Merge master.kernel.org:/home/rmk/linux-2.6-serial
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/config.h>
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16
17 struct mempolicy;
18 struct anon_vma;
19
20 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
21 extern unsigned long max_mapnr;
22 #endif
23
24 extern unsigned long num_physpages;
25 extern void * high_memory;
26 extern unsigned long vmalloc_earlyreserve;
27 extern int page_cluster;
28
29 #ifdef CONFIG_SYSCTL
30 extern int sysctl_legacy_va_layout;
31 #else
32 #define sysctl_legacy_va_layout 0
33 #endif
34
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/processor.h>
38 #include <asm/atomic.h>
39
40 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
41
42 /*
43 * Linux kernel virtual memory manager primitives.
44 * The idea being to have a "virtual" mm in the same way
45 * we have a virtual fs - giving a cleaner interface to the
46 * mm details, and allowing different kinds of memory mappings
47 * (from shared memory to executable loading to arbitrary
48 * mmap() functions).
49 */
50
51 /*
52 * This struct defines a memory VMM memory area. There is one of these
53 * per VM-area/task. A VM area is any part of the process virtual memory
54 * space that has a special rule for the page-fault handlers (ie a shared
55 * library, the executable area etc).
56 */
57 struct vm_area_struct {
58 struct mm_struct * vm_mm; /* The address space we belong to. */
59 unsigned long vm_start; /* Our start address within vm_mm. */
60 unsigned long vm_end; /* The first byte after our end address
61 within vm_mm. */
62
63 /* linked list of VM areas per task, sorted by address */
64 struct vm_area_struct *vm_next;
65
66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
67 unsigned long vm_flags; /* Flags, listed below. */
68
69 struct rb_node vm_rb;
70
71 /*
72 * For areas with an address space and backing store,
73 * linkage into the address_space->i_mmap prio tree, or
74 * linkage to the list of like vmas hanging off its node, or
75 * linkage of vma in the address_space->i_mmap_nonlinear list.
76 */
77 union {
78 struct {
79 struct list_head list;
80 void *parent; /* aligns with prio_tree_node parent */
81 struct vm_area_struct *head;
82 } vm_set;
83
84 struct raw_prio_tree_node prio_tree_node;
85 } shared;
86
87 /*
88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
89 * list, after a COW of one of the file pages. A MAP_SHARED vma
90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
91 * or brk vma (with NULL file) can only be in an anon_vma list.
92 */
93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
95
96 /* Function pointers to deal with this struct. */
97 struct vm_operations_struct * vm_ops;
98
99 /* Information about our backing store: */
100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
101 units, *not* PAGE_CACHE_SIZE */
102 struct file * vm_file; /* File we map to (can be NULL). */
103 void * vm_private_data; /* was vm_pte (shared mem) */
104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
105
106 #ifndef CONFIG_MMU
107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
108 #endif
109 #ifdef CONFIG_NUMA
110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
111 #endif
112 };
113
114 /*
115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
116 * disabled, then there's a single shared list of VMAs maintained by the
117 * system, and mm's subscribe to these individually
118 */
119 struct vm_list_struct {
120 struct vm_list_struct *next;
121 struct vm_area_struct *vma;
122 };
123
124 #ifndef CONFIG_MMU
125 extern struct rb_root nommu_vma_tree;
126 extern struct rw_semaphore nommu_vma_sem;
127
128 extern unsigned int kobjsize(const void *objp);
129 #endif
130
131 /*
132 * vm_flags..
133 */
134 #define VM_READ 0x00000001 /* currently active flags */
135 #define VM_WRITE 0x00000002
136 #define VM_EXEC 0x00000004
137 #define VM_SHARED 0x00000008
138
139 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
140 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
141 #define VM_MAYWRITE 0x00000020
142 #define VM_MAYEXEC 0x00000040
143 #define VM_MAYSHARE 0x00000080
144
145 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
146 #define VM_GROWSUP 0x00000200
147 #define VM_SHM 0x00000000 /* Means nothing: delete it later */
148 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
149 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
150
151 #define VM_EXECUTABLE 0x00001000
152 #define VM_LOCKED 0x00002000
153 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
154
155 /* Used by sys_madvise() */
156 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
157 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
158
159 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
160 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
161 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
162 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
163 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
164 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
165 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
166 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
167
168 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
169 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
170 #endif
171
172 #ifdef CONFIG_STACK_GROWSUP
173 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
174 #else
175 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
176 #endif
177
178 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
179 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
180 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
181 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
182 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
183
184 /*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188 extern pgprot_t protection_map[16];
189
190
191 /*
192 * These are the virtual MM functions - opening of an area, closing and
193 * unmapping it (needed to keep files on disk up-to-date etc), pointer
194 * to the functions called when a no-page or a wp-page exception occurs.
195 */
196 struct vm_operations_struct {
197 void (*open)(struct vm_area_struct * area);
198 void (*close)(struct vm_area_struct * area);
199 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
200 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
201 #ifdef CONFIG_NUMA
202 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
204 unsigned long addr);
205 #endif
206 };
207
208 struct mmu_gather;
209 struct inode;
210
211 /*
212 * Each physical page in the system has a struct page associated with
213 * it to keep track of whatever it is we are using the page for at the
214 * moment. Note that we have no way to track which tasks are using
215 * a page.
216 */
217 struct page {
218 unsigned long flags; /* Atomic flags, some possibly
219 * updated asynchronously */
220 atomic_t _count; /* Usage count, see below. */
221 atomic_t _mapcount; /* Count of ptes mapped in mms,
222 * to show when page is mapped
223 * & limit reverse map searches.
224 */
225 union {
226 struct {
227 unsigned long private; /* Mapping-private opaque data:
228 * usually used for buffer_heads
229 * if PagePrivate set; used for
230 * swp_entry_t if PageSwapCache.
231 * When page is free, this
232 * indicates order in the buddy
233 * system.
234 */
235 struct address_space *mapping; /* If low bit clear, points to
236 * inode address_space, or NULL.
237 * If page mapped as anonymous
238 * memory, low bit is set, and
239 * it points to anon_vma object:
240 * see PAGE_MAPPING_ANON below.
241 */
242 };
243 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
244 spinlock_t ptl;
245 #endif
246 };
247 pgoff_t index; /* Our offset within mapping. */
248 struct list_head lru; /* Pageout list, eg. active_list
249 * protected by zone->lru_lock !
250 */
251 /*
252 * On machines where all RAM is mapped into kernel address space,
253 * we can simply calculate the virtual address. On machines with
254 * highmem some memory is mapped into kernel virtual memory
255 * dynamically, so we need a place to store that address.
256 * Note that this field could be 16 bits on x86 ... ;)
257 *
258 * Architectures with slow multiplication can define
259 * WANT_PAGE_VIRTUAL in asm/page.h
260 */
261 #if defined(WANT_PAGE_VIRTUAL)
262 void *virtual; /* Kernel virtual address (NULL if
263 not kmapped, ie. highmem) */
264 #endif /* WANT_PAGE_VIRTUAL */
265 };
266
267 #define page_private(page) ((page)->private)
268 #define set_page_private(page, v) ((page)->private = (v))
269
270 /*
271 * FIXME: take this include out, include page-flags.h in
272 * files which need it (119 of them)
273 */
274 #include <linux/page-flags.h>
275
276 /*
277 * Methods to modify the page usage count.
278 *
279 * What counts for a page usage:
280 * - cache mapping (page->mapping)
281 * - private data (page->private)
282 * - page mapped in a task's page tables, each mapping
283 * is counted separately
284 *
285 * Also, many kernel routines increase the page count before a critical
286 * routine so they can be sure the page doesn't go away from under them.
287 *
288 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
289 * can use atomic_add_negative(-1, page->_count) to detect when the page
290 * becomes free and so that we can also use atomic_inc_and_test to atomically
291 * detect when we just tried to grab a ref on a page which some other CPU has
292 * already deemed to be freeable.
293 *
294 * NO code should make assumptions about this internal detail! Use the provided
295 * macros which retain the old rules: page_count(page) == 0 is a free page.
296 */
297
298 /*
299 * Drop a ref, return true if the logical refcount fell to zero (the page has
300 * no users)
301 */
302 #define put_page_testzero(p) \
303 ({ \
304 BUG_ON(page_count(p) == 0); \
305 atomic_add_negative(-1, &(p)->_count); \
306 })
307
308 /*
309 * Grab a ref, return true if the page previously had a logical refcount of
310 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
311 */
312 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
313
314 #define set_page_count(p,v) atomic_set(&(p)->_count, (v) - 1)
315 #define __put_page(p) atomic_dec(&(p)->_count)
316
317 extern void FASTCALL(__page_cache_release(struct page *));
318
319 static inline int page_count(struct page *page)
320 {
321 if (PageCompound(page))
322 page = (struct page *)page_private(page);
323 return atomic_read(&page->_count) + 1;
324 }
325
326 static inline void get_page(struct page *page)
327 {
328 if (unlikely(PageCompound(page)))
329 page = (struct page *)page_private(page);
330 atomic_inc(&page->_count);
331 }
332
333 void put_page(struct page *page);
334
335 /*
336 * Multiple processes may "see" the same page. E.g. for untouched
337 * mappings of /dev/null, all processes see the same page full of
338 * zeroes, and text pages of executables and shared libraries have
339 * only one copy in memory, at most, normally.
340 *
341 * For the non-reserved pages, page_count(page) denotes a reference count.
342 * page_count() == 0 means the page is free. page->lru is then used for
343 * freelist management in the buddy allocator.
344 * page_count() == 1 means the page is used for exactly one purpose
345 * (e.g. a private data page of one process).
346 *
347 * A page may be used for kmalloc() or anyone else who does a
348 * __get_free_page(). In this case the page_count() is at least 1, and
349 * all other fields are unused but should be 0 or NULL. The
350 * management of this page is the responsibility of the one who uses
351 * it.
352 *
353 * The other pages (we may call them "process pages") are completely
354 * managed by the Linux memory manager: I/O, buffers, swapping etc.
355 * The following discussion applies only to them.
356 *
357 * A page may belong to an inode's memory mapping. In this case,
358 * page->mapping is the pointer to the inode, and page->index is the
359 * file offset of the page, in units of PAGE_CACHE_SIZE.
360 *
361 * A page contains an opaque `private' member, which belongs to the
362 * page's address_space. Usually, this is the address of a circular
363 * list of the page's disk buffers.
364 *
365 * For pages belonging to inodes, the page_count() is the number of
366 * attaches, plus 1 if `private' contains something, plus one for
367 * the page cache itself.
368 *
369 * Instead of keeping dirty/clean pages in per address-space lists, we instead
370 * now tag pages as dirty/under writeback in the radix tree.
371 *
372 * There is also a per-mapping radix tree mapping index to the page
373 * in memory if present. The tree is rooted at mapping->root.
374 *
375 * All process pages can do I/O:
376 * - inode pages may need to be read from disk,
377 * - inode pages which have been modified and are MAP_SHARED may need
378 * to be written to disk,
379 * - private pages which have been modified may need to be swapped out
380 * to swap space and (later) to be read back into memory.
381 */
382
383 /*
384 * The zone field is never updated after free_area_init_core()
385 * sets it, so none of the operations on it need to be atomic.
386 */
387
388
389 /*
390 * page->flags layout:
391 *
392 * There are three possibilities for how page->flags get
393 * laid out. The first is for the normal case, without
394 * sparsemem. The second is for sparsemem when there is
395 * plenty of space for node and section. The last is when
396 * we have run out of space and have to fall back to an
397 * alternate (slower) way of determining the node.
398 *
399 * No sparsemem: | NODE | ZONE | ... | FLAGS |
400 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
401 * no space for node: | SECTION | ZONE | ... | FLAGS |
402 */
403 #ifdef CONFIG_SPARSEMEM
404 #define SECTIONS_WIDTH SECTIONS_SHIFT
405 #else
406 #define SECTIONS_WIDTH 0
407 #endif
408
409 #define ZONES_WIDTH ZONES_SHIFT
410
411 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
412 #define NODES_WIDTH NODES_SHIFT
413 #else
414 #define NODES_WIDTH 0
415 #endif
416
417 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
418 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
419 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
420 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
421
422 /*
423 * We are going to use the flags for the page to node mapping if its in
424 * there. This includes the case where there is no node, so it is implicit.
425 */
426 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
427
428 #ifndef PFN_SECTION_SHIFT
429 #define PFN_SECTION_SHIFT 0
430 #endif
431
432 /*
433 * Define the bit shifts to access each section. For non-existant
434 * sections we define the shift as 0; that plus a 0 mask ensures
435 * the compiler will optimise away reference to them.
436 */
437 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
438 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
439 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
440
441 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
442 #if FLAGS_HAS_NODE
443 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
444 #else
445 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
446 #endif
447 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
448
449 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
450 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
451 #endif
452
453 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
454 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
455 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
456 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
457
458 static inline unsigned long page_zonenum(struct page *page)
459 {
460 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
461 }
462
463 struct zone;
464 extern struct zone *zone_table[];
465
466 static inline struct zone *page_zone(struct page *page)
467 {
468 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
469 ZONETABLE_MASK];
470 }
471
472 static inline unsigned long page_to_nid(struct page *page)
473 {
474 if (FLAGS_HAS_NODE)
475 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
476 else
477 return page_zone(page)->zone_pgdat->node_id;
478 }
479 static inline unsigned long page_to_section(struct page *page)
480 {
481 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
482 }
483
484 static inline void set_page_zone(struct page *page, unsigned long zone)
485 {
486 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
487 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
488 }
489 static inline void set_page_node(struct page *page, unsigned long node)
490 {
491 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
492 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
493 }
494 static inline void set_page_section(struct page *page, unsigned long section)
495 {
496 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
497 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
498 }
499
500 static inline void set_page_links(struct page *page, unsigned long zone,
501 unsigned long node, unsigned long pfn)
502 {
503 set_page_zone(page, zone);
504 set_page_node(page, node);
505 set_page_section(page, pfn_to_section_nr(pfn));
506 }
507
508 #ifndef CONFIG_DISCONTIGMEM
509 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
510 extern struct page *mem_map;
511 #endif
512
513 static inline void *lowmem_page_address(struct page *page)
514 {
515 return __va(page_to_pfn(page) << PAGE_SHIFT);
516 }
517
518 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
519 #define HASHED_PAGE_VIRTUAL
520 #endif
521
522 #if defined(WANT_PAGE_VIRTUAL)
523 #define page_address(page) ((page)->virtual)
524 #define set_page_address(page, address) \
525 do { \
526 (page)->virtual = (address); \
527 } while(0)
528 #define page_address_init() do { } while(0)
529 #endif
530
531 #if defined(HASHED_PAGE_VIRTUAL)
532 void *page_address(struct page *page);
533 void set_page_address(struct page *page, void *virtual);
534 void page_address_init(void);
535 #endif
536
537 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
538 #define page_address(page) lowmem_page_address(page)
539 #define set_page_address(page, address) do { } while(0)
540 #define page_address_init() do { } while(0)
541 #endif
542
543 /*
544 * On an anonymous page mapped into a user virtual memory area,
545 * page->mapping points to its anon_vma, not to a struct address_space;
546 * with the PAGE_MAPPING_ANON bit set to distinguish it.
547 *
548 * Please note that, confusingly, "page_mapping" refers to the inode
549 * address_space which maps the page from disk; whereas "page_mapped"
550 * refers to user virtual address space into which the page is mapped.
551 */
552 #define PAGE_MAPPING_ANON 1
553
554 extern struct address_space swapper_space;
555 static inline struct address_space *page_mapping(struct page *page)
556 {
557 struct address_space *mapping = page->mapping;
558
559 if (unlikely(PageSwapCache(page)))
560 mapping = &swapper_space;
561 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
562 mapping = NULL;
563 return mapping;
564 }
565
566 static inline int PageAnon(struct page *page)
567 {
568 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
569 }
570
571 /*
572 * Return the pagecache index of the passed page. Regular pagecache pages
573 * use ->index whereas swapcache pages use ->private
574 */
575 static inline pgoff_t page_index(struct page *page)
576 {
577 if (unlikely(PageSwapCache(page)))
578 return page_private(page);
579 return page->index;
580 }
581
582 /*
583 * The atomic page->_mapcount, like _count, starts from -1:
584 * so that transitions both from it and to it can be tracked,
585 * using atomic_inc_and_test and atomic_add_negative(-1).
586 */
587 static inline void reset_page_mapcount(struct page *page)
588 {
589 atomic_set(&(page)->_mapcount, -1);
590 }
591
592 static inline int page_mapcount(struct page *page)
593 {
594 return atomic_read(&(page)->_mapcount) + 1;
595 }
596
597 /*
598 * Return true if this page is mapped into pagetables.
599 */
600 static inline int page_mapped(struct page *page)
601 {
602 return atomic_read(&(page)->_mapcount) >= 0;
603 }
604
605 /*
606 * Error return values for the *_nopage functions
607 */
608 #define NOPAGE_SIGBUS (NULL)
609 #define NOPAGE_OOM ((struct page *) (-1))
610
611 /*
612 * Different kinds of faults, as returned by handle_mm_fault().
613 * Used to decide whether a process gets delivered SIGBUS or
614 * just gets major/minor fault counters bumped up.
615 */
616 #define VM_FAULT_OOM 0x00
617 #define VM_FAULT_SIGBUS 0x01
618 #define VM_FAULT_MINOR 0x02
619 #define VM_FAULT_MAJOR 0x03
620
621 /*
622 * Special case for get_user_pages.
623 * Must be in a distinct bit from the above VM_FAULT_ flags.
624 */
625 #define VM_FAULT_WRITE 0x10
626
627 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
628
629 extern void show_free_areas(void);
630
631 #ifdef CONFIG_SHMEM
632 struct page *shmem_nopage(struct vm_area_struct *vma,
633 unsigned long address, int *type);
634 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
635 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
636 unsigned long addr);
637 int shmem_lock(struct file *file, int lock, struct user_struct *user);
638 #else
639 #define shmem_nopage filemap_nopage
640
641 static inline int shmem_lock(struct file *file, int lock,
642 struct user_struct *user)
643 {
644 return 0;
645 }
646
647 static inline int shmem_set_policy(struct vm_area_struct *vma,
648 struct mempolicy *new)
649 {
650 return 0;
651 }
652
653 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
654 unsigned long addr)
655 {
656 return NULL;
657 }
658 #endif
659 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
660 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
661
662 int shmem_zero_setup(struct vm_area_struct *);
663
664 #ifndef CONFIG_MMU
665 extern unsigned long shmem_get_unmapped_area(struct file *file,
666 unsigned long addr,
667 unsigned long len,
668 unsigned long pgoff,
669 unsigned long flags);
670 #endif
671
672 static inline int can_do_mlock(void)
673 {
674 if (capable(CAP_IPC_LOCK))
675 return 1;
676 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
677 return 1;
678 return 0;
679 }
680 extern int user_shm_lock(size_t, struct user_struct *);
681 extern void user_shm_unlock(size_t, struct user_struct *);
682
683 /*
684 * Parameter block passed down to zap_pte_range in exceptional cases.
685 */
686 struct zap_details {
687 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
688 struct address_space *check_mapping; /* Check page->mapping if set */
689 pgoff_t first_index; /* Lowest page->index to unmap */
690 pgoff_t last_index; /* Highest page->index to unmap */
691 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
692 unsigned long truncate_count; /* Compare vm_truncate_count */
693 };
694
695 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
696 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
697 unsigned long size, struct zap_details *);
698 unsigned long unmap_vmas(struct mmu_gather **tlb,
699 struct vm_area_struct *start_vma, unsigned long start_addr,
700 unsigned long end_addr, unsigned long *nr_accounted,
701 struct zap_details *);
702 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
703 unsigned long end, unsigned long floor, unsigned long ceiling);
704 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
705 unsigned long floor, unsigned long ceiling);
706 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
707 struct vm_area_struct *vma);
708 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
709 unsigned long size, pgprot_t prot);
710 void unmap_mapping_range(struct address_space *mapping,
711 loff_t const holebegin, loff_t const holelen, int even_cows);
712
713 static inline void unmap_shared_mapping_range(struct address_space *mapping,
714 loff_t const holebegin, loff_t const holelen)
715 {
716 unmap_mapping_range(mapping, holebegin, holelen, 0);
717 }
718
719 extern int vmtruncate(struct inode * inode, loff_t offset);
720 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
721 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
722 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
723
724 #ifdef CONFIG_MMU
725 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
726 unsigned long address, int write_access);
727
728 static inline int handle_mm_fault(struct mm_struct *mm,
729 struct vm_area_struct *vma, unsigned long address,
730 int write_access)
731 {
732 return __handle_mm_fault(mm, vma, address, write_access) &
733 (~VM_FAULT_WRITE);
734 }
735 #else
736 static inline int handle_mm_fault(struct mm_struct *mm,
737 struct vm_area_struct *vma, unsigned long address,
738 int write_access)
739 {
740 /* should never happen if there's no MMU */
741 BUG();
742 return VM_FAULT_SIGBUS;
743 }
744 #endif
745
746 extern int make_pages_present(unsigned long addr, unsigned long end);
747 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
748 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
749
750 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
751 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
752 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
753
754 int __set_page_dirty_buffers(struct page *page);
755 int __set_page_dirty_nobuffers(struct page *page);
756 int redirty_page_for_writepage(struct writeback_control *wbc,
757 struct page *page);
758 int FASTCALL(set_page_dirty(struct page *page));
759 int set_page_dirty_lock(struct page *page);
760 int clear_page_dirty_for_io(struct page *page);
761
762 extern unsigned long do_mremap(unsigned long addr,
763 unsigned long old_len, unsigned long new_len,
764 unsigned long flags, unsigned long new_addr);
765
766 /*
767 * Prototype to add a shrinker callback for ageable caches.
768 *
769 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
770 * scan `nr_to_scan' objects, attempting to free them.
771 *
772 * The callback must return the number of objects which remain in the cache.
773 *
774 * The callback will be passed nr_to_scan == 0 when the VM is querying the
775 * cache size, so a fastpath for that case is appropriate.
776 */
777 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
778
779 /*
780 * Add an aging callback. The int is the number of 'seeks' it takes
781 * to recreate one of the objects that these functions age.
782 */
783
784 #define DEFAULT_SEEKS 2
785 struct shrinker;
786 extern struct shrinker *set_shrinker(int, shrinker_t);
787 extern void remove_shrinker(struct shrinker *shrinker);
788
789 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
790
791 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
792 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
793 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
794 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
795
796 /*
797 * The following ifdef needed to get the 4level-fixup.h header to work.
798 * Remove it when 4level-fixup.h has been removed.
799 */
800 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
801 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
802 {
803 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
804 NULL: pud_offset(pgd, address);
805 }
806
807 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
808 {
809 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
810 NULL: pmd_offset(pud, address);
811 }
812 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
813
814 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
815 /*
816 * We tuck a spinlock to guard each pagetable page into its struct page,
817 * at page->private, with BUILD_BUG_ON to make sure that this will not
818 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
819 * When freeing, reset page->mapping so free_pages_check won't complain.
820 */
821 #define __pte_lockptr(page) &((page)->ptl)
822 #define pte_lock_init(_page) do { \
823 spin_lock_init(__pte_lockptr(_page)); \
824 } while (0)
825 #define pte_lock_deinit(page) ((page)->mapping = NULL)
826 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
827 #else
828 /*
829 * We use mm->page_table_lock to guard all pagetable pages of the mm.
830 */
831 #define pte_lock_init(page) do {} while (0)
832 #define pte_lock_deinit(page) do {} while (0)
833 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
834 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
835
836 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
837 ({ \
838 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
839 pte_t *__pte = pte_offset_map(pmd, address); \
840 *(ptlp) = __ptl; \
841 spin_lock(__ptl); \
842 __pte; \
843 })
844
845 #define pte_unmap_unlock(pte, ptl) do { \
846 spin_unlock(ptl); \
847 pte_unmap(pte); \
848 } while (0)
849
850 #define pte_alloc_map(mm, pmd, address) \
851 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
852 NULL: pte_offset_map(pmd, address))
853
854 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
855 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
856 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
857
858 #define pte_alloc_kernel(pmd, address) \
859 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
860 NULL: pte_offset_kernel(pmd, address))
861
862 extern void free_area_init(unsigned long * zones_size);
863 extern void free_area_init_node(int nid, pg_data_t *pgdat,
864 unsigned long * zones_size, unsigned long zone_start_pfn,
865 unsigned long *zholes_size);
866 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
867 extern void setup_per_zone_pages_min(void);
868 extern void mem_init(void);
869 extern void show_mem(void);
870 extern void si_meminfo(struct sysinfo * val);
871 extern void si_meminfo_node(struct sysinfo *val, int nid);
872
873 #ifdef CONFIG_NUMA
874 extern void setup_per_cpu_pageset(void);
875 #else
876 static inline void setup_per_cpu_pageset(void) {}
877 #endif
878
879 /* prio_tree.c */
880 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
881 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
882 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
883 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
884 struct prio_tree_iter *iter);
885
886 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
887 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
888 (vma = vma_prio_tree_next(vma, iter)); )
889
890 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
891 struct list_head *list)
892 {
893 vma->shared.vm_set.parent = NULL;
894 list_add_tail(&vma->shared.vm_set.list, list);
895 }
896
897 /* mmap.c */
898 extern int __vm_enough_memory(long pages, int cap_sys_admin);
899 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
900 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
901 extern struct vm_area_struct *vma_merge(struct mm_struct *,
902 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
903 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
904 struct mempolicy *);
905 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
906 extern int split_vma(struct mm_struct *,
907 struct vm_area_struct *, unsigned long addr, int new_below);
908 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
909 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
910 struct rb_node **, struct rb_node *);
911 extern void unlink_file_vma(struct vm_area_struct *);
912 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
913 unsigned long addr, unsigned long len, pgoff_t pgoff);
914 extern void exit_mmap(struct mm_struct *);
915 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
916
917 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
918
919 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
920 unsigned long len, unsigned long prot,
921 unsigned long flag, unsigned long pgoff);
922
923 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
924 unsigned long len, unsigned long prot,
925 unsigned long flag, unsigned long offset)
926 {
927 unsigned long ret = -EINVAL;
928 if ((offset + PAGE_ALIGN(len)) < offset)
929 goto out;
930 if (!(offset & ~PAGE_MASK))
931 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
932 out:
933 return ret;
934 }
935
936 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
937
938 extern unsigned long do_brk(unsigned long, unsigned long);
939
940 /* filemap.c */
941 extern unsigned long page_unuse(struct page *);
942 extern void truncate_inode_pages(struct address_space *, loff_t);
943 extern void truncate_inode_pages_range(struct address_space *,
944 loff_t lstart, loff_t lend);
945
946 /* generic vm_area_ops exported for stackable file systems */
947 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
948 extern int filemap_populate(struct vm_area_struct *, unsigned long,
949 unsigned long, pgprot_t, unsigned long, int);
950
951 /* mm/page-writeback.c */
952 int write_one_page(struct page *page, int wait);
953
954 /* readahead.c */
955 #define VM_MAX_READAHEAD 128 /* kbytes */
956 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
957 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
958 * turning readahead off */
959
960 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
961 pgoff_t offset, unsigned long nr_to_read);
962 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
963 pgoff_t offset, unsigned long nr_to_read);
964 unsigned long page_cache_readahead(struct address_space *mapping,
965 struct file_ra_state *ra,
966 struct file *filp,
967 pgoff_t offset,
968 unsigned long size);
969 void handle_ra_miss(struct address_space *mapping,
970 struct file_ra_state *ra, pgoff_t offset);
971 unsigned long max_sane_readahead(unsigned long nr);
972
973 /* Do stack extension */
974 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
975 #ifdef CONFIG_IA64
976 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
977 #endif
978
979 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
980 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
981 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
982 struct vm_area_struct **pprev);
983
984 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
985 NULL if none. Assume start_addr < end_addr. */
986 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
987 {
988 struct vm_area_struct * vma = find_vma(mm,start_addr);
989
990 if (vma && end_addr <= vma->vm_start)
991 vma = NULL;
992 return vma;
993 }
994
995 static inline unsigned long vma_pages(struct vm_area_struct *vma)
996 {
997 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
998 }
999
1000 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1001 struct page *vmalloc_to_page(void *addr);
1002 unsigned long vmalloc_to_pfn(void *addr);
1003 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1004 unsigned long pfn, unsigned long size, pgprot_t);
1005 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1006
1007 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1008 unsigned int foll_flags);
1009 #define FOLL_WRITE 0x01 /* check pte is writable */
1010 #define FOLL_TOUCH 0x02 /* mark page accessed */
1011 #define FOLL_GET 0x04 /* do get_page on page */
1012 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1013
1014 #ifdef CONFIG_PROC_FS
1015 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1016 #else
1017 static inline void vm_stat_account(struct mm_struct *mm,
1018 unsigned long flags, struct file *file, long pages)
1019 {
1020 }
1021 #endif /* CONFIG_PROC_FS */
1022
1023 #ifndef CONFIG_DEBUG_PAGEALLOC
1024 static inline void
1025 kernel_map_pages(struct page *page, int numpages, int enable)
1026 {
1027 }
1028 #endif
1029
1030 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1031 #ifdef __HAVE_ARCH_GATE_AREA
1032 int in_gate_area_no_task(unsigned long addr);
1033 int in_gate_area(struct task_struct *task, unsigned long addr);
1034 #else
1035 int in_gate_area_no_task(unsigned long addr);
1036 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1037 #endif /* __HAVE_ARCH_GATE_AREA */
1038
1039 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1040 #define OOM_DISABLE -17
1041
1042 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1043 void __user *, size_t *, loff_t *);
1044 int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1045 unsigned long lru_pages);
1046 void drop_pagecache(void);
1047 void drop_slab(void);
1048
1049 #endif /* __KERNEL__ */
1050 #endif /* _LINUX_MM_H */