vmscan: change shrinker API by passing shrink_control struct
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
18
19 struct mempolicy;
20 struct anon_vma;
21 struct file_ra_state;
22 struct user_struct;
23 struct writeback_control;
24
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
27 #endif
28
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
33
34 #ifdef CONFIG_SYSCTL
35 extern int sysctl_legacy_va_layout;
36 #else
37 #define sysctl_legacy_va_layout 0
38 #endif
39
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
43
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
49 /*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
58 extern struct kmem_cache *vm_area_cachep;
59
60 #ifndef CONFIG_MMU
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
63
64 extern unsigned int kobjsize(const void *objp);
65 #endif
66
67 /*
68 * vm_flags in vm_area_struct, see mm_types.h.
69 */
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
74
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
80
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
84 #else
85 #define VM_GROWSUP 0x00000000
86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
87 #endif
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
108 #else
109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110 #endif
111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
113
114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
119
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125 #endif
126
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129 #else
130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131 #endif
132
133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
139 /*
140 * Special vmas that are non-mergable, non-mlock()able.
141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
142 */
143 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
144
145 /*
146 * mapping from the currently active vm_flags protection bits (the
147 * low four bits) to a page protection mask..
148 */
149 extern pgprot_t protection_map[16];
150
151 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
152 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
153 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
154 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
155 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
156 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
157
158 /*
159 * This interface is used by x86 PAT code to identify a pfn mapping that is
160 * linear over entire vma. This is to optimize PAT code that deals with
161 * marking the physical region with a particular prot. This is not for generic
162 * mm use. Note also that this check will not work if the pfn mapping is
163 * linear for a vma starting at physical address 0. In which case PAT code
164 * falls back to slow path of reserving physical range page by page.
165 */
166 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
167 {
168 return (vma->vm_flags & VM_PFN_AT_MMAP);
169 }
170
171 static inline int is_pfn_mapping(struct vm_area_struct *vma)
172 {
173 return (vma->vm_flags & VM_PFNMAP);
174 }
175
176 /*
177 * vm_fault is filled by the the pagefault handler and passed to the vma's
178 * ->fault function. The vma's ->fault is responsible for returning a bitmask
179 * of VM_FAULT_xxx flags that give details about how the fault was handled.
180 *
181 * pgoff should be used in favour of virtual_address, if possible. If pgoff
182 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
183 * mapping support.
184 */
185 struct vm_fault {
186 unsigned int flags; /* FAULT_FLAG_xxx flags */
187 pgoff_t pgoff; /* Logical page offset based on vma */
188 void __user *virtual_address; /* Faulting virtual address */
189
190 struct page *page; /* ->fault handlers should return a
191 * page here, unless VM_FAULT_NOPAGE
192 * is set (which is also implied by
193 * VM_FAULT_ERROR).
194 */
195 };
196
197 /*
198 * These are the virtual MM functions - opening of an area, closing and
199 * unmapping it (needed to keep files on disk up-to-date etc), pointer
200 * to the functions called when a no-page or a wp-page exception occurs.
201 */
202 struct vm_operations_struct {
203 void (*open)(struct vm_area_struct * area);
204 void (*close)(struct vm_area_struct * area);
205 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
206
207 /* notification that a previously read-only page is about to become
208 * writable, if an error is returned it will cause a SIGBUS */
209 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
210
211 /* called by access_process_vm when get_user_pages() fails, typically
212 * for use by special VMAs that can switch between memory and hardware
213 */
214 int (*access)(struct vm_area_struct *vma, unsigned long addr,
215 void *buf, int len, int write);
216 #ifdef CONFIG_NUMA
217 /*
218 * set_policy() op must add a reference to any non-NULL @new mempolicy
219 * to hold the policy upon return. Caller should pass NULL @new to
220 * remove a policy and fall back to surrounding context--i.e. do not
221 * install a MPOL_DEFAULT policy, nor the task or system default
222 * mempolicy.
223 */
224 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
225
226 /*
227 * get_policy() op must add reference [mpol_get()] to any policy at
228 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
229 * in mm/mempolicy.c will do this automatically.
230 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
231 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
232 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
233 * must return NULL--i.e., do not "fallback" to task or system default
234 * policy.
235 */
236 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
237 unsigned long addr);
238 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
239 const nodemask_t *to, unsigned long flags);
240 #endif
241 };
242
243 struct mmu_gather;
244 struct inode;
245
246 #define page_private(page) ((page)->private)
247 #define set_page_private(page, v) ((page)->private = (v))
248
249 /*
250 * FIXME: take this include out, include page-flags.h in
251 * files which need it (119 of them)
252 */
253 #include <linux/page-flags.h>
254 #include <linux/huge_mm.h>
255
256 /*
257 * Methods to modify the page usage count.
258 *
259 * What counts for a page usage:
260 * - cache mapping (page->mapping)
261 * - private data (page->private)
262 * - page mapped in a task's page tables, each mapping
263 * is counted separately
264 *
265 * Also, many kernel routines increase the page count before a critical
266 * routine so they can be sure the page doesn't go away from under them.
267 */
268
269 /*
270 * Drop a ref, return true if the refcount fell to zero (the page has no users)
271 */
272 static inline int put_page_testzero(struct page *page)
273 {
274 VM_BUG_ON(atomic_read(&page->_count) == 0);
275 return atomic_dec_and_test(&page->_count);
276 }
277
278 /*
279 * Try to grab a ref unless the page has a refcount of zero, return false if
280 * that is the case.
281 */
282 static inline int get_page_unless_zero(struct page *page)
283 {
284 return atomic_inc_not_zero(&page->_count);
285 }
286
287 extern int page_is_ram(unsigned long pfn);
288
289 /* Support for virtually mapped pages */
290 struct page *vmalloc_to_page(const void *addr);
291 unsigned long vmalloc_to_pfn(const void *addr);
292
293 /*
294 * Determine if an address is within the vmalloc range
295 *
296 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
297 * is no special casing required.
298 */
299 static inline int is_vmalloc_addr(const void *x)
300 {
301 #ifdef CONFIG_MMU
302 unsigned long addr = (unsigned long)x;
303
304 return addr >= VMALLOC_START && addr < VMALLOC_END;
305 #else
306 return 0;
307 #endif
308 }
309 #ifdef CONFIG_MMU
310 extern int is_vmalloc_or_module_addr(const void *x);
311 #else
312 static inline int is_vmalloc_or_module_addr(const void *x)
313 {
314 return 0;
315 }
316 #endif
317
318 static inline void compound_lock(struct page *page)
319 {
320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 bit_spin_lock(PG_compound_lock, &page->flags);
322 #endif
323 }
324
325 static inline void compound_unlock(struct page *page)
326 {
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 bit_spin_unlock(PG_compound_lock, &page->flags);
329 #endif
330 }
331
332 static inline unsigned long compound_lock_irqsave(struct page *page)
333 {
334 unsigned long uninitialized_var(flags);
335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
336 local_irq_save(flags);
337 compound_lock(page);
338 #endif
339 return flags;
340 }
341
342 static inline void compound_unlock_irqrestore(struct page *page,
343 unsigned long flags)
344 {
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 compound_unlock(page);
347 local_irq_restore(flags);
348 #endif
349 }
350
351 static inline struct page *compound_head(struct page *page)
352 {
353 if (unlikely(PageTail(page)))
354 return page->first_page;
355 return page;
356 }
357
358 static inline int page_count(struct page *page)
359 {
360 return atomic_read(&compound_head(page)->_count);
361 }
362
363 static inline void get_page(struct page *page)
364 {
365 /*
366 * Getting a normal page or the head of a compound page
367 * requires to already have an elevated page->_count. Only if
368 * we're getting a tail page, the elevated page->_count is
369 * required only in the head page, so for tail pages the
370 * bugcheck only verifies that the page->_count isn't
371 * negative.
372 */
373 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
374 atomic_inc(&page->_count);
375 /*
376 * Getting a tail page will elevate both the head and tail
377 * page->_count(s).
378 */
379 if (unlikely(PageTail(page))) {
380 /*
381 * This is safe only because
382 * __split_huge_page_refcount can't run under
383 * get_page().
384 */
385 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
386 atomic_inc(&page->first_page->_count);
387 }
388 }
389
390 static inline struct page *virt_to_head_page(const void *x)
391 {
392 struct page *page = virt_to_page(x);
393 return compound_head(page);
394 }
395
396 /*
397 * Setup the page count before being freed into the page allocator for
398 * the first time (boot or memory hotplug)
399 */
400 static inline void init_page_count(struct page *page)
401 {
402 atomic_set(&page->_count, 1);
403 }
404
405 /*
406 * PageBuddy() indicate that the page is free and in the buddy system
407 * (see mm/page_alloc.c).
408 *
409 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
410 * -2 so that an underflow of the page_mapcount() won't be mistaken
411 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
412 * efficiently by most CPU architectures.
413 */
414 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
415
416 static inline int PageBuddy(struct page *page)
417 {
418 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
419 }
420
421 static inline void __SetPageBuddy(struct page *page)
422 {
423 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
424 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
425 }
426
427 static inline void __ClearPageBuddy(struct page *page)
428 {
429 VM_BUG_ON(!PageBuddy(page));
430 atomic_set(&page->_mapcount, -1);
431 }
432
433 void put_page(struct page *page);
434 void put_pages_list(struct list_head *pages);
435
436 void split_page(struct page *page, unsigned int order);
437 int split_free_page(struct page *page);
438
439 /*
440 * Compound pages have a destructor function. Provide a
441 * prototype for that function and accessor functions.
442 * These are _only_ valid on the head of a PG_compound page.
443 */
444 typedef void compound_page_dtor(struct page *);
445
446 static inline void set_compound_page_dtor(struct page *page,
447 compound_page_dtor *dtor)
448 {
449 page[1].lru.next = (void *)dtor;
450 }
451
452 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
453 {
454 return (compound_page_dtor *)page[1].lru.next;
455 }
456
457 static inline int compound_order(struct page *page)
458 {
459 if (!PageHead(page))
460 return 0;
461 return (unsigned long)page[1].lru.prev;
462 }
463
464 static inline int compound_trans_order(struct page *page)
465 {
466 int order;
467 unsigned long flags;
468
469 if (!PageHead(page))
470 return 0;
471
472 flags = compound_lock_irqsave(page);
473 order = compound_order(page);
474 compound_unlock_irqrestore(page, flags);
475 return order;
476 }
477
478 static inline void set_compound_order(struct page *page, unsigned long order)
479 {
480 page[1].lru.prev = (void *)order;
481 }
482
483 #ifdef CONFIG_MMU
484 /*
485 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
486 * servicing faults for write access. In the normal case, do always want
487 * pte_mkwrite. But get_user_pages can cause write faults for mappings
488 * that do not have writing enabled, when used by access_process_vm.
489 */
490 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
491 {
492 if (likely(vma->vm_flags & VM_WRITE))
493 pte = pte_mkwrite(pte);
494 return pte;
495 }
496 #endif
497
498 /*
499 * Multiple processes may "see" the same page. E.g. for untouched
500 * mappings of /dev/null, all processes see the same page full of
501 * zeroes, and text pages of executables and shared libraries have
502 * only one copy in memory, at most, normally.
503 *
504 * For the non-reserved pages, page_count(page) denotes a reference count.
505 * page_count() == 0 means the page is free. page->lru is then used for
506 * freelist management in the buddy allocator.
507 * page_count() > 0 means the page has been allocated.
508 *
509 * Pages are allocated by the slab allocator in order to provide memory
510 * to kmalloc and kmem_cache_alloc. In this case, the management of the
511 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
512 * unless a particular usage is carefully commented. (the responsibility of
513 * freeing the kmalloc memory is the caller's, of course).
514 *
515 * A page may be used by anyone else who does a __get_free_page().
516 * In this case, page_count still tracks the references, and should only
517 * be used through the normal accessor functions. The top bits of page->flags
518 * and page->virtual store page management information, but all other fields
519 * are unused and could be used privately, carefully. The management of this
520 * page is the responsibility of the one who allocated it, and those who have
521 * subsequently been given references to it.
522 *
523 * The other pages (we may call them "pagecache pages") are completely
524 * managed by the Linux memory manager: I/O, buffers, swapping etc.
525 * The following discussion applies only to them.
526 *
527 * A pagecache page contains an opaque `private' member, which belongs to the
528 * page's address_space. Usually, this is the address of a circular list of
529 * the page's disk buffers. PG_private must be set to tell the VM to call
530 * into the filesystem to release these pages.
531 *
532 * A page may belong to an inode's memory mapping. In this case, page->mapping
533 * is the pointer to the inode, and page->index is the file offset of the page,
534 * in units of PAGE_CACHE_SIZE.
535 *
536 * If pagecache pages are not associated with an inode, they are said to be
537 * anonymous pages. These may become associated with the swapcache, and in that
538 * case PG_swapcache is set, and page->private is an offset into the swapcache.
539 *
540 * In either case (swapcache or inode backed), the pagecache itself holds one
541 * reference to the page. Setting PG_private should also increment the
542 * refcount. The each user mapping also has a reference to the page.
543 *
544 * The pagecache pages are stored in a per-mapping radix tree, which is
545 * rooted at mapping->page_tree, and indexed by offset.
546 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
547 * lists, we instead now tag pages as dirty/writeback in the radix tree.
548 *
549 * All pagecache pages may be subject to I/O:
550 * - inode pages may need to be read from disk,
551 * - inode pages which have been modified and are MAP_SHARED may need
552 * to be written back to the inode on disk,
553 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
554 * modified may need to be swapped out to swap space and (later) to be read
555 * back into memory.
556 */
557
558 /*
559 * The zone field is never updated after free_area_init_core()
560 * sets it, so none of the operations on it need to be atomic.
561 */
562
563
564 /*
565 * page->flags layout:
566 *
567 * There are three possibilities for how page->flags get
568 * laid out. The first is for the normal case, without
569 * sparsemem. The second is for sparsemem when there is
570 * plenty of space for node and section. The last is when
571 * we have run out of space and have to fall back to an
572 * alternate (slower) way of determining the node.
573 *
574 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
575 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
576 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
577 */
578 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
579 #define SECTIONS_WIDTH SECTIONS_SHIFT
580 #else
581 #define SECTIONS_WIDTH 0
582 #endif
583
584 #define ZONES_WIDTH ZONES_SHIFT
585
586 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
587 #define NODES_WIDTH NODES_SHIFT
588 #else
589 #ifdef CONFIG_SPARSEMEM_VMEMMAP
590 #error "Vmemmap: No space for nodes field in page flags"
591 #endif
592 #define NODES_WIDTH 0
593 #endif
594
595 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
596 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
597 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
598 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
599
600 /*
601 * We are going to use the flags for the page to node mapping if its in
602 * there. This includes the case where there is no node, so it is implicit.
603 */
604 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
605 #define NODE_NOT_IN_PAGE_FLAGS
606 #endif
607
608 #ifndef PFN_SECTION_SHIFT
609 #define PFN_SECTION_SHIFT 0
610 #endif
611
612 /*
613 * Define the bit shifts to access each section. For non-existent
614 * sections we define the shift as 0; that plus a 0 mask ensures
615 * the compiler will optimise away reference to them.
616 */
617 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
618 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
619 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
620
621 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
622 #ifdef NODE_NOT_IN_PAGE_FLAGS
623 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
624 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
625 SECTIONS_PGOFF : ZONES_PGOFF)
626 #else
627 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
628 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
629 NODES_PGOFF : ZONES_PGOFF)
630 #endif
631
632 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
633
634 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
635 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
636 #endif
637
638 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
639 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
640 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
641 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
642
643 static inline enum zone_type page_zonenum(struct page *page)
644 {
645 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
646 }
647
648 /*
649 * The identification function is only used by the buddy allocator for
650 * determining if two pages could be buddies. We are not really
651 * identifying a zone since we could be using a the section number
652 * id if we have not node id available in page flags.
653 * We guarantee only that it will return the same value for two
654 * combinable pages in a zone.
655 */
656 static inline int page_zone_id(struct page *page)
657 {
658 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
659 }
660
661 static inline int zone_to_nid(struct zone *zone)
662 {
663 #ifdef CONFIG_NUMA
664 return zone->node;
665 #else
666 return 0;
667 #endif
668 }
669
670 #ifdef NODE_NOT_IN_PAGE_FLAGS
671 extern int page_to_nid(struct page *page);
672 #else
673 static inline int page_to_nid(struct page *page)
674 {
675 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
676 }
677 #endif
678
679 static inline struct zone *page_zone(struct page *page)
680 {
681 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
682 }
683
684 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
685 static inline unsigned long page_to_section(struct page *page)
686 {
687 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
688 }
689 #endif
690
691 static inline void set_page_zone(struct page *page, enum zone_type zone)
692 {
693 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
694 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
695 }
696
697 static inline void set_page_node(struct page *page, unsigned long node)
698 {
699 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
700 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
701 }
702
703 static inline void set_page_section(struct page *page, unsigned long section)
704 {
705 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
706 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
707 }
708
709 static inline void set_page_links(struct page *page, enum zone_type zone,
710 unsigned long node, unsigned long pfn)
711 {
712 set_page_zone(page, zone);
713 set_page_node(page, node);
714 set_page_section(page, pfn_to_section_nr(pfn));
715 }
716
717 /*
718 * Some inline functions in vmstat.h depend on page_zone()
719 */
720 #include <linux/vmstat.h>
721
722 static __always_inline void *lowmem_page_address(struct page *page)
723 {
724 return __va(PFN_PHYS(page_to_pfn(page)));
725 }
726
727 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
728 #define HASHED_PAGE_VIRTUAL
729 #endif
730
731 #if defined(WANT_PAGE_VIRTUAL)
732 #define page_address(page) ((page)->virtual)
733 #define set_page_address(page, address) \
734 do { \
735 (page)->virtual = (address); \
736 } while(0)
737 #define page_address_init() do { } while(0)
738 #endif
739
740 #if defined(HASHED_PAGE_VIRTUAL)
741 void *page_address(struct page *page);
742 void set_page_address(struct page *page, void *virtual);
743 void page_address_init(void);
744 #endif
745
746 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
747 #define page_address(page) lowmem_page_address(page)
748 #define set_page_address(page, address) do { } while(0)
749 #define page_address_init() do { } while(0)
750 #endif
751
752 /*
753 * On an anonymous page mapped into a user virtual memory area,
754 * page->mapping points to its anon_vma, not to a struct address_space;
755 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
756 *
757 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
758 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
759 * and then page->mapping points, not to an anon_vma, but to a private
760 * structure which KSM associates with that merged page. See ksm.h.
761 *
762 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
763 *
764 * Please note that, confusingly, "page_mapping" refers to the inode
765 * address_space which maps the page from disk; whereas "page_mapped"
766 * refers to user virtual address space into which the page is mapped.
767 */
768 #define PAGE_MAPPING_ANON 1
769 #define PAGE_MAPPING_KSM 2
770 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
771
772 extern struct address_space swapper_space;
773 static inline struct address_space *page_mapping(struct page *page)
774 {
775 struct address_space *mapping = page->mapping;
776
777 VM_BUG_ON(PageSlab(page));
778 if (unlikely(PageSwapCache(page)))
779 mapping = &swapper_space;
780 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
781 mapping = NULL;
782 return mapping;
783 }
784
785 /* Neutral page->mapping pointer to address_space or anon_vma or other */
786 static inline void *page_rmapping(struct page *page)
787 {
788 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
789 }
790
791 static inline int PageAnon(struct page *page)
792 {
793 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
794 }
795
796 /*
797 * Return the pagecache index of the passed page. Regular pagecache pages
798 * use ->index whereas swapcache pages use ->private
799 */
800 static inline pgoff_t page_index(struct page *page)
801 {
802 if (unlikely(PageSwapCache(page)))
803 return page_private(page);
804 return page->index;
805 }
806
807 /*
808 * The atomic page->_mapcount, like _count, starts from -1:
809 * so that transitions both from it and to it can be tracked,
810 * using atomic_inc_and_test and atomic_add_negative(-1).
811 */
812 static inline void reset_page_mapcount(struct page *page)
813 {
814 atomic_set(&(page)->_mapcount, -1);
815 }
816
817 static inline int page_mapcount(struct page *page)
818 {
819 return atomic_read(&(page)->_mapcount) + 1;
820 }
821
822 /*
823 * Return true if this page is mapped into pagetables.
824 */
825 static inline int page_mapped(struct page *page)
826 {
827 return atomic_read(&(page)->_mapcount) >= 0;
828 }
829
830 /*
831 * Different kinds of faults, as returned by handle_mm_fault().
832 * Used to decide whether a process gets delivered SIGBUS or
833 * just gets major/minor fault counters bumped up.
834 */
835
836 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
837
838 #define VM_FAULT_OOM 0x0001
839 #define VM_FAULT_SIGBUS 0x0002
840 #define VM_FAULT_MAJOR 0x0004
841 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
842 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
843 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
844
845 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
846 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
847 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
848
849 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
850
851 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
852 VM_FAULT_HWPOISON_LARGE)
853
854 /* Encode hstate index for a hwpoisoned large page */
855 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
856 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
857
858 /*
859 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
860 */
861 extern void pagefault_out_of_memory(void);
862
863 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
864
865 /*
866 * Flags passed to show_mem() and show_free_areas() to suppress output in
867 * various contexts.
868 */
869 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
870
871 extern void show_free_areas(unsigned int flags);
872 extern bool skip_free_areas_node(unsigned int flags, int nid);
873
874 int shmem_lock(struct file *file, int lock, struct user_struct *user);
875 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
876 int shmem_zero_setup(struct vm_area_struct *);
877
878 #ifndef CONFIG_MMU
879 extern unsigned long shmem_get_unmapped_area(struct file *file,
880 unsigned long addr,
881 unsigned long len,
882 unsigned long pgoff,
883 unsigned long flags);
884 #endif
885
886 extern int can_do_mlock(void);
887 extern int user_shm_lock(size_t, struct user_struct *);
888 extern void user_shm_unlock(size_t, struct user_struct *);
889
890 /*
891 * Parameter block passed down to zap_pte_range in exceptional cases.
892 */
893 struct zap_details {
894 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
895 struct address_space *check_mapping; /* Check page->mapping if set */
896 pgoff_t first_index; /* Lowest page->index to unmap */
897 pgoff_t last_index; /* Highest page->index to unmap */
898 };
899
900 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
901 pte_t pte);
902
903 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 unsigned long size);
905 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
906 unsigned long size, struct zap_details *);
907 unsigned long unmap_vmas(struct mmu_gather *tlb,
908 struct vm_area_struct *start_vma, unsigned long start_addr,
909 unsigned long end_addr, unsigned long *nr_accounted,
910 struct zap_details *);
911
912 /**
913 * mm_walk - callbacks for walk_page_range
914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
917 * this handler is required to be able to handle
918 * pmd_trans_huge() pmds. They may simply choose to
919 * split_huge_page() instead of handling it explicitly.
920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
921 * @pte_hole: if set, called for each hole at all levels
922 * @hugetlb_entry: if set, called for each hugetlb entry
923 *
924 * (see walk_page_range for more details)
925 */
926 struct mm_walk {
927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
932 int (*hugetlb_entry)(pte_t *, unsigned long,
933 unsigned long, unsigned long, struct mm_walk *);
934 struct mm_struct *mm;
935 void *private;
936 };
937
938 int walk_page_range(unsigned long addr, unsigned long end,
939 struct mm_walk *walk);
940 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
941 unsigned long end, unsigned long floor, unsigned long ceiling);
942 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
943 struct vm_area_struct *vma);
944 void unmap_mapping_range(struct address_space *mapping,
945 loff_t const holebegin, loff_t const holelen, int even_cows);
946 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 unsigned long *pfn);
948 int follow_phys(struct vm_area_struct *vma, unsigned long address,
949 unsigned int flags, unsigned long *prot, resource_size_t *phys);
950 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
951 void *buf, int len, int write);
952
953 static inline void unmap_shared_mapping_range(struct address_space *mapping,
954 loff_t const holebegin, loff_t const holelen)
955 {
956 unmap_mapping_range(mapping, holebegin, holelen, 0);
957 }
958
959 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
960 extern void truncate_setsize(struct inode *inode, loff_t newsize);
961 extern int vmtruncate(struct inode *inode, loff_t offset);
962 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
963
964 int truncate_inode_page(struct address_space *mapping, struct page *page);
965 int generic_error_remove_page(struct address_space *mapping, struct page *page);
966
967 int invalidate_inode_page(struct page *page);
968
969 #ifdef CONFIG_MMU
970 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
971 unsigned long address, unsigned int flags);
972 #else
973 static inline int handle_mm_fault(struct mm_struct *mm,
974 struct vm_area_struct *vma, unsigned long address,
975 unsigned int flags)
976 {
977 /* should never happen if there's no MMU */
978 BUG();
979 return VM_FAULT_SIGBUS;
980 }
981 #endif
982
983 extern int make_pages_present(unsigned long addr, unsigned long end);
984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
985 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
986 void *buf, int len, int write);
987
988 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
989 unsigned long start, int len, unsigned int foll_flags,
990 struct page **pages, struct vm_area_struct **vmas,
991 int *nonblocking);
992 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long start, int nr_pages, int write, int force,
994 struct page **pages, struct vm_area_struct **vmas);
995 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
996 struct page **pages);
997 struct page *get_dump_page(unsigned long addr);
998
999 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1000 extern void do_invalidatepage(struct page *page, unsigned long offset);
1001
1002 int __set_page_dirty_nobuffers(struct page *page);
1003 int __set_page_dirty_no_writeback(struct page *page);
1004 int redirty_page_for_writepage(struct writeback_control *wbc,
1005 struct page *page);
1006 void account_page_dirtied(struct page *page, struct address_space *mapping);
1007 void account_page_writeback(struct page *page);
1008 int set_page_dirty(struct page *page);
1009 int set_page_dirty_lock(struct page *page);
1010 int clear_page_dirty_for_io(struct page *page);
1011
1012 /* Is the vma a continuation of the stack vma above it? */
1013 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1014 {
1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1016 }
1017
1018 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1019 unsigned long addr)
1020 {
1021 return (vma->vm_flags & VM_GROWSDOWN) &&
1022 (vma->vm_start == addr) &&
1023 !vma_growsdown(vma->vm_prev, addr);
1024 }
1025
1026 /* Is the vma a continuation of the stack vma below it? */
1027 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1028 {
1029 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1030 }
1031
1032 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1033 unsigned long addr)
1034 {
1035 return (vma->vm_flags & VM_GROWSUP) &&
1036 (vma->vm_end == addr) &&
1037 !vma_growsup(vma->vm_next, addr);
1038 }
1039
1040 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1041 unsigned long old_addr, struct vm_area_struct *new_vma,
1042 unsigned long new_addr, unsigned long len);
1043 extern unsigned long do_mremap(unsigned long addr,
1044 unsigned long old_len, unsigned long new_len,
1045 unsigned long flags, unsigned long new_addr);
1046 extern int mprotect_fixup(struct vm_area_struct *vma,
1047 struct vm_area_struct **pprev, unsigned long start,
1048 unsigned long end, unsigned long newflags);
1049
1050 /*
1051 * doesn't attempt to fault and will return short.
1052 */
1053 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1054 struct page **pages);
1055 /*
1056 * per-process(per-mm_struct) statistics.
1057 */
1058 #if defined(SPLIT_RSS_COUNTING)
1059 /*
1060 * The mm counters are not protected by its page_table_lock,
1061 * so must be incremented atomically.
1062 */
1063 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1064 {
1065 atomic_long_set(&mm->rss_stat.count[member], value);
1066 }
1067
1068 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1069
1070 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1071 {
1072 atomic_long_add(value, &mm->rss_stat.count[member]);
1073 }
1074
1075 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1076 {
1077 atomic_long_inc(&mm->rss_stat.count[member]);
1078 }
1079
1080 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1081 {
1082 atomic_long_dec(&mm->rss_stat.count[member]);
1083 }
1084
1085 #else /* !USE_SPLIT_PTLOCKS */
1086 /*
1087 * The mm counters are protected by its page_table_lock,
1088 * so can be incremented directly.
1089 */
1090 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1091 {
1092 mm->rss_stat.count[member] = value;
1093 }
1094
1095 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1096 {
1097 return mm->rss_stat.count[member];
1098 }
1099
1100 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1101 {
1102 mm->rss_stat.count[member] += value;
1103 }
1104
1105 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1106 {
1107 mm->rss_stat.count[member]++;
1108 }
1109
1110 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1111 {
1112 mm->rss_stat.count[member]--;
1113 }
1114
1115 #endif /* !USE_SPLIT_PTLOCKS */
1116
1117 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1118 {
1119 return get_mm_counter(mm, MM_FILEPAGES) +
1120 get_mm_counter(mm, MM_ANONPAGES);
1121 }
1122
1123 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1124 {
1125 return max(mm->hiwater_rss, get_mm_rss(mm));
1126 }
1127
1128 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1129 {
1130 return max(mm->hiwater_vm, mm->total_vm);
1131 }
1132
1133 static inline void update_hiwater_rss(struct mm_struct *mm)
1134 {
1135 unsigned long _rss = get_mm_rss(mm);
1136
1137 if ((mm)->hiwater_rss < _rss)
1138 (mm)->hiwater_rss = _rss;
1139 }
1140
1141 static inline void update_hiwater_vm(struct mm_struct *mm)
1142 {
1143 if (mm->hiwater_vm < mm->total_vm)
1144 mm->hiwater_vm = mm->total_vm;
1145 }
1146
1147 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1148 struct mm_struct *mm)
1149 {
1150 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1151
1152 if (*maxrss < hiwater_rss)
1153 *maxrss = hiwater_rss;
1154 }
1155
1156 #if defined(SPLIT_RSS_COUNTING)
1157 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1158 #else
1159 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1160 {
1161 }
1162 #endif
1163
1164 /*
1165 * This struct is used to pass information from page reclaim to the shrinkers.
1166 * We consolidate the values for easier extention later.
1167 */
1168 struct shrink_control {
1169 gfp_t gfp_mask;
1170
1171 /* How many slab objects shrinker() should scan and try to reclaim */
1172 unsigned long nr_to_scan;
1173 };
1174
1175 /*
1176 * A callback you can register to apply pressure to ageable caches.
1177 *
1178 * 'sc' is passed shrink_control which includes a count 'nr_to_scan'
1179 * and a 'gfpmask'. It should look through the least-recently-used
1180 * 'nr_to_scan' entries and attempt to free them up. It should return
1181 * the number of objects which remain in the cache. If it returns -1, it means
1182 * it cannot do any scanning at this time (eg. there is a risk of deadlock).
1183 *
1184 * The 'gfpmask' refers to the allocation we are currently trying to
1185 * fulfil.
1186 *
1187 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1188 * querying the cache size, so a fastpath for that case is appropriate.
1189 */
1190 struct shrinker {
1191 int (*shrink)(struct shrinker *, struct shrink_control *sc);
1192 int seeks; /* seeks to recreate an obj */
1193
1194 /* These are for internal use */
1195 struct list_head list;
1196 long nr; /* objs pending delete */
1197 };
1198 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1199 extern void register_shrinker(struct shrinker *);
1200 extern void unregister_shrinker(struct shrinker *);
1201
1202 int vma_wants_writenotify(struct vm_area_struct *vma);
1203
1204 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1205 spinlock_t **ptl);
1206 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1207 spinlock_t **ptl)
1208 {
1209 pte_t *ptep;
1210 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1211 return ptep;
1212 }
1213
1214 #ifdef __PAGETABLE_PUD_FOLDED
1215 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1216 unsigned long address)
1217 {
1218 return 0;
1219 }
1220 #else
1221 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1222 #endif
1223
1224 #ifdef __PAGETABLE_PMD_FOLDED
1225 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1226 unsigned long address)
1227 {
1228 return 0;
1229 }
1230 #else
1231 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1232 #endif
1233
1234 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1235 pmd_t *pmd, unsigned long address);
1236 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1237
1238 /*
1239 * The following ifdef needed to get the 4level-fixup.h header to work.
1240 * Remove it when 4level-fixup.h has been removed.
1241 */
1242 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1243 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1244 {
1245 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1246 NULL: pud_offset(pgd, address);
1247 }
1248
1249 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1250 {
1251 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1252 NULL: pmd_offset(pud, address);
1253 }
1254 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1255
1256 #if USE_SPLIT_PTLOCKS
1257 /*
1258 * We tuck a spinlock to guard each pagetable page into its struct page,
1259 * at page->private, with BUILD_BUG_ON to make sure that this will not
1260 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1261 * When freeing, reset page->mapping so free_pages_check won't complain.
1262 */
1263 #define __pte_lockptr(page) &((page)->ptl)
1264 #define pte_lock_init(_page) do { \
1265 spin_lock_init(__pte_lockptr(_page)); \
1266 } while (0)
1267 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1268 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1269 #else /* !USE_SPLIT_PTLOCKS */
1270 /*
1271 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1272 */
1273 #define pte_lock_init(page) do {} while (0)
1274 #define pte_lock_deinit(page) do {} while (0)
1275 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1276 #endif /* USE_SPLIT_PTLOCKS */
1277
1278 static inline void pgtable_page_ctor(struct page *page)
1279 {
1280 pte_lock_init(page);
1281 inc_zone_page_state(page, NR_PAGETABLE);
1282 }
1283
1284 static inline void pgtable_page_dtor(struct page *page)
1285 {
1286 pte_lock_deinit(page);
1287 dec_zone_page_state(page, NR_PAGETABLE);
1288 }
1289
1290 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1291 ({ \
1292 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1293 pte_t *__pte = pte_offset_map(pmd, address); \
1294 *(ptlp) = __ptl; \
1295 spin_lock(__ptl); \
1296 __pte; \
1297 })
1298
1299 #define pte_unmap_unlock(pte, ptl) do { \
1300 spin_unlock(ptl); \
1301 pte_unmap(pte); \
1302 } while (0)
1303
1304 #define pte_alloc_map(mm, vma, pmd, address) \
1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1306 pmd, address))? \
1307 NULL: pte_offset_map(pmd, address))
1308
1309 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1310 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1311 pmd, address))? \
1312 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1313
1314 #define pte_alloc_kernel(pmd, address) \
1315 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1316 NULL: pte_offset_kernel(pmd, address))
1317
1318 extern void free_area_init(unsigned long * zones_size);
1319 extern void free_area_init_node(int nid, unsigned long * zones_size,
1320 unsigned long zone_start_pfn, unsigned long *zholes_size);
1321 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1322 /*
1323 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1324 * zones, allocate the backing mem_map and account for memory holes in a more
1325 * architecture independent manner. This is a substitute for creating the
1326 * zone_sizes[] and zholes_size[] arrays and passing them to
1327 * free_area_init_node()
1328 *
1329 * An architecture is expected to register range of page frames backed by
1330 * physical memory with add_active_range() before calling
1331 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1332 * usage, an architecture is expected to do something like
1333 *
1334 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1335 * max_highmem_pfn};
1336 * for_each_valid_physical_page_range()
1337 * add_active_range(node_id, start_pfn, end_pfn)
1338 * free_area_init_nodes(max_zone_pfns);
1339 *
1340 * If the architecture guarantees that there are no holes in the ranges
1341 * registered with add_active_range(), free_bootmem_active_regions()
1342 * will call free_bootmem_node() for each registered physical page range.
1343 * Similarly sparse_memory_present_with_active_regions() calls
1344 * memory_present() for each range when SPARSEMEM is enabled.
1345 *
1346 * See mm/page_alloc.c for more information on each function exposed by
1347 * CONFIG_ARCH_POPULATES_NODE_MAP
1348 */
1349 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1350 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1351 unsigned long end_pfn);
1352 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1353 unsigned long end_pfn);
1354 extern void remove_all_active_ranges(void);
1355 void sort_node_map(void);
1356 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1357 unsigned long end_pfn);
1358 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1359 unsigned long end_pfn);
1360 extern void get_pfn_range_for_nid(unsigned int nid,
1361 unsigned long *start_pfn, unsigned long *end_pfn);
1362 extern unsigned long find_min_pfn_with_active_regions(void);
1363 extern void free_bootmem_with_active_regions(int nid,
1364 unsigned long max_low_pfn);
1365 int add_from_early_node_map(struct range *range, int az,
1366 int nr_range, int nid);
1367 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1368 u64 goal, u64 limit);
1369 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1370 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1371 extern void sparse_memory_present_with_active_regions(int nid);
1372 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1373
1374 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1375 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1376 static inline int __early_pfn_to_nid(unsigned long pfn)
1377 {
1378 return 0;
1379 }
1380 #else
1381 /* please see mm/page_alloc.c */
1382 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1383 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1384 /* there is a per-arch backend function. */
1385 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1386 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1387 #endif
1388
1389 extern void set_dma_reserve(unsigned long new_dma_reserve);
1390 extern void memmap_init_zone(unsigned long, int, unsigned long,
1391 unsigned long, enum memmap_context);
1392 extern void setup_per_zone_wmarks(void);
1393 extern int __meminit init_per_zone_wmark_min(void);
1394 extern void mem_init(void);
1395 extern void __init mmap_init(void);
1396 extern void show_mem(unsigned int flags);
1397 extern void si_meminfo(struct sysinfo * val);
1398 extern void si_meminfo_node(struct sysinfo *val, int nid);
1399 extern int after_bootmem;
1400
1401 extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1402
1403 extern void setup_per_cpu_pageset(void);
1404
1405 extern void zone_pcp_update(struct zone *zone);
1406
1407 /* nommu.c */
1408 extern atomic_long_t mmap_pages_allocated;
1409 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1410
1411 /* prio_tree.c */
1412 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1413 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1414 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1415 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1416 struct prio_tree_iter *iter);
1417
1418 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1419 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1420 (vma = vma_prio_tree_next(vma, iter)); )
1421
1422 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1423 struct list_head *list)
1424 {
1425 vma->shared.vm_set.parent = NULL;
1426 list_add_tail(&vma->shared.vm_set.list, list);
1427 }
1428
1429 /* mmap.c */
1430 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1431 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1432 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1433 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1434 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1435 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1436 struct mempolicy *);
1437 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1438 extern int split_vma(struct mm_struct *,
1439 struct vm_area_struct *, unsigned long addr, int new_below);
1440 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1441 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1442 struct rb_node **, struct rb_node *);
1443 extern void unlink_file_vma(struct vm_area_struct *);
1444 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1445 unsigned long addr, unsigned long len, pgoff_t pgoff);
1446 extern void exit_mmap(struct mm_struct *);
1447
1448 extern int mm_take_all_locks(struct mm_struct *mm);
1449 extern void mm_drop_all_locks(struct mm_struct *mm);
1450
1451 #ifdef CONFIG_PROC_FS
1452 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1453 extern void added_exe_file_vma(struct mm_struct *mm);
1454 extern void removed_exe_file_vma(struct mm_struct *mm);
1455 #else
1456 static inline void added_exe_file_vma(struct mm_struct *mm)
1457 {}
1458
1459 static inline void removed_exe_file_vma(struct mm_struct *mm)
1460 {}
1461 #endif /* CONFIG_PROC_FS */
1462
1463 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1464 extern int install_special_mapping(struct mm_struct *mm,
1465 unsigned long addr, unsigned long len,
1466 unsigned long flags, struct page **pages);
1467
1468 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1469
1470 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1471 unsigned long len, unsigned long prot,
1472 unsigned long flag, unsigned long pgoff);
1473 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1474 unsigned long len, unsigned long flags,
1475 unsigned int vm_flags, unsigned long pgoff);
1476
1477 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1478 unsigned long len, unsigned long prot,
1479 unsigned long flag, unsigned long offset)
1480 {
1481 unsigned long ret = -EINVAL;
1482 if ((offset + PAGE_ALIGN(len)) < offset)
1483 goto out;
1484 if (!(offset & ~PAGE_MASK))
1485 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1486 out:
1487 return ret;
1488 }
1489
1490 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1491
1492 extern unsigned long do_brk(unsigned long, unsigned long);
1493
1494 /* filemap.c */
1495 extern unsigned long page_unuse(struct page *);
1496 extern void truncate_inode_pages(struct address_space *, loff_t);
1497 extern void truncate_inode_pages_range(struct address_space *,
1498 loff_t lstart, loff_t lend);
1499
1500 /* generic vm_area_ops exported for stackable file systems */
1501 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1502
1503 /* mm/page-writeback.c */
1504 int write_one_page(struct page *page, int wait);
1505 void task_dirty_inc(struct task_struct *tsk);
1506
1507 /* readahead.c */
1508 #define VM_MAX_READAHEAD 128 /* kbytes */
1509 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1510
1511 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1512 pgoff_t offset, unsigned long nr_to_read);
1513
1514 void page_cache_sync_readahead(struct address_space *mapping,
1515 struct file_ra_state *ra,
1516 struct file *filp,
1517 pgoff_t offset,
1518 unsigned long size);
1519
1520 void page_cache_async_readahead(struct address_space *mapping,
1521 struct file_ra_state *ra,
1522 struct file *filp,
1523 struct page *pg,
1524 pgoff_t offset,
1525 unsigned long size);
1526
1527 unsigned long max_sane_readahead(unsigned long nr);
1528 unsigned long ra_submit(struct file_ra_state *ra,
1529 struct address_space *mapping,
1530 struct file *filp);
1531
1532 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1533 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1534
1535 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1536 extern int expand_downwards(struct vm_area_struct *vma,
1537 unsigned long address);
1538 #if VM_GROWSUP
1539 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1540 #else
1541 #define expand_upwards(vma, address) do { } while (0)
1542 #endif
1543
1544 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1545 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1546 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1547 struct vm_area_struct **pprev);
1548
1549 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1550 NULL if none. Assume start_addr < end_addr. */
1551 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1552 {
1553 struct vm_area_struct * vma = find_vma(mm,start_addr);
1554
1555 if (vma && end_addr <= vma->vm_start)
1556 vma = NULL;
1557 return vma;
1558 }
1559
1560 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1561 {
1562 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1563 }
1564
1565 #ifdef CONFIG_MMU
1566 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1567 #else
1568 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1569 {
1570 return __pgprot(0);
1571 }
1572 #endif
1573
1574 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1575 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1576 unsigned long pfn, unsigned long size, pgprot_t);
1577 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1578 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1579 unsigned long pfn);
1580 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1581 unsigned long pfn);
1582
1583 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1584 unsigned int foll_flags);
1585 #define FOLL_WRITE 0x01 /* check pte is writable */
1586 #define FOLL_TOUCH 0x02 /* mark page accessed */
1587 #define FOLL_GET 0x04 /* do get_page on page */
1588 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1589 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1590 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1591 * and return without waiting upon it */
1592 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1593 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1594 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1595
1596 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1597 void *data);
1598 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1599 unsigned long size, pte_fn_t fn, void *data);
1600
1601 #ifdef CONFIG_PROC_FS
1602 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1603 #else
1604 static inline void vm_stat_account(struct mm_struct *mm,
1605 unsigned long flags, struct file *file, long pages)
1606 {
1607 }
1608 #endif /* CONFIG_PROC_FS */
1609
1610 #ifdef CONFIG_DEBUG_PAGEALLOC
1611 extern int debug_pagealloc_enabled;
1612
1613 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1614
1615 static inline void enable_debug_pagealloc(void)
1616 {
1617 debug_pagealloc_enabled = 1;
1618 }
1619 #ifdef CONFIG_HIBERNATION
1620 extern bool kernel_page_present(struct page *page);
1621 #endif /* CONFIG_HIBERNATION */
1622 #else
1623 static inline void
1624 kernel_map_pages(struct page *page, int numpages, int enable) {}
1625 static inline void enable_debug_pagealloc(void)
1626 {
1627 }
1628 #ifdef CONFIG_HIBERNATION
1629 static inline bool kernel_page_present(struct page *page) { return true; }
1630 #endif /* CONFIG_HIBERNATION */
1631 #endif
1632
1633 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1634 #ifdef __HAVE_ARCH_GATE_AREA
1635 int in_gate_area_no_mm(unsigned long addr);
1636 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1637 #else
1638 int in_gate_area_no_mm(unsigned long addr);
1639 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1640 #endif /* __HAVE_ARCH_GATE_AREA */
1641
1642 int drop_caches_sysctl_handler(struct ctl_table *, int,
1643 void __user *, size_t *, loff_t *);
1644 unsigned long shrink_slab(struct shrink_control *shrink,
1645 unsigned long nr_pages_scanned,
1646 unsigned long lru_pages);
1647
1648 #ifndef CONFIG_MMU
1649 #define randomize_va_space 0
1650 #else
1651 extern int randomize_va_space;
1652 #endif
1653
1654 const char * arch_vma_name(struct vm_area_struct *vma);
1655 void print_vma_addr(char *prefix, unsigned long rip);
1656
1657 void sparse_mem_maps_populate_node(struct page **map_map,
1658 unsigned long pnum_begin,
1659 unsigned long pnum_end,
1660 unsigned long map_count,
1661 int nodeid);
1662
1663 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1664 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1665 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1666 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1667 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1668 void *vmemmap_alloc_block(unsigned long size, int node);
1669 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1670 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1671 int vmemmap_populate_basepages(struct page *start_page,
1672 unsigned long pages, int node);
1673 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1674 void vmemmap_populate_print_last(void);
1675
1676
1677 enum mf_flags {
1678 MF_COUNT_INCREASED = 1 << 0,
1679 };
1680 extern void memory_failure(unsigned long pfn, int trapno);
1681 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1682 extern int unpoison_memory(unsigned long pfn);
1683 extern int sysctl_memory_failure_early_kill;
1684 extern int sysctl_memory_failure_recovery;
1685 extern void shake_page(struct page *p, int access);
1686 extern atomic_long_t mce_bad_pages;
1687 extern int soft_offline_page(struct page *page, int flags);
1688
1689 extern void dump_page(struct page *page);
1690
1691 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1692 extern void clear_huge_page(struct page *page,
1693 unsigned long addr,
1694 unsigned int pages_per_huge_page);
1695 extern void copy_user_huge_page(struct page *dst, struct page *src,
1696 unsigned long addr, struct vm_area_struct *vma,
1697 unsigned int pages_per_huge_page);
1698 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1699
1700 #endif /* __KERNEL__ */
1701 #endif /* _LINUX_MM_H */