Merge branch 'for-linus' of git://ceph.newdream.net/git/ceph-client
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
18 #include <linux/shrinker.h>
19
20 struct mempolicy;
21 struct anon_vma;
22 struct file_ra_state;
23 struct user_struct;
24 struct writeback_control;
25
26 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
27 extern unsigned long max_mapnr;
28 #endif
29
30 extern unsigned long num_physpages;
31 extern unsigned long totalram_pages;
32 extern void * high_memory;
33 extern int page_cluster;
34
35 #ifdef CONFIG_SYSCTL
36 extern int sysctl_legacy_va_layout;
37 #else
38 #define sysctl_legacy_va_layout 0
39 #endif
40
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44
45 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46
47 /* to align the pointer to the (next) page boundary */
48 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
49
50 /*
51 * Linux kernel virtual memory manager primitives.
52 * The idea being to have a "virtual" mm in the same way
53 * we have a virtual fs - giving a cleaner interface to the
54 * mm details, and allowing different kinds of memory mappings
55 * (from shared memory to executable loading to arbitrary
56 * mmap() functions).
57 */
58
59 extern struct kmem_cache *vm_area_cachep;
60
61 #ifndef CONFIG_MMU
62 extern struct rb_root nommu_region_tree;
63 extern struct rw_semaphore nommu_region_sem;
64
65 extern unsigned int kobjsize(const void *objp);
66 #endif
67
68 /*
69 * vm_flags in vm_area_struct, see mm_types.h.
70 */
71 #define VM_READ 0x00000001 /* currently active flags */
72 #define VM_WRITE 0x00000002
73 #define VM_EXEC 0x00000004
74 #define VM_SHARED 0x00000008
75
76 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
77 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
78 #define VM_MAYWRITE 0x00000020
79 #define VM_MAYEXEC 0x00000040
80 #define VM_MAYSHARE 0x00000080
81
82 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
83 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
84 #define VM_GROWSUP 0x00000200
85 #else
86 #define VM_GROWSUP 0x00000000
87 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
88 #endif
89 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
90 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91
92 #define VM_EXECUTABLE 0x00001000
93 #define VM_LOCKED 0x00002000
94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
103 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
104 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
105 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
107 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
108 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
109 #else
110 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
111 #endif
112 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
113 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
114
115 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
116 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
117 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
118 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
119 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
120
121 /* Bits set in the VMA until the stack is in its final location */
122 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
123
124 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
125 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
126 #endif
127
128 #ifdef CONFIG_STACK_GROWSUP
129 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130 #else
131 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132 #endif
133
134 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
135 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
136 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
137 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
138 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
139
140 /*
141 * Special vmas that are non-mergable, non-mlock()able.
142 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
143 */
144 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
145
146 /*
147 * mapping from the currently active vm_flags protection bits (the
148 * low four bits) to a page protection mask..
149 */
150 extern pgprot_t protection_map[16];
151
152 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
153 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
154 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
155 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
156 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
157 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
158
159 /*
160 * This interface is used by x86 PAT code to identify a pfn mapping that is
161 * linear over entire vma. This is to optimize PAT code that deals with
162 * marking the physical region with a particular prot. This is not for generic
163 * mm use. Note also that this check will not work if the pfn mapping is
164 * linear for a vma starting at physical address 0. In which case PAT code
165 * falls back to slow path of reserving physical range page by page.
166 */
167 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
168 {
169 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
170 }
171
172 static inline int is_pfn_mapping(struct vm_area_struct *vma)
173 {
174 return !!(vma->vm_flags & VM_PFNMAP);
175 }
176
177 /*
178 * vm_fault is filled by the the pagefault handler and passed to the vma's
179 * ->fault function. The vma's ->fault is responsible for returning a bitmask
180 * of VM_FAULT_xxx flags that give details about how the fault was handled.
181 *
182 * pgoff should be used in favour of virtual_address, if possible. If pgoff
183 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
184 * mapping support.
185 */
186 struct vm_fault {
187 unsigned int flags; /* FAULT_FLAG_xxx flags */
188 pgoff_t pgoff; /* Logical page offset based on vma */
189 void __user *virtual_address; /* Faulting virtual address */
190
191 struct page *page; /* ->fault handlers should return a
192 * page here, unless VM_FAULT_NOPAGE
193 * is set (which is also implied by
194 * VM_FAULT_ERROR).
195 */
196 };
197
198 /*
199 * These are the virtual MM functions - opening of an area, closing and
200 * unmapping it (needed to keep files on disk up-to-date etc), pointer
201 * to the functions called when a no-page or a wp-page exception occurs.
202 */
203 struct vm_operations_struct {
204 void (*open)(struct vm_area_struct * area);
205 void (*close)(struct vm_area_struct * area);
206 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
207
208 /* notification that a previously read-only page is about to become
209 * writable, if an error is returned it will cause a SIGBUS */
210 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
211
212 /* called by access_process_vm when get_user_pages() fails, typically
213 * for use by special VMAs that can switch between memory and hardware
214 */
215 int (*access)(struct vm_area_struct *vma, unsigned long addr,
216 void *buf, int len, int write);
217 #ifdef CONFIG_NUMA
218 /*
219 * set_policy() op must add a reference to any non-NULL @new mempolicy
220 * to hold the policy upon return. Caller should pass NULL @new to
221 * remove a policy and fall back to surrounding context--i.e. do not
222 * install a MPOL_DEFAULT policy, nor the task or system default
223 * mempolicy.
224 */
225 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
226
227 /*
228 * get_policy() op must add reference [mpol_get()] to any policy at
229 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
230 * in mm/mempolicy.c will do this automatically.
231 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
232 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
233 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
234 * must return NULL--i.e., do not "fallback" to task or system default
235 * policy.
236 */
237 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
238 unsigned long addr);
239 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
240 const nodemask_t *to, unsigned long flags);
241 #endif
242 };
243
244 struct mmu_gather;
245 struct inode;
246
247 #define page_private(page) ((page)->private)
248 #define set_page_private(page, v) ((page)->private = (v))
249
250 /*
251 * FIXME: take this include out, include page-flags.h in
252 * files which need it (119 of them)
253 */
254 #include <linux/page-flags.h>
255 #include <linux/huge_mm.h>
256
257 /*
258 * Methods to modify the page usage count.
259 *
260 * What counts for a page usage:
261 * - cache mapping (page->mapping)
262 * - private data (page->private)
263 * - page mapped in a task's page tables, each mapping
264 * is counted separately
265 *
266 * Also, many kernel routines increase the page count before a critical
267 * routine so they can be sure the page doesn't go away from under them.
268 */
269
270 /*
271 * Drop a ref, return true if the refcount fell to zero (the page has no users)
272 */
273 static inline int put_page_testzero(struct page *page)
274 {
275 VM_BUG_ON(atomic_read(&page->_count) == 0);
276 return atomic_dec_and_test(&page->_count);
277 }
278
279 /*
280 * Try to grab a ref unless the page has a refcount of zero, return false if
281 * that is the case.
282 */
283 static inline int get_page_unless_zero(struct page *page)
284 {
285 return atomic_inc_not_zero(&page->_count);
286 }
287
288 extern int page_is_ram(unsigned long pfn);
289
290 /* Support for virtually mapped pages */
291 struct page *vmalloc_to_page(const void *addr);
292 unsigned long vmalloc_to_pfn(const void *addr);
293
294 /*
295 * Determine if an address is within the vmalloc range
296 *
297 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
298 * is no special casing required.
299 */
300 static inline int is_vmalloc_addr(const void *x)
301 {
302 #ifdef CONFIG_MMU
303 unsigned long addr = (unsigned long)x;
304
305 return addr >= VMALLOC_START && addr < VMALLOC_END;
306 #else
307 return 0;
308 #endif
309 }
310 #ifdef CONFIG_MMU
311 extern int is_vmalloc_or_module_addr(const void *x);
312 #else
313 static inline int is_vmalloc_or_module_addr(const void *x)
314 {
315 return 0;
316 }
317 #endif
318
319 static inline void compound_lock(struct page *page)
320 {
321 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 bit_spin_lock(PG_compound_lock, &page->flags);
323 #endif
324 }
325
326 static inline void compound_unlock(struct page *page)
327 {
328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 bit_spin_unlock(PG_compound_lock, &page->flags);
330 #endif
331 }
332
333 static inline unsigned long compound_lock_irqsave(struct page *page)
334 {
335 unsigned long uninitialized_var(flags);
336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
337 local_irq_save(flags);
338 compound_lock(page);
339 #endif
340 return flags;
341 }
342
343 static inline void compound_unlock_irqrestore(struct page *page,
344 unsigned long flags)
345 {
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347 compound_unlock(page);
348 local_irq_restore(flags);
349 #endif
350 }
351
352 static inline struct page *compound_head(struct page *page)
353 {
354 if (unlikely(PageTail(page)))
355 return page->first_page;
356 return page;
357 }
358
359 static inline int page_count(struct page *page)
360 {
361 return atomic_read(&compound_head(page)->_count);
362 }
363
364 static inline void get_page(struct page *page)
365 {
366 /*
367 * Getting a normal page or the head of a compound page
368 * requires to already have an elevated page->_count. Only if
369 * we're getting a tail page, the elevated page->_count is
370 * required only in the head page, so for tail pages the
371 * bugcheck only verifies that the page->_count isn't
372 * negative.
373 */
374 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
375 atomic_inc(&page->_count);
376 /*
377 * Getting a tail page will elevate both the head and tail
378 * page->_count(s).
379 */
380 if (unlikely(PageTail(page))) {
381 /*
382 * This is safe only because
383 * __split_huge_page_refcount can't run under
384 * get_page().
385 */
386 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
387 atomic_inc(&page->first_page->_count);
388 }
389 }
390
391 static inline struct page *virt_to_head_page(const void *x)
392 {
393 struct page *page = virt_to_page(x);
394 return compound_head(page);
395 }
396
397 /*
398 * Setup the page count before being freed into the page allocator for
399 * the first time (boot or memory hotplug)
400 */
401 static inline void init_page_count(struct page *page)
402 {
403 atomic_set(&page->_count, 1);
404 }
405
406 /*
407 * PageBuddy() indicate that the page is free and in the buddy system
408 * (see mm/page_alloc.c).
409 *
410 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
411 * -2 so that an underflow of the page_mapcount() won't be mistaken
412 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
413 * efficiently by most CPU architectures.
414 */
415 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
416
417 static inline int PageBuddy(struct page *page)
418 {
419 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
420 }
421
422 static inline void __SetPageBuddy(struct page *page)
423 {
424 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
425 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
426 }
427
428 static inline void __ClearPageBuddy(struct page *page)
429 {
430 VM_BUG_ON(!PageBuddy(page));
431 atomic_set(&page->_mapcount, -1);
432 }
433
434 void put_page(struct page *page);
435 void put_pages_list(struct list_head *pages);
436
437 void split_page(struct page *page, unsigned int order);
438 int split_free_page(struct page *page);
439
440 /*
441 * Compound pages have a destructor function. Provide a
442 * prototype for that function and accessor functions.
443 * These are _only_ valid on the head of a PG_compound page.
444 */
445 typedef void compound_page_dtor(struct page *);
446
447 static inline void set_compound_page_dtor(struct page *page,
448 compound_page_dtor *dtor)
449 {
450 page[1].lru.next = (void *)dtor;
451 }
452
453 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
454 {
455 return (compound_page_dtor *)page[1].lru.next;
456 }
457
458 static inline int compound_order(struct page *page)
459 {
460 if (!PageHead(page))
461 return 0;
462 return (unsigned long)page[1].lru.prev;
463 }
464
465 static inline int compound_trans_order(struct page *page)
466 {
467 int order;
468 unsigned long flags;
469
470 if (!PageHead(page))
471 return 0;
472
473 flags = compound_lock_irqsave(page);
474 order = compound_order(page);
475 compound_unlock_irqrestore(page, flags);
476 return order;
477 }
478
479 static inline void set_compound_order(struct page *page, unsigned long order)
480 {
481 page[1].lru.prev = (void *)order;
482 }
483
484 #ifdef CONFIG_MMU
485 /*
486 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
487 * servicing faults for write access. In the normal case, do always want
488 * pte_mkwrite. But get_user_pages can cause write faults for mappings
489 * that do not have writing enabled, when used by access_process_vm.
490 */
491 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
492 {
493 if (likely(vma->vm_flags & VM_WRITE))
494 pte = pte_mkwrite(pte);
495 return pte;
496 }
497 #endif
498
499 /*
500 * Multiple processes may "see" the same page. E.g. for untouched
501 * mappings of /dev/null, all processes see the same page full of
502 * zeroes, and text pages of executables and shared libraries have
503 * only one copy in memory, at most, normally.
504 *
505 * For the non-reserved pages, page_count(page) denotes a reference count.
506 * page_count() == 0 means the page is free. page->lru is then used for
507 * freelist management in the buddy allocator.
508 * page_count() > 0 means the page has been allocated.
509 *
510 * Pages are allocated by the slab allocator in order to provide memory
511 * to kmalloc and kmem_cache_alloc. In this case, the management of the
512 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
513 * unless a particular usage is carefully commented. (the responsibility of
514 * freeing the kmalloc memory is the caller's, of course).
515 *
516 * A page may be used by anyone else who does a __get_free_page().
517 * In this case, page_count still tracks the references, and should only
518 * be used through the normal accessor functions. The top bits of page->flags
519 * and page->virtual store page management information, but all other fields
520 * are unused and could be used privately, carefully. The management of this
521 * page is the responsibility of the one who allocated it, and those who have
522 * subsequently been given references to it.
523 *
524 * The other pages (we may call them "pagecache pages") are completely
525 * managed by the Linux memory manager: I/O, buffers, swapping etc.
526 * The following discussion applies only to them.
527 *
528 * A pagecache page contains an opaque `private' member, which belongs to the
529 * page's address_space. Usually, this is the address of a circular list of
530 * the page's disk buffers. PG_private must be set to tell the VM to call
531 * into the filesystem to release these pages.
532 *
533 * A page may belong to an inode's memory mapping. In this case, page->mapping
534 * is the pointer to the inode, and page->index is the file offset of the page,
535 * in units of PAGE_CACHE_SIZE.
536 *
537 * If pagecache pages are not associated with an inode, they are said to be
538 * anonymous pages. These may become associated with the swapcache, and in that
539 * case PG_swapcache is set, and page->private is an offset into the swapcache.
540 *
541 * In either case (swapcache or inode backed), the pagecache itself holds one
542 * reference to the page. Setting PG_private should also increment the
543 * refcount. The each user mapping also has a reference to the page.
544 *
545 * The pagecache pages are stored in a per-mapping radix tree, which is
546 * rooted at mapping->page_tree, and indexed by offset.
547 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
548 * lists, we instead now tag pages as dirty/writeback in the radix tree.
549 *
550 * All pagecache pages may be subject to I/O:
551 * - inode pages may need to be read from disk,
552 * - inode pages which have been modified and are MAP_SHARED may need
553 * to be written back to the inode on disk,
554 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
555 * modified may need to be swapped out to swap space and (later) to be read
556 * back into memory.
557 */
558
559 /*
560 * The zone field is never updated after free_area_init_core()
561 * sets it, so none of the operations on it need to be atomic.
562 */
563
564
565 /*
566 * page->flags layout:
567 *
568 * There are three possibilities for how page->flags get
569 * laid out. The first is for the normal case, without
570 * sparsemem. The second is for sparsemem when there is
571 * plenty of space for node and section. The last is when
572 * we have run out of space and have to fall back to an
573 * alternate (slower) way of determining the node.
574 *
575 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
576 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
577 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
578 */
579 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
580 #define SECTIONS_WIDTH SECTIONS_SHIFT
581 #else
582 #define SECTIONS_WIDTH 0
583 #endif
584
585 #define ZONES_WIDTH ZONES_SHIFT
586
587 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
588 #define NODES_WIDTH NODES_SHIFT
589 #else
590 #ifdef CONFIG_SPARSEMEM_VMEMMAP
591 #error "Vmemmap: No space for nodes field in page flags"
592 #endif
593 #define NODES_WIDTH 0
594 #endif
595
596 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
597 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
598 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
599 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
600
601 /*
602 * We are going to use the flags for the page to node mapping if its in
603 * there. This includes the case where there is no node, so it is implicit.
604 */
605 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
606 #define NODE_NOT_IN_PAGE_FLAGS
607 #endif
608
609 /*
610 * Define the bit shifts to access each section. For non-existent
611 * sections we define the shift as 0; that plus a 0 mask ensures
612 * the compiler will optimise away reference to them.
613 */
614 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
615 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
616 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
617
618 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619 #ifdef NODE_NOT_IN_PAGE_FLAGS
620 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
623 #else
624 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
625 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
627 #endif
628
629 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
630
631 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633 #endif
634
635 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
638 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
639
640 static inline enum zone_type page_zonenum(const struct page *page)
641 {
642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
643 }
644
645 /*
646 * The identification function is only used by the buddy allocator for
647 * determining if two pages could be buddies. We are not really
648 * identifying a zone since we could be using a the section number
649 * id if we have not node id available in page flags.
650 * We guarantee only that it will return the same value for two
651 * combinable pages in a zone.
652 */
653 static inline int page_zone_id(struct page *page)
654 {
655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
656 }
657
658 static inline int zone_to_nid(struct zone *zone)
659 {
660 #ifdef CONFIG_NUMA
661 return zone->node;
662 #else
663 return 0;
664 #endif
665 }
666
667 #ifdef NODE_NOT_IN_PAGE_FLAGS
668 extern int page_to_nid(const struct page *page);
669 #else
670 static inline int page_to_nid(const struct page *page)
671 {
672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
673 }
674 #endif
675
676 static inline struct zone *page_zone(const struct page *page)
677 {
678 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
679 }
680
681 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
682 static inline void set_page_section(struct page *page, unsigned long section)
683 {
684 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
685 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
686 }
687
688 static inline unsigned long page_to_section(const struct page *page)
689 {
690 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
691 }
692 #endif
693
694 static inline void set_page_zone(struct page *page, enum zone_type zone)
695 {
696 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
697 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
698 }
699
700 static inline void set_page_node(struct page *page, unsigned long node)
701 {
702 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
703 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
704 }
705
706 static inline void set_page_links(struct page *page, enum zone_type zone,
707 unsigned long node, unsigned long pfn)
708 {
709 set_page_zone(page, zone);
710 set_page_node(page, node);
711 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
712 set_page_section(page, pfn_to_section_nr(pfn));
713 #endif
714 }
715
716 /*
717 * Some inline functions in vmstat.h depend on page_zone()
718 */
719 #include <linux/vmstat.h>
720
721 static __always_inline void *lowmem_page_address(const struct page *page)
722 {
723 return __va(PFN_PHYS(page_to_pfn(page)));
724 }
725
726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
727 #define HASHED_PAGE_VIRTUAL
728 #endif
729
730 #if defined(WANT_PAGE_VIRTUAL)
731 #define page_address(page) ((page)->virtual)
732 #define set_page_address(page, address) \
733 do { \
734 (page)->virtual = (address); \
735 } while(0)
736 #define page_address_init() do { } while(0)
737 #endif
738
739 #if defined(HASHED_PAGE_VIRTUAL)
740 void *page_address(const struct page *page);
741 void set_page_address(struct page *page, void *virtual);
742 void page_address_init(void);
743 #endif
744
745 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
746 #define page_address(page) lowmem_page_address(page)
747 #define set_page_address(page, address) do { } while(0)
748 #define page_address_init() do { } while(0)
749 #endif
750
751 /*
752 * On an anonymous page mapped into a user virtual memory area,
753 * page->mapping points to its anon_vma, not to a struct address_space;
754 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
755 *
756 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
757 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
758 * and then page->mapping points, not to an anon_vma, but to a private
759 * structure which KSM associates with that merged page. See ksm.h.
760 *
761 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
762 *
763 * Please note that, confusingly, "page_mapping" refers to the inode
764 * address_space which maps the page from disk; whereas "page_mapped"
765 * refers to user virtual address space into which the page is mapped.
766 */
767 #define PAGE_MAPPING_ANON 1
768 #define PAGE_MAPPING_KSM 2
769 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
770
771 extern struct address_space swapper_space;
772 static inline struct address_space *page_mapping(struct page *page)
773 {
774 struct address_space *mapping = page->mapping;
775
776 VM_BUG_ON(PageSlab(page));
777 if (unlikely(PageSwapCache(page)))
778 mapping = &swapper_space;
779 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
780 mapping = NULL;
781 return mapping;
782 }
783
784 /* Neutral page->mapping pointer to address_space or anon_vma or other */
785 static inline void *page_rmapping(struct page *page)
786 {
787 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
788 }
789
790 static inline int PageAnon(struct page *page)
791 {
792 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
793 }
794
795 /*
796 * Return the pagecache index of the passed page. Regular pagecache pages
797 * use ->index whereas swapcache pages use ->private
798 */
799 static inline pgoff_t page_index(struct page *page)
800 {
801 if (unlikely(PageSwapCache(page)))
802 return page_private(page);
803 return page->index;
804 }
805
806 /*
807 * The atomic page->_mapcount, like _count, starts from -1:
808 * so that transitions both from it and to it can be tracked,
809 * using atomic_inc_and_test and atomic_add_negative(-1).
810 */
811 static inline void reset_page_mapcount(struct page *page)
812 {
813 atomic_set(&(page)->_mapcount, -1);
814 }
815
816 static inline int page_mapcount(struct page *page)
817 {
818 return atomic_read(&(page)->_mapcount) + 1;
819 }
820
821 /*
822 * Return true if this page is mapped into pagetables.
823 */
824 static inline int page_mapped(struct page *page)
825 {
826 return atomic_read(&(page)->_mapcount) >= 0;
827 }
828
829 /*
830 * Different kinds of faults, as returned by handle_mm_fault().
831 * Used to decide whether a process gets delivered SIGBUS or
832 * just gets major/minor fault counters bumped up.
833 */
834
835 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
836
837 #define VM_FAULT_OOM 0x0001
838 #define VM_FAULT_SIGBUS 0x0002
839 #define VM_FAULT_MAJOR 0x0004
840 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
841 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
842 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
843
844 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
845 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
846 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
847
848 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
849
850 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
851 VM_FAULT_HWPOISON_LARGE)
852
853 /* Encode hstate index for a hwpoisoned large page */
854 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
855 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
856
857 /*
858 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
859 */
860 extern void pagefault_out_of_memory(void);
861
862 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
863
864 /*
865 * Flags passed to show_mem() and show_free_areas() to suppress output in
866 * various contexts.
867 */
868 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
869
870 extern void show_free_areas(unsigned int flags);
871 extern bool skip_free_areas_node(unsigned int flags, int nid);
872
873 int shmem_lock(struct file *file, int lock, struct user_struct *user);
874 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
875 int shmem_zero_setup(struct vm_area_struct *);
876
877 extern int can_do_mlock(void);
878 extern int user_shm_lock(size_t, struct user_struct *);
879 extern void user_shm_unlock(size_t, struct user_struct *);
880
881 /*
882 * Parameter block passed down to zap_pte_range in exceptional cases.
883 */
884 struct zap_details {
885 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
886 struct address_space *check_mapping; /* Check page->mapping if set */
887 pgoff_t first_index; /* Lowest page->index to unmap */
888 pgoff_t last_index; /* Highest page->index to unmap */
889 };
890
891 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
892 pte_t pte);
893
894 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
895 unsigned long size);
896 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
897 unsigned long size, struct zap_details *);
898 unsigned long unmap_vmas(struct mmu_gather *tlb,
899 struct vm_area_struct *start_vma, unsigned long start_addr,
900 unsigned long end_addr, unsigned long *nr_accounted,
901 struct zap_details *);
902
903 /**
904 * mm_walk - callbacks for walk_page_range
905 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
906 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
907 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
908 * this handler is required to be able to handle
909 * pmd_trans_huge() pmds. They may simply choose to
910 * split_huge_page() instead of handling it explicitly.
911 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
912 * @pte_hole: if set, called for each hole at all levels
913 * @hugetlb_entry: if set, called for each hugetlb entry
914 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
915 * is used.
916 *
917 * (see walk_page_range for more details)
918 */
919 struct mm_walk {
920 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
921 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
922 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
923 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
924 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
925 int (*hugetlb_entry)(pte_t *, unsigned long,
926 unsigned long, unsigned long, struct mm_walk *);
927 struct mm_struct *mm;
928 void *private;
929 };
930
931 int walk_page_range(unsigned long addr, unsigned long end,
932 struct mm_walk *walk);
933 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
934 unsigned long end, unsigned long floor, unsigned long ceiling);
935 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
936 struct vm_area_struct *vma);
937 void unmap_mapping_range(struct address_space *mapping,
938 loff_t const holebegin, loff_t const holelen, int even_cows);
939 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
940 unsigned long *pfn);
941 int follow_phys(struct vm_area_struct *vma, unsigned long address,
942 unsigned int flags, unsigned long *prot, resource_size_t *phys);
943 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
944 void *buf, int len, int write);
945
946 static inline void unmap_shared_mapping_range(struct address_space *mapping,
947 loff_t const holebegin, loff_t const holelen)
948 {
949 unmap_mapping_range(mapping, holebegin, holelen, 0);
950 }
951
952 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
953 extern void truncate_setsize(struct inode *inode, loff_t newsize);
954 extern int vmtruncate(struct inode *inode, loff_t offset);
955 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
956
957 int truncate_inode_page(struct address_space *mapping, struct page *page);
958 int generic_error_remove_page(struct address_space *mapping, struct page *page);
959
960 int invalidate_inode_page(struct page *page);
961
962 #ifdef CONFIG_MMU
963 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
964 unsigned long address, unsigned int flags);
965 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
966 unsigned long address, unsigned int fault_flags);
967 #else
968 static inline int handle_mm_fault(struct mm_struct *mm,
969 struct vm_area_struct *vma, unsigned long address,
970 unsigned int flags)
971 {
972 /* should never happen if there's no MMU */
973 BUG();
974 return VM_FAULT_SIGBUS;
975 }
976 static inline int fixup_user_fault(struct task_struct *tsk,
977 struct mm_struct *mm, unsigned long address,
978 unsigned int fault_flags)
979 {
980 /* should never happen if there's no MMU */
981 BUG();
982 return -EFAULT;
983 }
984 #endif
985
986 extern int make_pages_present(unsigned long addr, unsigned long end);
987 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
988 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
989 void *buf, int len, int write);
990
991 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
992 unsigned long start, int len, unsigned int foll_flags,
993 struct page **pages, struct vm_area_struct **vmas,
994 int *nonblocking);
995 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
996 unsigned long start, int nr_pages, int write, int force,
997 struct page **pages, struct vm_area_struct **vmas);
998 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
999 struct page **pages);
1000 struct page *get_dump_page(unsigned long addr);
1001
1002 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1003 extern void do_invalidatepage(struct page *page, unsigned long offset);
1004
1005 int __set_page_dirty_nobuffers(struct page *page);
1006 int __set_page_dirty_no_writeback(struct page *page);
1007 int redirty_page_for_writepage(struct writeback_control *wbc,
1008 struct page *page);
1009 void account_page_dirtied(struct page *page, struct address_space *mapping);
1010 void account_page_writeback(struct page *page);
1011 int set_page_dirty(struct page *page);
1012 int set_page_dirty_lock(struct page *page);
1013 int clear_page_dirty_for_io(struct page *page);
1014
1015 /* Is the vma a continuation of the stack vma above it? */
1016 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1017 {
1018 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1019 }
1020
1021 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1022 unsigned long addr)
1023 {
1024 return (vma->vm_flags & VM_GROWSDOWN) &&
1025 (vma->vm_start == addr) &&
1026 !vma_growsdown(vma->vm_prev, addr);
1027 }
1028
1029 /* Is the vma a continuation of the stack vma below it? */
1030 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1031 {
1032 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1033 }
1034
1035 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1036 unsigned long addr)
1037 {
1038 return (vma->vm_flags & VM_GROWSUP) &&
1039 (vma->vm_end == addr) &&
1040 !vma_growsup(vma->vm_next, addr);
1041 }
1042
1043 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1044 unsigned long old_addr, struct vm_area_struct *new_vma,
1045 unsigned long new_addr, unsigned long len);
1046 extern unsigned long do_mremap(unsigned long addr,
1047 unsigned long old_len, unsigned long new_len,
1048 unsigned long flags, unsigned long new_addr);
1049 extern int mprotect_fixup(struct vm_area_struct *vma,
1050 struct vm_area_struct **pprev, unsigned long start,
1051 unsigned long end, unsigned long newflags);
1052
1053 /*
1054 * doesn't attempt to fault and will return short.
1055 */
1056 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1057 struct page **pages);
1058 /*
1059 * per-process(per-mm_struct) statistics.
1060 */
1061 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1062 {
1063 atomic_long_set(&mm->rss_stat.count[member], value);
1064 }
1065
1066 #if defined(SPLIT_RSS_COUNTING)
1067 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1068 #else
1069 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1070 {
1071 return atomic_long_read(&mm->rss_stat.count[member]);
1072 }
1073 #endif
1074
1075 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1076 {
1077 atomic_long_add(value, &mm->rss_stat.count[member]);
1078 }
1079
1080 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1081 {
1082 atomic_long_inc(&mm->rss_stat.count[member]);
1083 }
1084
1085 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1086 {
1087 atomic_long_dec(&mm->rss_stat.count[member]);
1088 }
1089
1090 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1091 {
1092 return get_mm_counter(mm, MM_FILEPAGES) +
1093 get_mm_counter(mm, MM_ANONPAGES);
1094 }
1095
1096 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1097 {
1098 return max(mm->hiwater_rss, get_mm_rss(mm));
1099 }
1100
1101 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1102 {
1103 return max(mm->hiwater_vm, mm->total_vm);
1104 }
1105
1106 static inline void update_hiwater_rss(struct mm_struct *mm)
1107 {
1108 unsigned long _rss = get_mm_rss(mm);
1109
1110 if ((mm)->hiwater_rss < _rss)
1111 (mm)->hiwater_rss = _rss;
1112 }
1113
1114 static inline void update_hiwater_vm(struct mm_struct *mm)
1115 {
1116 if (mm->hiwater_vm < mm->total_vm)
1117 mm->hiwater_vm = mm->total_vm;
1118 }
1119
1120 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1121 struct mm_struct *mm)
1122 {
1123 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1124
1125 if (*maxrss < hiwater_rss)
1126 *maxrss = hiwater_rss;
1127 }
1128
1129 #if defined(SPLIT_RSS_COUNTING)
1130 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1131 #else
1132 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1133 {
1134 }
1135 #endif
1136
1137 int vma_wants_writenotify(struct vm_area_struct *vma);
1138
1139 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1140 spinlock_t **ptl);
1141 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1142 spinlock_t **ptl)
1143 {
1144 pte_t *ptep;
1145 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1146 return ptep;
1147 }
1148
1149 #ifdef __PAGETABLE_PUD_FOLDED
1150 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1151 unsigned long address)
1152 {
1153 return 0;
1154 }
1155 #else
1156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1157 #endif
1158
1159 #ifdef __PAGETABLE_PMD_FOLDED
1160 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1161 unsigned long address)
1162 {
1163 return 0;
1164 }
1165 #else
1166 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1167 #endif
1168
1169 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1170 pmd_t *pmd, unsigned long address);
1171 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1172
1173 /*
1174 * The following ifdef needed to get the 4level-fixup.h header to work.
1175 * Remove it when 4level-fixup.h has been removed.
1176 */
1177 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1178 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1179 {
1180 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1181 NULL: pud_offset(pgd, address);
1182 }
1183
1184 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1185 {
1186 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1187 NULL: pmd_offset(pud, address);
1188 }
1189 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1190
1191 #if USE_SPLIT_PTLOCKS
1192 /*
1193 * We tuck a spinlock to guard each pagetable page into its struct page,
1194 * at page->private, with BUILD_BUG_ON to make sure that this will not
1195 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1196 * When freeing, reset page->mapping so free_pages_check won't complain.
1197 */
1198 #define __pte_lockptr(page) &((page)->ptl)
1199 #define pte_lock_init(_page) do { \
1200 spin_lock_init(__pte_lockptr(_page)); \
1201 } while (0)
1202 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1203 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1204 #else /* !USE_SPLIT_PTLOCKS */
1205 /*
1206 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1207 */
1208 #define pte_lock_init(page) do {} while (0)
1209 #define pte_lock_deinit(page) do {} while (0)
1210 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1211 #endif /* USE_SPLIT_PTLOCKS */
1212
1213 static inline void pgtable_page_ctor(struct page *page)
1214 {
1215 pte_lock_init(page);
1216 inc_zone_page_state(page, NR_PAGETABLE);
1217 }
1218
1219 static inline void pgtable_page_dtor(struct page *page)
1220 {
1221 pte_lock_deinit(page);
1222 dec_zone_page_state(page, NR_PAGETABLE);
1223 }
1224
1225 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1226 ({ \
1227 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1228 pte_t *__pte = pte_offset_map(pmd, address); \
1229 *(ptlp) = __ptl; \
1230 spin_lock(__ptl); \
1231 __pte; \
1232 })
1233
1234 #define pte_unmap_unlock(pte, ptl) do { \
1235 spin_unlock(ptl); \
1236 pte_unmap(pte); \
1237 } while (0)
1238
1239 #define pte_alloc_map(mm, vma, pmd, address) \
1240 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1241 pmd, address))? \
1242 NULL: pte_offset_map(pmd, address))
1243
1244 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1245 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1246 pmd, address))? \
1247 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1248
1249 #define pte_alloc_kernel(pmd, address) \
1250 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1251 NULL: pte_offset_kernel(pmd, address))
1252
1253 extern void free_area_init(unsigned long * zones_size);
1254 extern void free_area_init_node(int nid, unsigned long * zones_size,
1255 unsigned long zone_start_pfn, unsigned long *zholes_size);
1256 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1257 /*
1258 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1259 * zones, allocate the backing mem_map and account for memory holes in a more
1260 * architecture independent manner. This is a substitute for creating the
1261 * zone_sizes[] and zholes_size[] arrays and passing them to
1262 * free_area_init_node()
1263 *
1264 * An architecture is expected to register range of page frames backed by
1265 * physical memory with add_active_range() before calling
1266 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1267 * usage, an architecture is expected to do something like
1268 *
1269 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1270 * max_highmem_pfn};
1271 * for_each_valid_physical_page_range()
1272 * add_active_range(node_id, start_pfn, end_pfn)
1273 * free_area_init_nodes(max_zone_pfns);
1274 *
1275 * If the architecture guarantees that there are no holes in the ranges
1276 * registered with add_active_range(), free_bootmem_active_regions()
1277 * will call free_bootmem_node() for each registered physical page range.
1278 * Similarly sparse_memory_present_with_active_regions() calls
1279 * memory_present() for each range when SPARSEMEM is enabled.
1280 *
1281 * See mm/page_alloc.c for more information on each function exposed by
1282 * CONFIG_ARCH_POPULATES_NODE_MAP
1283 */
1284 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1285 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1286 unsigned long end_pfn);
1287 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1288 unsigned long end_pfn);
1289 extern void remove_all_active_ranges(void);
1290 void sort_node_map(void);
1291 unsigned long node_map_pfn_alignment(void);
1292 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1293 unsigned long end_pfn);
1294 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1295 unsigned long end_pfn);
1296 extern void get_pfn_range_for_nid(unsigned int nid,
1297 unsigned long *start_pfn, unsigned long *end_pfn);
1298 extern unsigned long find_min_pfn_with_active_regions(void);
1299 extern void free_bootmem_with_active_regions(int nid,
1300 unsigned long max_low_pfn);
1301 int add_from_early_node_map(struct range *range, int az,
1302 int nr_range, int nid);
1303 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1304 u64 goal, u64 limit);
1305 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1306 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1307 extern void sparse_memory_present_with_active_regions(int nid);
1308 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1309
1310 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1311 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1312 static inline int __early_pfn_to_nid(unsigned long pfn)
1313 {
1314 return 0;
1315 }
1316 #else
1317 /* please see mm/page_alloc.c */
1318 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1319 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1320 /* there is a per-arch backend function. */
1321 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1323 #endif
1324
1325 extern void set_dma_reserve(unsigned long new_dma_reserve);
1326 extern void memmap_init_zone(unsigned long, int, unsigned long,
1327 unsigned long, enum memmap_context);
1328 extern void setup_per_zone_wmarks(void);
1329 extern int __meminit init_per_zone_wmark_min(void);
1330 extern void mem_init(void);
1331 extern void __init mmap_init(void);
1332 extern void show_mem(unsigned int flags);
1333 extern void si_meminfo(struct sysinfo * val);
1334 extern void si_meminfo_node(struct sysinfo *val, int nid);
1335 extern int after_bootmem;
1336
1337 extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1338
1339 extern void setup_per_cpu_pageset(void);
1340
1341 extern void zone_pcp_update(struct zone *zone);
1342
1343 /* nommu.c */
1344 extern atomic_long_t mmap_pages_allocated;
1345 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1346
1347 /* prio_tree.c */
1348 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1349 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1350 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1351 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1352 struct prio_tree_iter *iter);
1353
1354 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1355 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1356 (vma = vma_prio_tree_next(vma, iter)); )
1357
1358 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1359 struct list_head *list)
1360 {
1361 vma->shared.vm_set.parent = NULL;
1362 list_add_tail(&vma->shared.vm_set.list, list);
1363 }
1364
1365 /* mmap.c */
1366 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1367 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1368 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1369 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1370 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1371 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1372 struct mempolicy *);
1373 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1374 extern int split_vma(struct mm_struct *,
1375 struct vm_area_struct *, unsigned long addr, int new_below);
1376 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1377 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1378 struct rb_node **, struct rb_node *);
1379 extern void unlink_file_vma(struct vm_area_struct *);
1380 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1381 unsigned long addr, unsigned long len, pgoff_t pgoff);
1382 extern void exit_mmap(struct mm_struct *);
1383
1384 extern int mm_take_all_locks(struct mm_struct *mm);
1385 extern void mm_drop_all_locks(struct mm_struct *mm);
1386
1387 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1388 extern void added_exe_file_vma(struct mm_struct *mm);
1389 extern void removed_exe_file_vma(struct mm_struct *mm);
1390 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1391 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1392
1393 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1394 extern int install_special_mapping(struct mm_struct *mm,
1395 unsigned long addr, unsigned long len,
1396 unsigned long flags, struct page **pages);
1397
1398 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1399
1400 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1401 unsigned long len, unsigned long prot,
1402 unsigned long flag, unsigned long pgoff);
1403 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1404 unsigned long len, unsigned long flags,
1405 vm_flags_t vm_flags, unsigned long pgoff);
1406
1407 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1408 unsigned long len, unsigned long prot,
1409 unsigned long flag, unsigned long offset)
1410 {
1411 unsigned long ret = -EINVAL;
1412 if ((offset + PAGE_ALIGN(len)) < offset)
1413 goto out;
1414 if (!(offset & ~PAGE_MASK))
1415 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1416 out:
1417 return ret;
1418 }
1419
1420 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1421
1422 extern unsigned long do_brk(unsigned long, unsigned long);
1423
1424 /* truncate.c */
1425 extern void truncate_inode_pages(struct address_space *, loff_t);
1426 extern void truncate_inode_pages_range(struct address_space *,
1427 loff_t lstart, loff_t lend);
1428
1429 /* generic vm_area_ops exported for stackable file systems */
1430 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1431
1432 /* mm/page-writeback.c */
1433 int write_one_page(struct page *page, int wait);
1434 void task_dirty_inc(struct task_struct *tsk);
1435
1436 /* readahead.c */
1437 #define VM_MAX_READAHEAD 128 /* kbytes */
1438 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1439
1440 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1441 pgoff_t offset, unsigned long nr_to_read);
1442
1443 void page_cache_sync_readahead(struct address_space *mapping,
1444 struct file_ra_state *ra,
1445 struct file *filp,
1446 pgoff_t offset,
1447 unsigned long size);
1448
1449 void page_cache_async_readahead(struct address_space *mapping,
1450 struct file_ra_state *ra,
1451 struct file *filp,
1452 struct page *pg,
1453 pgoff_t offset,
1454 unsigned long size);
1455
1456 unsigned long max_sane_readahead(unsigned long nr);
1457 unsigned long ra_submit(struct file_ra_state *ra,
1458 struct address_space *mapping,
1459 struct file *filp);
1460
1461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1462 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1463
1464 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1465 extern int expand_downwards(struct vm_area_struct *vma,
1466 unsigned long address);
1467 #if VM_GROWSUP
1468 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1469 #else
1470 #define expand_upwards(vma, address) do { } while (0)
1471 #endif
1472
1473 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1474 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1475 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1476 struct vm_area_struct **pprev);
1477
1478 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1479 NULL if none. Assume start_addr < end_addr. */
1480 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1481 {
1482 struct vm_area_struct * vma = find_vma(mm,start_addr);
1483
1484 if (vma && end_addr <= vma->vm_start)
1485 vma = NULL;
1486 return vma;
1487 }
1488
1489 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1490 {
1491 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1492 }
1493
1494 #ifdef CONFIG_MMU
1495 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1496 #else
1497 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1498 {
1499 return __pgprot(0);
1500 }
1501 #endif
1502
1503 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1504 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1505 unsigned long pfn, unsigned long size, pgprot_t);
1506 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1507 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1508 unsigned long pfn);
1509 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1510 unsigned long pfn);
1511
1512 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1513 unsigned int foll_flags);
1514 #define FOLL_WRITE 0x01 /* check pte is writable */
1515 #define FOLL_TOUCH 0x02 /* mark page accessed */
1516 #define FOLL_GET 0x04 /* do get_page on page */
1517 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1518 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1519 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1520 * and return without waiting upon it */
1521 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1522 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1523 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1524
1525 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1526 void *data);
1527 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1528 unsigned long size, pte_fn_t fn, void *data);
1529
1530 #ifdef CONFIG_PROC_FS
1531 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1532 #else
1533 static inline void vm_stat_account(struct mm_struct *mm,
1534 unsigned long flags, struct file *file, long pages)
1535 {
1536 }
1537 #endif /* CONFIG_PROC_FS */
1538
1539 #ifdef CONFIG_DEBUG_PAGEALLOC
1540 extern int debug_pagealloc_enabled;
1541
1542 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1543
1544 static inline void enable_debug_pagealloc(void)
1545 {
1546 debug_pagealloc_enabled = 1;
1547 }
1548 #ifdef CONFIG_HIBERNATION
1549 extern bool kernel_page_present(struct page *page);
1550 #endif /* CONFIG_HIBERNATION */
1551 #else
1552 static inline void
1553 kernel_map_pages(struct page *page, int numpages, int enable) {}
1554 static inline void enable_debug_pagealloc(void)
1555 {
1556 }
1557 #ifdef CONFIG_HIBERNATION
1558 static inline bool kernel_page_present(struct page *page) { return true; }
1559 #endif /* CONFIG_HIBERNATION */
1560 #endif
1561
1562 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1563 #ifdef __HAVE_ARCH_GATE_AREA
1564 int in_gate_area_no_mm(unsigned long addr);
1565 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1566 #else
1567 int in_gate_area_no_mm(unsigned long addr);
1568 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1569 #endif /* __HAVE_ARCH_GATE_AREA */
1570
1571 int drop_caches_sysctl_handler(struct ctl_table *, int,
1572 void __user *, size_t *, loff_t *);
1573 unsigned long shrink_slab(struct shrink_control *shrink,
1574 unsigned long nr_pages_scanned,
1575 unsigned long lru_pages);
1576
1577 #ifndef CONFIG_MMU
1578 #define randomize_va_space 0
1579 #else
1580 extern int randomize_va_space;
1581 #endif
1582
1583 const char * arch_vma_name(struct vm_area_struct *vma);
1584 void print_vma_addr(char *prefix, unsigned long rip);
1585
1586 void sparse_mem_maps_populate_node(struct page **map_map,
1587 unsigned long pnum_begin,
1588 unsigned long pnum_end,
1589 unsigned long map_count,
1590 int nodeid);
1591
1592 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1593 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1594 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1595 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1596 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1597 void *vmemmap_alloc_block(unsigned long size, int node);
1598 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1599 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1600 int vmemmap_populate_basepages(struct page *start_page,
1601 unsigned long pages, int node);
1602 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1603 void vmemmap_populate_print_last(void);
1604
1605
1606 enum mf_flags {
1607 MF_COUNT_INCREASED = 1 << 0,
1608 };
1609 extern void memory_failure(unsigned long pfn, int trapno);
1610 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1611 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1612 extern int unpoison_memory(unsigned long pfn);
1613 extern int sysctl_memory_failure_early_kill;
1614 extern int sysctl_memory_failure_recovery;
1615 extern void shake_page(struct page *p, int access);
1616 extern atomic_long_t mce_bad_pages;
1617 extern int soft_offline_page(struct page *page, int flags);
1618
1619 extern void dump_page(struct page *page);
1620
1621 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1622 extern void clear_huge_page(struct page *page,
1623 unsigned long addr,
1624 unsigned int pages_per_huge_page);
1625 extern void copy_user_huge_page(struct page *dst, struct page *src,
1626 unsigned long addr, struct vm_area_struct *vma,
1627 unsigned int pages_per_huge_page);
1628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1629
1630 #endif /* __KERNEL__ */
1631 #endif /* _LINUX_MM_H */