed.
809 */
810 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
811 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
812 {
813 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
814 NULL: pud_offset(pgd, address);
815 }
816
817 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
818 {
819 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
820 NULL: pmd_offset(pud, address);
821 }
822 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
823
824 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
825 /*
826 * We tuck a spinlock to guard each pagetable page into its struct page,
827 * at page->private, with BUILD_BUG_ON to make sure that this will not
828 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
829 * When freeing, reset page->mapping so free_pages_check won't complain.
830 */
831 #define __pte_lockptr(page) &((page)->ptl)
832 #define pte_lock_init(_page) do { \
833 spin_lock_init(__pte_lockptr(_page)); \
834 } while (0)
835 #define pte_lock_deinit(page) ((page)->mapping = NULL)
836 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
837 #else
838 /*
839 * We use mm->page_table_lock to guard all pagetable pages of the mm.
840 */
841 #define pte_lock_init(page) do {} while (0)
842 #define pte_lock_deinit(page) do {} while (0)
843 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
844 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
845
846 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
847 ({ \
848 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
849 pte_t *__pte = pte_offset_map(pmd, address); \
850 *(ptlp) = __ptl; \
851 spin_lock(__ptl); \
852 __pte; \
853 })
854
855 #define pte_unmap_unlock(pte, ptl) do { \
856 spin_unlock(ptl); \
857 pte_unmap(pte); \
858 } while (0)
859
860 #define pte_alloc_map(mm, pmd, address) \
861 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
862 NULL: pte_offset_map(pmd, address))
863
864 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
865 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
866 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
867
868 #define pte_alloc_kernel(pmd, address) \
869 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
870 NULL: pte_offset_kernel(pmd, address))
871
872 extern void free_area_init(unsigned long * zones_size);
873 extern void free_area_init_node(int nid, pg_data_t *pgdat,
874 unsigned long * zones_size, unsigned long zone_start_pfn,
875 unsigned long *zholes_size);
876 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
877 /*
878 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
879 * zones, allocate the backing mem_map and account for memory holes in a more
880 * architecture independent manner. This is a substitute for creating the
881 * zone_sizes[] and zholes_size[] arrays and passing them to
882 * free_area_init_node()
883 *
884 * An architecture is expected to register range of page frames backed by
885 * physical memory with add_active_range() before calling
886 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
887 * usage, an architecture is expected to do something like
888 *
889 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
890 * max_highmem_pfn};
891 * for_each_valid_physical_page_range()
892 * add_active_range(node_id, start_pfn, end_pfn)
893 * free_area_init_nodes(max_zone_pfns);
894 *
895 * If the architecture guarantees that there are no holes in the ranges
896 * registered with add_active_range(), free_bootmem_active_regions()
897 * will call free_bootmem_node() for each registered physical page range.
898 * Similarly sparse_memory_present_with_active_regions() calls
899 * memory_present() for each range when SPARSEMEM is enabled.
900 *
901 * See mm/page_alloc.c for more information on each function exposed by
902 * CONFIG_ARCH_POPULATES_NODE_MAP
903 */
904 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
905 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
906 unsigned long end_pfn);
907 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
908 unsigned long new_end_pfn);
909 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
910 unsigned long end_pfn);
911 extern void remove_all_active_ranges(void);
912 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
913 unsigned long end_pfn);
914 extern void get_pfn_range_for_nid(unsigned int nid,
915 unsigned long *start_pfn, unsigned long *end_pfn);
916 extern unsigned long find_min_pfn_with_active_regions(void);
917 extern unsigned long find_max_pfn_with_active_regions(void);
918 extern void free_bootmem_with_active_regions(int nid,
919 unsigned long max_low_pfn);
920 extern void sparse_memory_present_with_active_regions(int nid);
921 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
922 extern int early_pfn_to_nid(unsigned long pfn);
923 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
925 extern void set_dma_reserve(unsigned long new_dma_reserve);
926 extern void memmap_init_zone(unsigned long, int, unsigned long,
927 unsigned long, enum memmap_context);
928 extern void setup_per_zone_pages_min(void);
929 extern void mem_init(void);
930 extern void show_mem(void);
931 extern void si_meminfo(struct sysinfo * val);
932 extern void si_meminfo_node(struct sysinfo *val, int nid);
933
934 #ifdef CONFIG_NUMA
935 extern void setup_per_cpu_pageset(void);
936 #else
937 static inline void setup_per_cpu_pageset(void) {}
938 #endif
939
940 /* prio_tree.c */
941 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
942 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
943 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
944 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
945 struct prio_tree_iter *iter);
946
947 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
948 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
949 (vma = vma_prio_tree_next(vma, iter)); )
950
951 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
952 struct list_head *list)
953 {
954 vma->shared.vm_set.parent = NULL;
955 list_add_tail(&vma->shared.vm_set.list, list);
956 }
957
958 /* mmap.c */
959 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
960 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
961 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
962 extern struct vm_area_struct *vma_merge(struct mm_struct *,
963 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
964 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
965 struct mempolicy *);
966 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
967 extern int split_vma(struct mm_struct *,
968 struct vm_area_struct *, unsigned long addr, int new_below);
969 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
970 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
971 struct rb_node **, struct rb_node *);
972 extern void unlink_file_vma(struct vm_area_struct *);
973 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
974 unsigned long addr, unsigned long len, pgoff_t pgoff);
975 extern void exit_mmap(struct mm_struct *);
976 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
977 extern int install_special_mapping(struct mm_struct *mm,
978 unsigned long addr, unsigned long len,
979 unsigned long flags, struct page **pages);
980
981 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
982
983 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
984 unsigned long len, unsigned long prot,
985 unsigned long flag, unsigned long pgoff);
986 extern unsigned long mmap_region(struct file *file, unsigned long addr,
987 unsigned long len, unsigned long flags,
988 unsigned int vm_flags, unsigned long pgoff,
989 int accountable);
990
991 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
992 unsigned long len, unsigned long prot,
993 unsigned long flag, unsigned long offset)
994 {
995 unsigned long ret = -EINVAL;
996 if ((offset + PAGE_ALIGN(len)) < offset)
997 goto out;
998 if (!(offset & ~PAGE_MASK))
999 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1000 out:
1001 return ret;
1002 }
1003
1004 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1005
1006 extern unsigned long do_brk(unsigned long, unsigned long);
1007
1008 /* filemap.c */
1009 extern unsigned long page_unuse(struct page *);
1010 extern void truncate_inode_pages(struct address_space *, loff_t);
1011 extern void truncate_inode_pages_range(struct address_space *,
1012 loff_t lstart, loff_t lend);
1013
1014 /* generic vm_area_ops exported for stackable file systems */
1015 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1016
1017 /* mm/page-writeback.c */
1018 int write_one_page(struct page *page, int wait);
1019
1020 /* readahead.c */
1021 #define VM_MAX_READAHEAD 128 /* kbytes */
1022 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1023
1024 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1025 pgoff_t offset, unsigned long nr_to_read);
1026 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1027 pgoff_t offset, unsigned long nr_to_read);
1028
1029 void page_cache_sync_readahead(struct address_space *mapping,
1030 struct file_ra_state *ra,
1031 struct file *filp,
1032 pgoff_t offset,
1033 unsigned long size);
1034
1035 void page_cache_async_readahead(struct address_space *mapping,
1036 struct file_ra_state *ra,
1037 struct file *filp,
1038 struct page *pg,
1039 pgoff_t offset,
1040 unsigned long size);
1041
1042 unsigned long max_sane_readahead(unsigned long nr);
1043
1044 /* Do stack extension */
1045 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1046 #ifdef CONFIG_IA64
1047 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1048 #endif
1049 extern int expand_stack_downwards(struct vm_area_struct *vma,
1050 unsigned long address);
1051
1052 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1053 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1054 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1055 struct vm_area_struct **pprev);
1056
1057 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1058 NULL if none. Assume start_addr < end_addr. */
1059 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1060 {
1061 struct vm_area_struct * vma = find_vma(mm,start_addr);
1062
1063 if (vma && end_addr <= vma->vm_start)
1064 vma = NULL;
1065 return vma;
1066 }
1067
1068 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1069 {
1070 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1071 }
1072
1073 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1074 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1075 struct page *vmalloc_to_page(void *addr);
1076 unsigned long vmalloc_to_pfn(void *addr);
1077 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1078 unsigned long pfn, unsigned long size, pgprot_t);
1079 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1080 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1081 unsigned long pfn);
1082
1083 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1084 unsigned int foll_flags);
1085 #define FOLL_WRITE 0x01 /* check pte is writable */
1086 #define FOLL_TOUCH 0x02 /* mark page accessed */
1087 #define FOLL_GET 0x04 /* do get_page on page */
1088 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1089
1090 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1091 void *data);
1092 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1093 unsigned long size, pte_fn_t fn, void *data);
1094
1095 #ifdef CONFIG_PROC_FS
1096 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1097 #else
1098 static inline void vm_stat_account(struct mm_struct *mm,
1099 unsigned long flags, struct file *file, long pages)
1100 {
1101 }
1102 #endif /* CONFIG_PROC_FS */
1103
1104 #ifndef CONFIG_DEBUG_PAGEALLOC
1105 static inline void
1106 kernel_map_pages(struct page *page, int numpages, int enable) {}
1107 #endif
1108
1109 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1110 #ifdef __HAVE_ARCH_GATE_AREA
1111 int in_gate_area_no_task(unsigned long addr);
1112 int in_gate_area(struct task_struct *task, unsigned long addr);
1113 #else
1114 int in_gate_area_no_task(unsigned long addr);
1115 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1116 #endif /* __HAVE_ARCH_GATE_AREA */
1117
1118 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1119 void __user *, size_t *, loff_t *);
1120 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1121 unsigned long lru_pages);
1122 void drop_pagecache(void);
1123 void drop_slab(void);
1124
1125 #ifndef CONFIG_MMU
1126 #define randomize_va_space 0
1127 #else
1128 extern int randomize_va_space;
1129 #endif
1130
1131 const char * arch_vma_name(struct vm_area_struct *vma);
1132
1133 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1134 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1135 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1136 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1137 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1138 void *vmemmap_alloc_block(unsigned long size, int node);
1139 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1140 int vmemmap_populate_basepages(struct page *start_page,
1141 unsigned long pages, int node);
1142 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1143
1144 #endif /* __KERNEL__ */
1145 #endif /* _LINUX_MM_H */