dc08d558e058d8a5e2ea94564edd2da42add2b76
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21
22 struct mempolicy;
23 struct anon_vma;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
100 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
101 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
105 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
106
107 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
108 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
109 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
110 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
111
112 #if defined(CONFIG_X86)
113 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
114 #elif defined(CONFIG_PPC)
115 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
116 #elif defined(CONFIG_PARISC)
117 # define VM_GROWSUP VM_ARCH_1
118 #elif defined(CONFIG_IA64)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif !defined(CONFIG_MMU)
121 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
122 #endif
123
124 #ifndef VM_GROWSUP
125 # define VM_GROWSUP VM_NONE
126 #endif
127
128 /* Bits set in the VMA until the stack is in its final location */
129 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
130
131 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
132 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
133 #endif
134
135 #ifdef CONFIG_STACK_GROWSUP
136 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137 #else
138 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
139 #endif
140
141 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
142 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
143 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
144 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
145 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
146
147 /*
148 * Special vmas that are non-mergable, non-mlock()able.
149 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
150 */
151 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
152
153 /*
154 * mapping from the currently active vm_flags protection bits (the
155 * low four bits) to a page protection mask..
156 */
157 extern pgprot_t protection_map[16];
158
159 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
160 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
161 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
162 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
163 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
164 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
165
166 /*
167 * vm_fault is filled by the the pagefault handler and passed to the vma's
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
170 *
171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
173 */
174 struct vm_fault {
175 unsigned int flags; /* FAULT_FLAG_xxx flags */
176 pgoff_t pgoff; /* Logical page offset based on vma */
177 void __user *virtual_address; /* Faulting virtual address */
178
179 struct page *page; /* ->fault handlers should return a
180 * page here, unless VM_FAULT_NOPAGE
181 * is set (which is also implied by
182 * VM_FAULT_ERROR).
183 */
184 };
185
186 /*
187 * These are the virtual MM functions - opening of an area, closing and
188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
189 * to the functions called when a no-page or a wp-page exception occurs.
190 */
191 struct vm_operations_struct {
192 void (*open)(struct vm_area_struct * area);
193 void (*close)(struct vm_area_struct * area);
194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
195
196 /* notification that a previously read-only page is about to become
197 * writable, if an error is returned it will cause a SIGBUS */
198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
199
200 /* called by access_process_vm when get_user_pages() fails, typically
201 * for use by special VMAs that can switch between memory and hardware
202 */
203 int (*access)(struct vm_area_struct *vma, unsigned long addr,
204 void *buf, int len, int write);
205 #ifdef CONFIG_NUMA
206 /*
207 * set_policy() op must add a reference to any non-NULL @new mempolicy
208 * to hold the policy upon return. Caller should pass NULL @new to
209 * remove a policy and fall back to surrounding context--i.e. do not
210 * install a MPOL_DEFAULT policy, nor the task or system default
211 * mempolicy.
212 */
213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
214
215 /*
216 * get_policy() op must add reference [mpol_get()] to any policy at
217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218 * in mm/mempolicy.c will do this automatically.
219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222 * must return NULL--i.e., do not "fallback" to task or system default
223 * policy.
224 */
225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226 unsigned long addr);
227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228 const nodemask_t *to, unsigned long flags);
229 #endif
230 /* called by sys_remap_file_pages() to populate non-linear mapping */
231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232 unsigned long size, pgoff_t pgoff);
233 };
234
235 struct mmu_gather;
236 struct inode;
237
238 #define page_private(page) ((page)->private)
239 #define set_page_private(page, v) ((page)->private = (v))
240
241 /*
242 * FIXME: take this include out, include page-flags.h in
243 * files which need it (119 of them)
244 */
245 #include <linux/page-flags.h>
246 #include <linux/huge_mm.h>
247
248 /*
249 * Methods to modify the page usage count.
250 *
251 * What counts for a page usage:
252 * - cache mapping (page->mapping)
253 * - private data (page->private)
254 * - page mapped in a task's page tables, each mapping
255 * is counted separately
256 *
257 * Also, many kernel routines increase the page count before a critical
258 * routine so they can be sure the page doesn't go away from under them.
259 */
260
261 /*
262 * Drop a ref, return true if the refcount fell to zero (the page has no users)
263 */
264 static inline int put_page_testzero(struct page *page)
265 {
266 VM_BUG_ON(atomic_read(&page->_count) == 0);
267 return atomic_dec_and_test(&page->_count);
268 }
269
270 /*
271 * Try to grab a ref unless the page has a refcount of zero, return false if
272 * that is the case.
273 */
274 static inline int get_page_unless_zero(struct page *page)
275 {
276 return atomic_inc_not_zero(&page->_count);
277 }
278
279 extern int page_is_ram(unsigned long pfn);
280
281 /* Support for virtually mapped pages */
282 struct page *vmalloc_to_page(const void *addr);
283 unsigned long vmalloc_to_pfn(const void *addr);
284
285 /*
286 * Determine if an address is within the vmalloc range
287 *
288 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
289 * is no special casing required.
290 */
291 static inline int is_vmalloc_addr(const void *x)
292 {
293 #ifdef CONFIG_MMU
294 unsigned long addr = (unsigned long)x;
295
296 return addr >= VMALLOC_START && addr < VMALLOC_END;
297 #else
298 return 0;
299 #endif
300 }
301 #ifdef CONFIG_MMU
302 extern int is_vmalloc_or_module_addr(const void *x);
303 #else
304 static inline int is_vmalloc_or_module_addr(const void *x)
305 {
306 return 0;
307 }
308 #endif
309
310 static inline void compound_lock(struct page *page)
311 {
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 VM_BUG_ON(PageSlab(page));
314 bit_spin_lock(PG_compound_lock, &page->flags);
315 #endif
316 }
317
318 static inline void compound_unlock(struct page *page)
319 {
320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 VM_BUG_ON(PageSlab(page));
322 bit_spin_unlock(PG_compound_lock, &page->flags);
323 #endif
324 }
325
326 static inline unsigned long compound_lock_irqsave(struct page *page)
327 {
328 unsigned long uninitialized_var(flags);
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 local_irq_save(flags);
331 compound_lock(page);
332 #endif
333 return flags;
334 }
335
336 static inline void compound_unlock_irqrestore(struct page *page,
337 unsigned long flags)
338 {
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 compound_unlock(page);
341 local_irq_restore(flags);
342 #endif
343 }
344
345 static inline struct page *compound_head(struct page *page)
346 {
347 if (unlikely(PageTail(page)))
348 return page->first_page;
349 return page;
350 }
351
352 /*
353 * The atomic page->_mapcount, starts from -1: so that transitions
354 * both from it and to it can be tracked, using atomic_inc_and_test
355 * and atomic_add_negative(-1).
356 */
357 static inline void reset_page_mapcount(struct page *page)
358 {
359 atomic_set(&(page)->_mapcount, -1);
360 }
361
362 static inline int page_mapcount(struct page *page)
363 {
364 return atomic_read(&(page)->_mapcount) + 1;
365 }
366
367 static inline int page_count(struct page *page)
368 {
369 return atomic_read(&compound_head(page)->_count);
370 }
371
372 static inline void get_huge_page_tail(struct page *page)
373 {
374 /*
375 * __split_huge_page_refcount() cannot run
376 * from under us.
377 */
378 VM_BUG_ON(page_mapcount(page) < 0);
379 VM_BUG_ON(atomic_read(&page->_count) != 0);
380 atomic_inc(&page->_mapcount);
381 }
382
383 extern bool __get_page_tail(struct page *page);
384
385 static inline void get_page(struct page *page)
386 {
387 if (unlikely(PageTail(page)))
388 if (likely(__get_page_tail(page)))
389 return;
390 /*
391 * Getting a normal page or the head of a compound page
392 * requires to already have an elevated page->_count.
393 */
394 VM_BUG_ON(atomic_read(&page->_count) <= 0);
395 atomic_inc(&page->_count);
396 }
397
398 static inline struct page *virt_to_head_page(const void *x)
399 {
400 struct page *page = virt_to_page(x);
401 return compound_head(page);
402 }
403
404 /*
405 * Setup the page count before being freed into the page allocator for
406 * the first time (boot or memory hotplug)
407 */
408 static inline void init_page_count(struct page *page)
409 {
410 atomic_set(&page->_count, 1);
411 }
412
413 /*
414 * PageBuddy() indicate that the page is free and in the buddy system
415 * (see mm/page_alloc.c).
416 *
417 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
418 * -2 so that an underflow of the page_mapcount() won't be mistaken
419 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
420 * efficiently by most CPU architectures.
421 */
422 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
423
424 static inline int PageBuddy(struct page *page)
425 {
426 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
427 }
428
429 static inline void __SetPageBuddy(struct page *page)
430 {
431 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
432 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
433 }
434
435 static inline void __ClearPageBuddy(struct page *page)
436 {
437 VM_BUG_ON(!PageBuddy(page));
438 atomic_set(&page->_mapcount, -1);
439 }
440
441 void put_page(struct page *page);
442 void put_pages_list(struct list_head *pages);
443
444 void split_page(struct page *page, unsigned int order);
445 int split_free_page(struct page *page);
446
447 /*
448 * Compound pages have a destructor function. Provide a
449 * prototype for that function and accessor functions.
450 * These are _only_ valid on the head of a PG_compound page.
451 */
452 typedef void compound_page_dtor(struct page *);
453
454 static inline void set_compound_page_dtor(struct page *page,
455 compound_page_dtor *dtor)
456 {
457 page[1].lru.next = (void *)dtor;
458 }
459
460 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
461 {
462 return (compound_page_dtor *)page[1].lru.next;
463 }
464
465 static inline int compound_order(struct page *page)
466 {
467 if (!PageHead(page))
468 return 0;
469 return (unsigned long)page[1].lru.prev;
470 }
471
472 static inline int compound_trans_order(struct page *page)
473 {
474 int order;
475 unsigned long flags;
476
477 if (!PageHead(page))
478 return 0;
479
480 flags = compound_lock_irqsave(page);
481 order = compound_order(page);
482 compound_unlock_irqrestore(page, flags);
483 return order;
484 }
485
486 static inline void set_compound_order(struct page *page, unsigned long order)
487 {
488 page[1].lru.prev = (void *)order;
489 }
490
491 #ifdef CONFIG_MMU
492 /*
493 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
494 * servicing faults for write access. In the normal case, do always want
495 * pte_mkwrite. But get_user_pages can cause write faults for mappings
496 * that do not have writing enabled, when used by access_process_vm.
497 */
498 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
499 {
500 if (likely(vma->vm_flags & VM_WRITE))
501 pte = pte_mkwrite(pte);
502 return pte;
503 }
504 #endif
505
506 /*
507 * Multiple processes may "see" the same page. E.g. for untouched
508 * mappings of /dev/null, all processes see the same page full of
509 * zeroes, and text pages of executables and shared libraries have
510 * only one copy in memory, at most, normally.
511 *
512 * For the non-reserved pages, page_count(page) denotes a reference count.
513 * page_count() == 0 means the page is free. page->lru is then used for
514 * freelist management in the buddy allocator.
515 * page_count() > 0 means the page has been allocated.
516 *
517 * Pages are allocated by the slab allocator in order to provide memory
518 * to kmalloc and kmem_cache_alloc. In this case, the management of the
519 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
520 * unless a particular usage is carefully commented. (the responsibility of
521 * freeing the kmalloc memory is the caller's, of course).
522 *
523 * A page may be used by anyone else who does a __get_free_page().
524 * In this case, page_count still tracks the references, and should only
525 * be used through the normal accessor functions. The top bits of page->flags
526 * and page->virtual store page management information, but all other fields
527 * are unused and could be used privately, carefully. The management of this
528 * page is the responsibility of the one who allocated it, and those who have
529 * subsequently been given references to it.
530 *
531 * The other pages (we may call them "pagecache pages") are completely
532 * managed by the Linux memory manager: I/O, buffers, swapping etc.
533 * The following discussion applies only to them.
534 *
535 * A pagecache page contains an opaque `private' member, which belongs to the
536 * page's address_space. Usually, this is the address of a circular list of
537 * the page's disk buffers. PG_private must be set to tell the VM to call
538 * into the filesystem to release these pages.
539 *
540 * A page may belong to an inode's memory mapping. In this case, page->mapping
541 * is the pointer to the inode, and page->index is the file offset of the page,
542 * in units of PAGE_CACHE_SIZE.
543 *
544 * If pagecache pages are not associated with an inode, they are said to be
545 * anonymous pages. These may become associated with the swapcache, and in that
546 * case PG_swapcache is set, and page->private is an offset into the swapcache.
547 *
548 * In either case (swapcache or inode backed), the pagecache itself holds one
549 * reference to the page. Setting PG_private should also increment the
550 * refcount. The each user mapping also has a reference to the page.
551 *
552 * The pagecache pages are stored in a per-mapping radix tree, which is
553 * rooted at mapping->page_tree, and indexed by offset.
554 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
555 * lists, we instead now tag pages as dirty/writeback in the radix tree.
556 *
557 * All pagecache pages may be subject to I/O:
558 * - inode pages may need to be read from disk,
559 * - inode pages which have been modified and are MAP_SHARED may need
560 * to be written back to the inode on disk,
561 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
562 * modified may need to be swapped out to swap space and (later) to be read
563 * back into memory.
564 */
565
566 /*
567 * The zone field is never updated after free_area_init_core()
568 * sets it, so none of the operations on it need to be atomic.
569 */
570
571
572 /*
573 * page->flags layout:
574 *
575 * There are three possibilities for how page->flags get
576 * laid out. The first is for the normal case, without
577 * sparsemem. The second is for sparsemem when there is
578 * plenty of space for node and section. The last is when
579 * we have run out of space and have to fall back to an
580 * alternate (slower) way of determining the node.
581 *
582 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
583 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
584 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
585 */
586 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
587 #define SECTIONS_WIDTH SECTIONS_SHIFT
588 #else
589 #define SECTIONS_WIDTH 0
590 #endif
591
592 #define ZONES_WIDTH ZONES_SHIFT
593
594 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
595 #define NODES_WIDTH NODES_SHIFT
596 #else
597 #ifdef CONFIG_SPARSEMEM_VMEMMAP
598 #error "Vmemmap: No space for nodes field in page flags"
599 #endif
600 #define NODES_WIDTH 0
601 #endif
602
603 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
604 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
605 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
606 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
607
608 /*
609 * We are going to use the flags for the page to node mapping if its in
610 * there. This includes the case where there is no node, so it is implicit.
611 */
612 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
613 #define NODE_NOT_IN_PAGE_FLAGS
614 #endif
615
616 /*
617 * Define the bit shifts to access each section. For non-existent
618 * sections we define the shift as 0; that plus a 0 mask ensures
619 * the compiler will optimise away reference to them.
620 */
621 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
622 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
623 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
624
625 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
626 #ifdef NODE_NOT_IN_PAGE_FLAGS
627 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
628 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
629 SECTIONS_PGOFF : ZONES_PGOFF)
630 #else
631 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
632 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
633 NODES_PGOFF : ZONES_PGOFF)
634 #endif
635
636 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
637
638 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
639 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
640 #endif
641
642 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
643 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
644 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
645 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
646
647 static inline enum zone_type page_zonenum(const struct page *page)
648 {
649 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
650 }
651
652 /*
653 * The identification function is only used by the buddy allocator for
654 * determining if two pages could be buddies. We are not really
655 * identifying a zone since we could be using a the section number
656 * id if we have not node id available in page flags.
657 * We guarantee only that it will return the same value for two
658 * combinable pages in a zone.
659 */
660 static inline int page_zone_id(struct page *page)
661 {
662 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
663 }
664
665 static inline int zone_to_nid(struct zone *zone)
666 {
667 #ifdef CONFIG_NUMA
668 return zone->node;
669 #else
670 return 0;
671 #endif
672 }
673
674 #ifdef NODE_NOT_IN_PAGE_FLAGS
675 extern int page_to_nid(const struct page *page);
676 #else
677 static inline int page_to_nid(const struct page *page)
678 {
679 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
680 }
681 #endif
682
683 static inline struct zone *page_zone(const struct page *page)
684 {
685 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
686 }
687
688 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
689 static inline void set_page_section(struct page *page, unsigned long section)
690 {
691 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
692 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
693 }
694
695 static inline unsigned long page_to_section(const struct page *page)
696 {
697 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
698 }
699 #endif
700
701 static inline void set_page_zone(struct page *page, enum zone_type zone)
702 {
703 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
704 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
705 }
706
707 static inline void set_page_node(struct page *page, unsigned long node)
708 {
709 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
710 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
711 }
712
713 static inline void set_page_links(struct page *page, enum zone_type zone,
714 unsigned long node, unsigned long pfn)
715 {
716 set_page_zone(page, zone);
717 set_page_node(page, node);
718 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
719 set_page_section(page, pfn_to_section_nr(pfn));
720 #endif
721 }
722
723 /*
724 * Some inline functions in vmstat.h depend on page_zone()
725 */
726 #include <linux/vmstat.h>
727
728 static __always_inline void *lowmem_page_address(const struct page *page)
729 {
730 return __va(PFN_PHYS(page_to_pfn(page)));
731 }
732
733 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
734 #define HASHED_PAGE_VIRTUAL
735 #endif
736
737 #if defined(WANT_PAGE_VIRTUAL)
738 #define page_address(page) ((page)->virtual)
739 #define set_page_address(page, address) \
740 do { \
741 (page)->virtual = (address); \
742 } while(0)
743 #define page_address_init() do { } while(0)
744 #endif
745
746 #if defined(HASHED_PAGE_VIRTUAL)
747 void *page_address(const struct page *page);
748 void set_page_address(struct page *page, void *virtual);
749 void page_address_init(void);
750 #endif
751
752 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
753 #define page_address(page) lowmem_page_address(page)
754 #define set_page_address(page, address) do { } while(0)
755 #define page_address_init() do { } while(0)
756 #endif
757
758 /*
759 * On an anonymous page mapped into a user virtual memory area,
760 * page->mapping points to its anon_vma, not to a struct address_space;
761 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
762 *
763 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
764 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
765 * and then page->mapping points, not to an anon_vma, but to a private
766 * structure which KSM associates with that merged page. See ksm.h.
767 *
768 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
769 *
770 * Please note that, confusingly, "page_mapping" refers to the inode
771 * address_space which maps the page from disk; whereas "page_mapped"
772 * refers to user virtual address space into which the page is mapped.
773 */
774 #define PAGE_MAPPING_ANON 1
775 #define PAGE_MAPPING_KSM 2
776 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
777
778 extern struct address_space swapper_space;
779 static inline struct address_space *page_mapping(struct page *page)
780 {
781 struct address_space *mapping = page->mapping;
782
783 VM_BUG_ON(PageSlab(page));
784 if (unlikely(PageSwapCache(page)))
785 mapping = &swapper_space;
786 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
787 mapping = NULL;
788 return mapping;
789 }
790
791 /* Neutral page->mapping pointer to address_space or anon_vma or other */
792 static inline void *page_rmapping(struct page *page)
793 {
794 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
795 }
796
797 extern struct address_space *__page_file_mapping(struct page *);
798
799 static inline
800 struct address_space *page_file_mapping(struct page *page)
801 {
802 if (unlikely(PageSwapCache(page)))
803 return __page_file_mapping(page);
804
805 return page->mapping;
806 }
807
808 static inline int PageAnon(struct page *page)
809 {
810 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
811 }
812
813 /*
814 * Return the pagecache index of the passed page. Regular pagecache pages
815 * use ->index whereas swapcache pages use ->private
816 */
817 static inline pgoff_t page_index(struct page *page)
818 {
819 if (unlikely(PageSwapCache(page)))
820 return page_private(page);
821 return page->index;
822 }
823
824 extern pgoff_t __page_file_index(struct page *page);
825
826 /*
827 * Return the file index of the page. Regular pagecache pages use ->index
828 * whereas swapcache pages use swp_offset(->private)
829 */
830 static inline pgoff_t page_file_index(struct page *page)
831 {
832 if (unlikely(PageSwapCache(page)))
833 return __page_file_index(page);
834
835 return page->index;
836 }
837
838 /*
839 * Return true if this page is mapped into pagetables.
840 */
841 static inline int page_mapped(struct page *page)
842 {
843 return atomic_read(&(page)->_mapcount) >= 0;
844 }
845
846 /*
847 * Different kinds of faults, as returned by handle_mm_fault().
848 * Used to decide whether a process gets delivered SIGBUS or
849 * just gets major/minor fault counters bumped up.
850 */
851
852 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
853
854 #define VM_FAULT_OOM 0x0001
855 #define VM_FAULT_SIGBUS 0x0002
856 #define VM_FAULT_MAJOR 0x0004
857 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
858 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
859 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
860
861 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
862 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
863 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
864
865 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
866
867 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
868 VM_FAULT_HWPOISON_LARGE)
869
870 /* Encode hstate index for a hwpoisoned large page */
871 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
872 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
873
874 /*
875 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
876 */
877 extern void pagefault_out_of_memory(void);
878
879 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
880
881 /*
882 * Flags passed to show_mem() and show_free_areas() to suppress output in
883 * various contexts.
884 */
885 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
886
887 extern void show_free_areas(unsigned int flags);
888 extern bool skip_free_areas_node(unsigned int flags, int nid);
889
890 int shmem_zero_setup(struct vm_area_struct *);
891
892 extern int can_do_mlock(void);
893 extern int user_shm_lock(size_t, struct user_struct *);
894 extern void user_shm_unlock(size_t, struct user_struct *);
895
896 /*
897 * Parameter block passed down to zap_pte_range in exceptional cases.
898 */
899 struct zap_details {
900 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
901 struct address_space *check_mapping; /* Check page->mapping if set */
902 pgoff_t first_index; /* Lowest page->index to unmap */
903 pgoff_t last_index; /* Highest page->index to unmap */
904 };
905
906 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
907 pte_t pte);
908
909 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
910 unsigned long size);
911 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
912 unsigned long size, struct zap_details *);
913 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
914 unsigned long start, unsigned long end);
915
916 /**
917 * mm_walk - callbacks for walk_page_range
918 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
919 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
920 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
921 * this handler is required to be able to handle
922 * pmd_trans_huge() pmds. They may simply choose to
923 * split_huge_page() instead of handling it explicitly.
924 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
925 * @pte_hole: if set, called for each hole at all levels
926 * @hugetlb_entry: if set, called for each hugetlb entry
927 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
928 * is used.
929 *
930 * (see walk_page_range for more details)
931 */
932 struct mm_walk {
933 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
934 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
935 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
936 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
937 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
938 int (*hugetlb_entry)(pte_t *, unsigned long,
939 unsigned long, unsigned long, struct mm_walk *);
940 struct mm_struct *mm;
941 void *private;
942 };
943
944 int walk_page_range(unsigned long addr, unsigned long end,
945 struct mm_walk *walk);
946 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
947 unsigned long end, unsigned long floor, unsigned long ceiling);
948 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
949 struct vm_area_struct *vma);
950 void unmap_mapping_range(struct address_space *mapping,
951 loff_t const holebegin, loff_t const holelen, int even_cows);
952 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
953 unsigned long *pfn);
954 int follow_phys(struct vm_area_struct *vma, unsigned long address,
955 unsigned int flags, unsigned long *prot, resource_size_t *phys);
956 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
957 void *buf, int len, int write);
958
959 static inline void unmap_shared_mapping_range(struct address_space *mapping,
960 loff_t const holebegin, loff_t const holelen)
961 {
962 unmap_mapping_range(mapping, holebegin, holelen, 0);
963 }
964
965 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
966 extern void truncate_setsize(struct inode *inode, loff_t newsize);
967 extern int vmtruncate(struct inode *inode, loff_t offset);
968 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
969 int truncate_inode_page(struct address_space *mapping, struct page *page);
970 int generic_error_remove_page(struct address_space *mapping, struct page *page);
971 int invalidate_inode_page(struct page *page);
972
973 #ifdef CONFIG_MMU
974 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
975 unsigned long address, unsigned int flags);
976 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
977 unsigned long address, unsigned int fault_flags);
978 #else
979 static inline int handle_mm_fault(struct mm_struct *mm,
980 struct vm_area_struct *vma, unsigned long address,
981 unsigned int flags)
982 {
983 /* should never happen if there's no MMU */
984 BUG();
985 return VM_FAULT_SIGBUS;
986 }
987 static inline int fixup_user_fault(struct task_struct *tsk,
988 struct mm_struct *mm, unsigned long address,
989 unsigned int fault_flags)
990 {
991 /* should never happen if there's no MMU */
992 BUG();
993 return -EFAULT;
994 }
995 #endif
996
997 extern int make_pages_present(unsigned long addr, unsigned long end);
998 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
999 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1000 void *buf, int len, int write);
1001
1002 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1003 unsigned long start, int len, unsigned int foll_flags,
1004 struct page **pages, struct vm_area_struct **vmas,
1005 int *nonblocking);
1006 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1007 unsigned long start, int nr_pages, int write, int force,
1008 struct page **pages, struct vm_area_struct **vmas);
1009 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1010 struct page **pages);
1011 struct kvec;
1012 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1013 struct page **pages);
1014 int get_kernel_page(unsigned long start, int write, struct page **pages);
1015 struct page *get_dump_page(unsigned long addr);
1016
1017 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1018 extern void do_invalidatepage(struct page *page, unsigned long offset);
1019
1020 int __set_page_dirty_nobuffers(struct page *page);
1021 int __set_page_dirty_no_writeback(struct page *page);
1022 int redirty_page_for_writepage(struct writeback_control *wbc,
1023 struct page *page);
1024 void account_page_dirtied(struct page *page, struct address_space *mapping);
1025 void account_page_writeback(struct page *page);
1026 int set_page_dirty(struct page *page);
1027 int set_page_dirty_lock(struct page *page);
1028 int clear_page_dirty_for_io(struct page *page);
1029
1030 /* Is the vma a continuation of the stack vma above it? */
1031 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1032 {
1033 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1034 }
1035
1036 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1037 unsigned long addr)
1038 {
1039 return (vma->vm_flags & VM_GROWSDOWN) &&
1040 (vma->vm_start == addr) &&
1041 !vma_growsdown(vma->vm_prev, addr);
1042 }
1043
1044 /* Is the vma a continuation of the stack vma below it? */
1045 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1046 {
1047 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1048 }
1049
1050 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1051 unsigned long addr)
1052 {
1053 return (vma->vm_flags & VM_GROWSUP) &&
1054 (vma->vm_end == addr) &&
1055 !vma_growsup(vma->vm_next, addr);
1056 }
1057
1058 extern pid_t
1059 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1060
1061 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1062 unsigned long old_addr, struct vm_area_struct *new_vma,
1063 unsigned long new_addr, unsigned long len);
1064 extern unsigned long do_mremap(unsigned long addr,
1065 unsigned long old_len, unsigned long new_len,
1066 unsigned long flags, unsigned long new_addr);
1067 extern int mprotect_fixup(struct vm_area_struct *vma,
1068 struct vm_area_struct **pprev, unsigned long start,
1069 unsigned long end, unsigned long newflags);
1070
1071 /*
1072 * doesn't attempt to fault and will return short.
1073 */
1074 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1075 struct page **pages);
1076 /*
1077 * per-process(per-mm_struct) statistics.
1078 */
1079 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1080 {
1081 long val = atomic_long_read(&mm->rss_stat.count[member]);
1082
1083 #ifdef SPLIT_RSS_COUNTING
1084 /*
1085 * counter is updated in asynchronous manner and may go to minus.
1086 * But it's never be expected number for users.
1087 */
1088 if (val < 0)
1089 val = 0;
1090 #endif
1091 return (unsigned long)val;
1092 }
1093
1094 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1095 {
1096 atomic_long_add(value, &mm->rss_stat.count[member]);
1097 }
1098
1099 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1100 {
1101 atomic_long_inc(&mm->rss_stat.count[member]);
1102 }
1103
1104 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1105 {
1106 atomic_long_dec(&mm->rss_stat.count[member]);
1107 }
1108
1109 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1110 {
1111 return get_mm_counter(mm, MM_FILEPAGES) +
1112 get_mm_counter(mm, MM_ANONPAGES);
1113 }
1114
1115 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1116 {
1117 return max(mm->hiwater_rss, get_mm_rss(mm));
1118 }
1119
1120 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1121 {
1122 return max(mm->hiwater_vm, mm->total_vm);
1123 }
1124
1125 static inline void update_hiwater_rss(struct mm_struct *mm)
1126 {
1127 unsigned long _rss = get_mm_rss(mm);
1128
1129 if ((mm)->hiwater_rss < _rss)
1130 (mm)->hiwater_rss = _rss;
1131 }
1132
1133 static inline void update_hiwater_vm(struct mm_struct *mm)
1134 {
1135 if (mm->hiwater_vm < mm->total_vm)
1136 mm->hiwater_vm = mm->total_vm;
1137 }
1138
1139 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1140 struct mm_struct *mm)
1141 {
1142 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1143
1144 if (*maxrss < hiwater_rss)
1145 *maxrss = hiwater_rss;
1146 }
1147
1148 #if defined(SPLIT_RSS_COUNTING)
1149 void sync_mm_rss(struct mm_struct *mm);
1150 #else
1151 static inline void sync_mm_rss(struct mm_struct *mm)
1152 {
1153 }
1154 #endif
1155
1156 int vma_wants_writenotify(struct vm_area_struct *vma);
1157
1158 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1159 spinlock_t **ptl);
1160 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1161 spinlock_t **ptl)
1162 {
1163 pte_t *ptep;
1164 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1165 return ptep;
1166 }
1167
1168 #ifdef __PAGETABLE_PUD_FOLDED
1169 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1170 unsigned long address)
1171 {
1172 return 0;
1173 }
1174 #else
1175 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1176 #endif
1177
1178 #ifdef __PAGETABLE_PMD_FOLDED
1179 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1180 unsigned long address)
1181 {
1182 return 0;
1183 }
1184 #else
1185 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1186 #endif
1187
1188 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1189 pmd_t *pmd, unsigned long address);
1190 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1191
1192 /*
1193 * The following ifdef needed to get the 4level-fixup.h header to work.
1194 * Remove it when 4level-fixup.h has been removed.
1195 */
1196 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1197 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1198 {
1199 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1200 NULL: pud_offset(pgd, address);
1201 }
1202
1203 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1204 {
1205 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1206 NULL: pmd_offset(pud, address);
1207 }
1208 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1209
1210 #if USE_SPLIT_PTLOCKS
1211 /*
1212 * We tuck a spinlock to guard each pagetable page into its struct page,
1213 * at page->private, with BUILD_BUG_ON to make sure that this will not
1214 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1215 * When freeing, reset page->mapping so free_pages_check won't complain.
1216 */
1217 #define __pte_lockptr(page) &((page)->ptl)
1218 #define pte_lock_init(_page) do { \
1219 spin_lock_init(__pte_lockptr(_page)); \
1220 } while (0)
1221 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1222 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1223 #else /* !USE_SPLIT_PTLOCKS */
1224 /*
1225 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1226 */
1227 #define pte_lock_init(page) do {} while (0)
1228 #define pte_lock_deinit(page) do {} while (0)
1229 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1230 #endif /* USE_SPLIT_PTLOCKS */
1231
1232 static inline void pgtable_page_ctor(struct page *page)
1233 {
1234 pte_lock_init(page);
1235 inc_zone_page_state(page, NR_PAGETABLE);
1236 }
1237
1238 static inline void pgtable_page_dtor(struct page *page)
1239 {
1240 pte_lock_deinit(page);
1241 dec_zone_page_state(page, NR_PAGETABLE);
1242 }
1243
1244 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1245 ({ \
1246 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1247 pte_t *__pte = pte_offset_map(pmd, address); \
1248 *(ptlp) = __ptl; \
1249 spin_lock(__ptl); \
1250 __pte; \
1251 })
1252
1253 #define pte_unmap_unlock(pte, ptl) do { \
1254 spin_unlock(ptl); \
1255 pte_unmap(pte); \
1256 } while (0)
1257
1258 #define pte_alloc_map(mm, vma, pmd, address) \
1259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1260 pmd, address))? \
1261 NULL: pte_offset_map(pmd, address))
1262
1263 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1264 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1265 pmd, address))? \
1266 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1267
1268 #define pte_alloc_kernel(pmd, address) \
1269 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1270 NULL: pte_offset_kernel(pmd, address))
1271
1272 extern void free_area_init(unsigned long * zones_size);
1273 extern void free_area_init_node(int nid, unsigned long * zones_size,
1274 unsigned long zone_start_pfn, unsigned long *zholes_size);
1275 extern void free_initmem(void);
1276
1277 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1278 /*
1279 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1280 * zones, allocate the backing mem_map and account for memory holes in a more
1281 * architecture independent manner. This is a substitute for creating the
1282 * zone_sizes[] and zholes_size[] arrays and passing them to
1283 * free_area_init_node()
1284 *
1285 * An architecture is expected to register range of page frames backed by
1286 * physical memory with memblock_add[_node]() before calling
1287 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1288 * usage, an architecture is expected to do something like
1289 *
1290 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1291 * max_highmem_pfn};
1292 * for_each_valid_physical_page_range()
1293 * memblock_add_node(base, size, nid)
1294 * free_area_init_nodes(max_zone_pfns);
1295 *
1296 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1297 * registered physical page range. Similarly
1298 * sparse_memory_present_with_active_regions() calls memory_present() for
1299 * each range when SPARSEMEM is enabled.
1300 *
1301 * See mm/page_alloc.c for more information on each function exposed by
1302 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1303 */
1304 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1305 unsigned long node_map_pfn_alignment(void);
1306 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1307 unsigned long end_pfn);
1308 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1309 unsigned long end_pfn);
1310 extern void get_pfn_range_for_nid(unsigned int nid,
1311 unsigned long *start_pfn, unsigned long *end_pfn);
1312 extern unsigned long find_min_pfn_with_active_regions(void);
1313 extern void free_bootmem_with_active_regions(int nid,
1314 unsigned long max_low_pfn);
1315 extern void sparse_memory_present_with_active_regions(int nid);
1316
1317 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1318
1319 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1320 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1321 static inline int __early_pfn_to_nid(unsigned long pfn)
1322 {
1323 return 0;
1324 }
1325 #else
1326 /* please see mm/page_alloc.c */
1327 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1328 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1329 /* there is a per-arch backend function. */
1330 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1332 #endif
1333
1334 extern void set_dma_reserve(unsigned long new_dma_reserve);
1335 extern void memmap_init_zone(unsigned long, int, unsigned long,
1336 unsigned long, enum memmap_context);
1337 extern void setup_per_zone_wmarks(void);
1338 extern int __meminit init_per_zone_wmark_min(void);
1339 extern void mem_init(void);
1340 extern void __init mmap_init(void);
1341 extern void show_mem(unsigned int flags);
1342 extern void si_meminfo(struct sysinfo * val);
1343 extern void si_meminfo_node(struct sysinfo *val, int nid);
1344 extern int after_bootmem;
1345
1346 extern __printf(3, 4)
1347 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1348
1349 extern void setup_per_cpu_pageset(void);
1350
1351 extern void zone_pcp_update(struct zone *zone);
1352 extern void zone_pcp_reset(struct zone *zone);
1353
1354 /* nommu.c */
1355 extern atomic_long_t mmap_pages_allocated;
1356 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1357
1358 /* prio_tree.c */
1359 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1360 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1361 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1362 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1363 struct prio_tree_iter *iter);
1364
1365 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1366 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1367 (vma = vma_prio_tree_next(vma, iter)); )
1368
1369 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1370 struct list_head *list)
1371 {
1372 vma->shared.vm_set.parent = NULL;
1373 list_add_tail(&vma->shared.vm_set.list, list);
1374 }
1375
1376 /* mmap.c */
1377 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1378 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1379 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1380 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1381 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1382 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1383 struct mempolicy *);
1384 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1385 extern int split_vma(struct mm_struct *,
1386 struct vm_area_struct *, unsigned long addr, int new_below);
1387 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1388 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1389 struct rb_node **, struct rb_node *);
1390 extern void unlink_file_vma(struct vm_area_struct *);
1391 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1392 unsigned long addr, unsigned long len, pgoff_t pgoff);
1393 extern void exit_mmap(struct mm_struct *);
1394
1395 extern int mm_take_all_locks(struct mm_struct *mm);
1396 extern void mm_drop_all_locks(struct mm_struct *mm);
1397
1398 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1399 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1400
1401 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1402 extern int install_special_mapping(struct mm_struct *mm,
1403 unsigned long addr, unsigned long len,
1404 unsigned long flags, struct page **pages);
1405
1406 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1407
1408 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1409 unsigned long len, unsigned long flags,
1410 vm_flags_t vm_flags, unsigned long pgoff);
1411 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1412 unsigned long, unsigned long,
1413 unsigned long, unsigned long);
1414 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1415
1416 /* These take the mm semaphore themselves */
1417 extern unsigned long vm_brk(unsigned long, unsigned long);
1418 extern int vm_munmap(unsigned long, size_t);
1419 extern unsigned long vm_mmap(struct file *, unsigned long,
1420 unsigned long, unsigned long,
1421 unsigned long, unsigned long);
1422
1423 /* truncate.c */
1424 extern void truncate_inode_pages(struct address_space *, loff_t);
1425 extern void truncate_inode_pages_range(struct address_space *,
1426 loff_t lstart, loff_t lend);
1427
1428 /* generic vm_area_ops exported for stackable file systems */
1429 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1430 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1431
1432 /* mm/page-writeback.c */
1433 int write_one_page(struct page *page, int wait);
1434 void task_dirty_inc(struct task_struct *tsk);
1435
1436 /* readahead.c */
1437 #define VM_MAX_READAHEAD 128 /* kbytes */
1438 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1439
1440 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1441 pgoff_t offset, unsigned long nr_to_read);
1442
1443 void page_cache_sync_readahead(struct address_space *mapping,
1444 struct file_ra_state *ra,
1445 struct file *filp,
1446 pgoff_t offset,
1447 unsigned long size);
1448
1449 void page_cache_async_readahead(struct address_space *mapping,
1450 struct file_ra_state *ra,
1451 struct file *filp,
1452 struct page *pg,
1453 pgoff_t offset,
1454 unsigned long size);
1455
1456 unsigned long max_sane_readahead(unsigned long nr);
1457 unsigned long ra_submit(struct file_ra_state *ra,
1458 struct address_space *mapping,
1459 struct file *filp);
1460
1461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1462 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1463
1464 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1465 extern int expand_downwards(struct vm_area_struct *vma,
1466 unsigned long address);
1467 #if VM_GROWSUP
1468 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1469 #else
1470 #define expand_upwards(vma, address) do { } while (0)
1471 #endif
1472
1473 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1474 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1475 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1476 struct vm_area_struct **pprev);
1477
1478 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1479 NULL if none. Assume start_addr < end_addr. */
1480 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1481 {
1482 struct vm_area_struct * vma = find_vma(mm,start_addr);
1483
1484 if (vma && end_addr <= vma->vm_start)
1485 vma = NULL;
1486 return vma;
1487 }
1488
1489 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1490 {
1491 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1492 }
1493
1494 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1495 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1496 unsigned long vm_start, unsigned long vm_end)
1497 {
1498 struct vm_area_struct *vma = find_vma(mm, vm_start);
1499
1500 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1501 vma = NULL;
1502
1503 return vma;
1504 }
1505
1506 #ifdef CONFIG_MMU
1507 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1508 #else
1509 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1510 {
1511 return __pgprot(0);
1512 }
1513 #endif
1514
1515 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1516 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1517 unsigned long pfn, unsigned long size, pgprot_t);
1518 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1519 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520 unsigned long pfn);
1521 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1522 unsigned long pfn);
1523
1524 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1525 unsigned int foll_flags);
1526 #define FOLL_WRITE 0x01 /* check pte is writable */
1527 #define FOLL_TOUCH 0x02 /* mark page accessed */
1528 #define FOLL_GET 0x04 /* do get_page on page */
1529 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1530 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1531 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1532 * and return without waiting upon it */
1533 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1534 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1535 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1536
1537 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1538 void *data);
1539 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1540 unsigned long size, pte_fn_t fn, void *data);
1541
1542 #ifdef CONFIG_PROC_FS
1543 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1544 #else
1545 static inline void vm_stat_account(struct mm_struct *mm,
1546 unsigned long flags, struct file *file, long pages)
1547 {
1548 mm->total_vm += pages;
1549 }
1550 #endif /* CONFIG_PROC_FS */
1551
1552 #ifdef CONFIG_DEBUG_PAGEALLOC
1553 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1554 #ifdef CONFIG_HIBERNATION
1555 extern bool kernel_page_present(struct page *page);
1556 #endif /* CONFIG_HIBERNATION */
1557 #else
1558 static inline void
1559 kernel_map_pages(struct page *page, int numpages, int enable) {}
1560 #ifdef CONFIG_HIBERNATION
1561 static inline bool kernel_page_present(struct page *page) { return true; }
1562 #endif /* CONFIG_HIBERNATION */
1563 #endif
1564
1565 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1566 #ifdef __HAVE_ARCH_GATE_AREA
1567 int in_gate_area_no_mm(unsigned long addr);
1568 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1569 #else
1570 int in_gate_area_no_mm(unsigned long addr);
1571 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1572 #endif /* __HAVE_ARCH_GATE_AREA */
1573
1574 int drop_caches_sysctl_handler(struct ctl_table *, int,
1575 void __user *, size_t *, loff_t *);
1576 unsigned long shrink_slab(struct shrink_control *shrink,
1577 unsigned long nr_pages_scanned,
1578 unsigned long lru_pages);
1579
1580 #ifndef CONFIG_MMU
1581 #define randomize_va_space 0
1582 #else
1583 extern int randomize_va_space;
1584 #endif
1585
1586 const char * arch_vma_name(struct vm_area_struct *vma);
1587 void print_vma_addr(char *prefix, unsigned long rip);
1588
1589 void sparse_mem_maps_populate_node(struct page **map_map,
1590 unsigned long pnum_begin,
1591 unsigned long pnum_end,
1592 unsigned long map_count,
1593 int nodeid);
1594
1595 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1596 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1597 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1598 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1599 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1600 void *vmemmap_alloc_block(unsigned long size, int node);
1601 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1602 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1603 int vmemmap_populate_basepages(struct page *start_page,
1604 unsigned long pages, int node);
1605 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1606 void vmemmap_populate_print_last(void);
1607
1608
1609 enum mf_flags {
1610 MF_COUNT_INCREASED = 1 << 0,
1611 MF_ACTION_REQUIRED = 1 << 1,
1612 MF_MUST_KILL = 1 << 2,
1613 };
1614 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1615 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1616 extern int unpoison_memory(unsigned long pfn);
1617 extern int sysctl_memory_failure_early_kill;
1618 extern int sysctl_memory_failure_recovery;
1619 extern void shake_page(struct page *p, int access);
1620 extern atomic_long_t mce_bad_pages;
1621 extern int soft_offline_page(struct page *page, int flags);
1622
1623 extern void dump_page(struct page *page);
1624
1625 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1626 extern void clear_huge_page(struct page *page,
1627 unsigned long addr,
1628 unsigned int pages_per_huge_page);
1629 extern void copy_user_huge_page(struct page *dst, struct page *src,
1630 unsigned long addr, struct vm_area_struct *vma,
1631 unsigned int pages_per_huge_page);
1632 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1633
1634 #ifdef CONFIG_DEBUG_PAGEALLOC
1635 extern unsigned int _debug_guardpage_minorder;
1636
1637 static inline unsigned int debug_guardpage_minorder(void)
1638 {
1639 return _debug_guardpage_minorder;
1640 }
1641
1642 static inline bool page_is_guard(struct page *page)
1643 {
1644 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1645 }
1646 #else
1647 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1648 static inline bool page_is_guard(struct page *page) { return false; }
1649 #endif /* CONFIG_DEBUG_PAGEALLOC */
1650
1651 #endif /* __KERNEL__ */
1652 #endif /* _LINUX_MM_H */