Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
105
106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
110
111 #if defined(CONFIG_X86)
112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121 #endif
122
123 #ifndef VM_GROWSUP
124 # define VM_GROWSUP VM_NONE
125 #endif
126
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132 #endif
133
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #else
137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #endif
139
140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
146 /*
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149 */
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151
152 /*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156 extern pgprot_t protection_map[16];
157
158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
164 #define FAULT_FLAG_TRIED 0x40 /* second try */
165
166 /*
167 * vm_fault is filled by the the pagefault handler and passed to the vma's
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
170 *
171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
173 */
174 struct vm_fault {
175 unsigned int flags; /* FAULT_FLAG_xxx flags */
176 pgoff_t pgoff; /* Logical page offset based on vma */
177 void __user *virtual_address; /* Faulting virtual address */
178
179 struct page *page; /* ->fault handlers should return a
180 * page here, unless VM_FAULT_NOPAGE
181 * is set (which is also implied by
182 * VM_FAULT_ERROR).
183 */
184 };
185
186 /*
187 * These are the virtual MM functions - opening of an area, closing and
188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
189 * to the functions called when a no-page or a wp-page exception occurs.
190 */
191 struct vm_operations_struct {
192 void (*open)(struct vm_area_struct * area);
193 void (*close)(struct vm_area_struct * area);
194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
195
196 /* notification that a previously read-only page is about to become
197 * writable, if an error is returned it will cause a SIGBUS */
198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
199
200 /* called by access_process_vm when get_user_pages() fails, typically
201 * for use by special VMAs that can switch between memory and hardware
202 */
203 int (*access)(struct vm_area_struct *vma, unsigned long addr,
204 void *buf, int len, int write);
205 #ifdef CONFIG_NUMA
206 /*
207 * set_policy() op must add a reference to any non-NULL @new mempolicy
208 * to hold the policy upon return. Caller should pass NULL @new to
209 * remove a policy and fall back to surrounding context--i.e. do not
210 * install a MPOL_DEFAULT policy, nor the task or system default
211 * mempolicy.
212 */
213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
214
215 /*
216 * get_policy() op must add reference [mpol_get()] to any policy at
217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218 * in mm/mempolicy.c will do this automatically.
219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222 * must return NULL--i.e., do not "fallback" to task or system default
223 * policy.
224 */
225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226 unsigned long addr);
227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228 const nodemask_t *to, unsigned long flags);
229 #endif
230 /* called by sys_remap_file_pages() to populate non-linear mapping */
231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232 unsigned long size, pgoff_t pgoff);
233 };
234
235 struct mmu_gather;
236 struct inode;
237
238 #define page_private(page) ((page)->private)
239 #define set_page_private(page, v) ((page)->private = (v))
240
241 /* It's valid only if the page is free path or free_list */
242 static inline void set_freepage_migratetype(struct page *page, int migratetype)
243 {
244 page->index = migratetype;
245 }
246
247 /* It's valid only if the page is free path or free_list */
248 static inline int get_freepage_migratetype(struct page *page)
249 {
250 return page->index;
251 }
252
253 /*
254 * FIXME: take this include out, include page-flags.h in
255 * files which need it (119 of them)
256 */
257 #include <linux/page-flags.h>
258 #include <linux/huge_mm.h>
259
260 /*
261 * Methods to modify the page usage count.
262 *
263 * What counts for a page usage:
264 * - cache mapping (page->mapping)
265 * - private data (page->private)
266 * - page mapped in a task's page tables, each mapping
267 * is counted separately
268 *
269 * Also, many kernel routines increase the page count before a critical
270 * routine so they can be sure the page doesn't go away from under them.
271 */
272
273 /*
274 * Drop a ref, return true if the refcount fell to zero (the page has no users)
275 */
276 static inline int put_page_testzero(struct page *page)
277 {
278 VM_BUG_ON(atomic_read(&page->_count) == 0);
279 return atomic_dec_and_test(&page->_count);
280 }
281
282 /*
283 * Try to grab a ref unless the page has a refcount of zero, return false if
284 * that is the case.
285 */
286 static inline int get_page_unless_zero(struct page *page)
287 {
288 return atomic_inc_not_zero(&page->_count);
289 }
290
291 extern int page_is_ram(unsigned long pfn);
292
293 /* Support for virtually mapped pages */
294 struct page *vmalloc_to_page(const void *addr);
295 unsigned long vmalloc_to_pfn(const void *addr);
296
297 /*
298 * Determine if an address is within the vmalloc range
299 *
300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301 * is no special casing required.
302 */
303 static inline int is_vmalloc_addr(const void *x)
304 {
305 #ifdef CONFIG_MMU
306 unsigned long addr = (unsigned long)x;
307
308 return addr >= VMALLOC_START && addr < VMALLOC_END;
309 #else
310 return 0;
311 #endif
312 }
313 #ifdef CONFIG_MMU
314 extern int is_vmalloc_or_module_addr(const void *x);
315 #else
316 static inline int is_vmalloc_or_module_addr(const void *x)
317 {
318 return 0;
319 }
320 #endif
321
322 static inline void compound_lock(struct page *page)
323 {
324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 VM_BUG_ON(PageSlab(page));
326 bit_spin_lock(PG_compound_lock, &page->flags);
327 #endif
328 }
329
330 static inline void compound_unlock(struct page *page)
331 {
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 VM_BUG_ON(PageSlab(page));
334 bit_spin_unlock(PG_compound_lock, &page->flags);
335 #endif
336 }
337
338 static inline unsigned long compound_lock_irqsave(struct page *page)
339 {
340 unsigned long uninitialized_var(flags);
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 local_irq_save(flags);
343 compound_lock(page);
344 #endif
345 return flags;
346 }
347
348 static inline void compound_unlock_irqrestore(struct page *page,
349 unsigned long flags)
350 {
351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
352 compound_unlock(page);
353 local_irq_restore(flags);
354 #endif
355 }
356
357 static inline struct page *compound_head(struct page *page)
358 {
359 if (unlikely(PageTail(page)))
360 return page->first_page;
361 return page;
362 }
363
364 /*
365 * The atomic page->_mapcount, starts from -1: so that transitions
366 * both from it and to it can be tracked, using atomic_inc_and_test
367 * and atomic_add_negative(-1).
368 */
369 static inline void reset_page_mapcount(struct page *page)
370 {
371 atomic_set(&(page)->_mapcount, -1);
372 }
373
374 static inline int page_mapcount(struct page *page)
375 {
376 return atomic_read(&(page)->_mapcount) + 1;
377 }
378
379 static inline int page_count(struct page *page)
380 {
381 return atomic_read(&compound_head(page)->_count);
382 }
383
384 static inline void get_huge_page_tail(struct page *page)
385 {
386 /*
387 * __split_huge_page_refcount() cannot run
388 * from under us.
389 */
390 VM_BUG_ON(page_mapcount(page) < 0);
391 VM_BUG_ON(atomic_read(&page->_count) != 0);
392 atomic_inc(&page->_mapcount);
393 }
394
395 extern bool __get_page_tail(struct page *page);
396
397 static inline void get_page(struct page *page)
398 {
399 if (unlikely(PageTail(page)))
400 if (likely(__get_page_tail(page)))
401 return;
402 /*
403 * Getting a normal page or the head of a compound page
404 * requires to already have an elevated page->_count.
405 */
406 VM_BUG_ON(atomic_read(&page->_count) <= 0);
407 atomic_inc(&page->_count);
408 }
409
410 static inline struct page *virt_to_head_page(const void *x)
411 {
412 struct page *page = virt_to_page(x);
413 return compound_head(page);
414 }
415
416 /*
417 * Setup the page count before being freed into the page allocator for
418 * the first time (boot or memory hotplug)
419 */
420 static inline void init_page_count(struct page *page)
421 {
422 atomic_set(&page->_count, 1);
423 }
424
425 /*
426 * PageBuddy() indicate that the page is free and in the buddy system
427 * (see mm/page_alloc.c).
428 *
429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430 * -2 so that an underflow of the page_mapcount() won't be mistaken
431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432 * efficiently by most CPU architectures.
433 */
434 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435
436 static inline int PageBuddy(struct page *page)
437 {
438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
439 }
440
441 static inline void __SetPageBuddy(struct page *page)
442 {
443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
445 }
446
447 static inline void __ClearPageBuddy(struct page *page)
448 {
449 VM_BUG_ON(!PageBuddy(page));
450 atomic_set(&page->_mapcount, -1);
451 }
452
453 void put_page(struct page *page);
454 void put_pages_list(struct list_head *pages);
455
456 void split_page(struct page *page, unsigned int order);
457 int split_free_page(struct page *page);
458
459 /*
460 * Compound pages have a destructor function. Provide a
461 * prototype for that function and accessor functions.
462 * These are _only_ valid on the head of a PG_compound page.
463 */
464 typedef void compound_page_dtor(struct page *);
465
466 static inline void set_compound_page_dtor(struct page *page,
467 compound_page_dtor *dtor)
468 {
469 page[1].lru.next = (void *)dtor;
470 }
471
472 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
473 {
474 return (compound_page_dtor *)page[1].lru.next;
475 }
476
477 static inline int compound_order(struct page *page)
478 {
479 if (!PageHead(page))
480 return 0;
481 return (unsigned long)page[1].lru.prev;
482 }
483
484 static inline int compound_trans_order(struct page *page)
485 {
486 int order;
487 unsigned long flags;
488
489 if (!PageHead(page))
490 return 0;
491
492 flags = compound_lock_irqsave(page);
493 order = compound_order(page);
494 compound_unlock_irqrestore(page, flags);
495 return order;
496 }
497
498 static inline void set_compound_order(struct page *page, unsigned long order)
499 {
500 page[1].lru.prev = (void *)order;
501 }
502
503 #ifdef CONFIG_MMU
504 /*
505 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
506 * servicing faults for write access. In the normal case, do always want
507 * pte_mkwrite. But get_user_pages can cause write faults for mappings
508 * that do not have writing enabled, when used by access_process_vm.
509 */
510 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
511 {
512 if (likely(vma->vm_flags & VM_WRITE))
513 pte = pte_mkwrite(pte);
514 return pte;
515 }
516 #endif
517
518 /*
519 * Multiple processes may "see" the same page. E.g. for untouched
520 * mappings of /dev/null, all processes see the same page full of
521 * zeroes, and text pages of executables and shared libraries have
522 * only one copy in memory, at most, normally.
523 *
524 * For the non-reserved pages, page_count(page) denotes a reference count.
525 * page_count() == 0 means the page is free. page->lru is then used for
526 * freelist management in the buddy allocator.
527 * page_count() > 0 means the page has been allocated.
528 *
529 * Pages are allocated by the slab allocator in order to provide memory
530 * to kmalloc and kmem_cache_alloc. In this case, the management of the
531 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
532 * unless a particular usage is carefully commented. (the responsibility of
533 * freeing the kmalloc memory is the caller's, of course).
534 *
535 * A page may be used by anyone else who does a __get_free_page().
536 * In this case, page_count still tracks the references, and should only
537 * be used through the normal accessor functions. The top bits of page->flags
538 * and page->virtual store page management information, but all other fields
539 * are unused and could be used privately, carefully. The management of this
540 * page is the responsibility of the one who allocated it, and those who have
541 * subsequently been given references to it.
542 *
543 * The other pages (we may call them "pagecache pages") are completely
544 * managed by the Linux memory manager: I/O, buffers, swapping etc.
545 * The following discussion applies only to them.
546 *
547 * A pagecache page contains an opaque `private' member, which belongs to the
548 * page's address_space. Usually, this is the address of a circular list of
549 * the page's disk buffers. PG_private must be set to tell the VM to call
550 * into the filesystem to release these pages.
551 *
552 * A page may belong to an inode's memory mapping. In this case, page->mapping
553 * is the pointer to the inode, and page->index is the file offset of the page,
554 * in units of PAGE_CACHE_SIZE.
555 *
556 * If pagecache pages are not associated with an inode, they are said to be
557 * anonymous pages. These may become associated with the swapcache, and in that
558 * case PG_swapcache is set, and page->private is an offset into the swapcache.
559 *
560 * In either case (swapcache or inode backed), the pagecache itself holds one
561 * reference to the page. Setting PG_private should also increment the
562 * refcount. The each user mapping also has a reference to the page.
563 *
564 * The pagecache pages are stored in a per-mapping radix tree, which is
565 * rooted at mapping->page_tree, and indexed by offset.
566 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
567 * lists, we instead now tag pages as dirty/writeback in the radix tree.
568 *
569 * All pagecache pages may be subject to I/O:
570 * - inode pages may need to be read from disk,
571 * - inode pages which have been modified and are MAP_SHARED may need
572 * to be written back to the inode on disk,
573 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
574 * modified may need to be swapped out to swap space and (later) to be read
575 * back into memory.
576 */
577
578 /*
579 * The zone field is never updated after free_area_init_core()
580 * sets it, so none of the operations on it need to be atomic.
581 */
582
583
584 /*
585 * page->flags layout:
586 *
587 * There are three possibilities for how page->flags get
588 * laid out. The first is for the normal case, without
589 * sparsemem. The second is for sparsemem when there is
590 * plenty of space for node and section. The last is when
591 * we have run out of space and have to fall back to an
592 * alternate (slower) way of determining the node.
593 *
594 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
595 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
596 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
597 */
598 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
599 #define SECTIONS_WIDTH SECTIONS_SHIFT
600 #else
601 #define SECTIONS_WIDTH 0
602 #endif
603
604 #define ZONES_WIDTH ZONES_SHIFT
605
606 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
607 #define NODES_WIDTH NODES_SHIFT
608 #else
609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
610 #error "Vmemmap: No space for nodes field in page flags"
611 #endif
612 #define NODES_WIDTH 0
613 #endif
614
615 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
616 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
617 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
618 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
619
620 /*
621 * We are going to use the flags for the page to node mapping if its in
622 * there. This includes the case where there is no node, so it is implicit.
623 */
624 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
625 #define NODE_NOT_IN_PAGE_FLAGS
626 #endif
627
628 /*
629 * Define the bit shifts to access each section. For non-existent
630 * sections we define the shift as 0; that plus a 0 mask ensures
631 * the compiler will optimise away reference to them.
632 */
633 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
634 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
635 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
636
637 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
638 #ifdef NODE_NOT_IN_PAGE_FLAGS
639 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
640 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
641 SECTIONS_PGOFF : ZONES_PGOFF)
642 #else
643 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
644 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
645 NODES_PGOFF : ZONES_PGOFF)
646 #endif
647
648 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
649
650 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652 #endif
653
654 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
655 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
656 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
657 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
658
659 static inline enum zone_type page_zonenum(const struct page *page)
660 {
661 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
662 }
663
664 /*
665 * The identification function is only used by the buddy allocator for
666 * determining if two pages could be buddies. We are not really
667 * identifying a zone since we could be using a the section number
668 * id if we have not node id available in page flags.
669 * We guarantee only that it will return the same value for two
670 * combinable pages in a zone.
671 */
672 static inline int page_zone_id(struct page *page)
673 {
674 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
675 }
676
677 static inline int zone_to_nid(struct zone *zone)
678 {
679 #ifdef CONFIG_NUMA
680 return zone->node;
681 #else
682 return 0;
683 #endif
684 }
685
686 #ifdef NODE_NOT_IN_PAGE_FLAGS
687 extern int page_to_nid(const struct page *page);
688 #else
689 static inline int page_to_nid(const struct page *page)
690 {
691 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
692 }
693 #endif
694
695 #ifdef CONFIG_NUMA_BALANCING
696 static inline int page_xchg_last_nid(struct page *page, int nid)
697 {
698 return xchg(&page->_last_nid, nid);
699 }
700
701 static inline int page_last_nid(struct page *page)
702 {
703 return page->_last_nid;
704 }
705 static inline void reset_page_last_nid(struct page *page)
706 {
707 page->_last_nid = -1;
708 }
709 #else
710 static inline int page_xchg_last_nid(struct page *page, int nid)
711 {
712 return page_to_nid(page);
713 }
714
715 static inline int page_last_nid(struct page *page)
716 {
717 return page_to_nid(page);
718 }
719
720 static inline void reset_page_last_nid(struct page *page)
721 {
722 }
723 #endif
724
725 static inline struct zone *page_zone(const struct page *page)
726 {
727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
728 }
729
730 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
731 static inline void set_page_section(struct page *page, unsigned long section)
732 {
733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
735 }
736
737 static inline unsigned long page_to_section(const struct page *page)
738 {
739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
740 }
741 #endif
742
743 static inline void set_page_zone(struct page *page, enum zone_type zone)
744 {
745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
747 }
748
749 static inline void set_page_node(struct page *page, unsigned long node)
750 {
751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
753 }
754
755 static inline void set_page_links(struct page *page, enum zone_type zone,
756 unsigned long node, unsigned long pfn)
757 {
758 set_page_zone(page, zone);
759 set_page_node(page, node);
760 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
761 set_page_section(page, pfn_to_section_nr(pfn));
762 #endif
763 }
764
765 /*
766 * Some inline functions in vmstat.h depend on page_zone()
767 */
768 #include <linux/vmstat.h>
769
770 static __always_inline void *lowmem_page_address(const struct page *page)
771 {
772 return __va(PFN_PHYS(page_to_pfn(page)));
773 }
774
775 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
776 #define HASHED_PAGE_VIRTUAL
777 #endif
778
779 #if defined(WANT_PAGE_VIRTUAL)
780 #define page_address(page) ((page)->virtual)
781 #define set_page_address(page, address) \
782 do { \
783 (page)->virtual = (address); \
784 } while(0)
785 #define page_address_init() do { } while(0)
786 #endif
787
788 #if defined(HASHED_PAGE_VIRTUAL)
789 void *page_address(const struct page *page);
790 void set_page_address(struct page *page, void *virtual);
791 void page_address_init(void);
792 #endif
793
794 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
795 #define page_address(page) lowmem_page_address(page)
796 #define set_page_address(page, address) do { } while(0)
797 #define page_address_init() do { } while(0)
798 #endif
799
800 /*
801 * On an anonymous page mapped into a user virtual memory area,
802 * page->mapping points to its anon_vma, not to a struct address_space;
803 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
804 *
805 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
806 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
807 * and then page->mapping points, not to an anon_vma, but to a private
808 * structure which KSM associates with that merged page. See ksm.h.
809 *
810 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
811 *
812 * Please note that, confusingly, "page_mapping" refers to the inode
813 * address_space which maps the page from disk; whereas "page_mapped"
814 * refers to user virtual address space into which the page is mapped.
815 */
816 #define PAGE_MAPPING_ANON 1
817 #define PAGE_MAPPING_KSM 2
818 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
819
820 extern struct address_space swapper_space;
821 static inline struct address_space *page_mapping(struct page *page)
822 {
823 struct address_space *mapping = page->mapping;
824
825 VM_BUG_ON(PageSlab(page));
826 if (unlikely(PageSwapCache(page)))
827 mapping = &swapper_space;
828 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
829 mapping = NULL;
830 return mapping;
831 }
832
833 /* Neutral page->mapping pointer to address_space or anon_vma or other */
834 static inline void *page_rmapping(struct page *page)
835 {
836 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
837 }
838
839 extern struct address_space *__page_file_mapping(struct page *);
840
841 static inline
842 struct address_space *page_file_mapping(struct page *page)
843 {
844 if (unlikely(PageSwapCache(page)))
845 return __page_file_mapping(page);
846
847 return page->mapping;
848 }
849
850 static inline int PageAnon(struct page *page)
851 {
852 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
853 }
854
855 /*
856 * Return the pagecache index of the passed page. Regular pagecache pages
857 * use ->index whereas swapcache pages use ->private
858 */
859 static inline pgoff_t page_index(struct page *page)
860 {
861 if (unlikely(PageSwapCache(page)))
862 return page_private(page);
863 return page->index;
864 }
865
866 extern pgoff_t __page_file_index(struct page *page);
867
868 /*
869 * Return the file index of the page. Regular pagecache pages use ->index
870 * whereas swapcache pages use swp_offset(->private)
871 */
872 static inline pgoff_t page_file_index(struct page *page)
873 {
874 if (unlikely(PageSwapCache(page)))
875 return __page_file_index(page);
876
877 return page->index;
878 }
879
880 /*
881 * Return true if this page is mapped into pagetables.
882 */
883 static inline int page_mapped(struct page *page)
884 {
885 return atomic_read(&(page)->_mapcount) >= 0;
886 }
887
888 /*
889 * Different kinds of faults, as returned by handle_mm_fault().
890 * Used to decide whether a process gets delivered SIGBUS or
891 * just gets major/minor fault counters bumped up.
892 */
893
894 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
895
896 #define VM_FAULT_OOM 0x0001
897 #define VM_FAULT_SIGBUS 0x0002
898 #define VM_FAULT_MAJOR 0x0004
899 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
900 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
901 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
902
903 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
904 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
905 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
906
907 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
908
909 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
910 VM_FAULT_HWPOISON_LARGE)
911
912 /* Encode hstate index for a hwpoisoned large page */
913 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
914 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
915
916 /*
917 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
918 */
919 extern void pagefault_out_of_memory(void);
920
921 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
922
923 /*
924 * Flags passed to show_mem() and show_free_areas() to suppress output in
925 * various contexts.
926 */
927 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
928
929 extern void show_free_areas(unsigned int flags);
930 extern bool skip_free_areas_node(unsigned int flags, int nid);
931
932 int shmem_zero_setup(struct vm_area_struct *);
933
934 extern int can_do_mlock(void);
935 extern int user_shm_lock(size_t, struct user_struct *);
936 extern void user_shm_unlock(size_t, struct user_struct *);
937
938 /*
939 * Parameter block passed down to zap_pte_range in exceptional cases.
940 */
941 struct zap_details {
942 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
943 struct address_space *check_mapping; /* Check page->mapping if set */
944 pgoff_t first_index; /* Lowest page->index to unmap */
945 pgoff_t last_index; /* Highest page->index to unmap */
946 };
947
948 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
949 pte_t pte);
950
951 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
952 unsigned long size);
953 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
954 unsigned long size, struct zap_details *);
955 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
956 unsigned long start, unsigned long end);
957
958 /**
959 * mm_walk - callbacks for walk_page_range
960 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
961 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
962 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
963 * this handler is required to be able to handle
964 * pmd_trans_huge() pmds. They may simply choose to
965 * split_huge_page() instead of handling it explicitly.
966 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
967 * @pte_hole: if set, called for each hole at all levels
968 * @hugetlb_entry: if set, called for each hugetlb entry
969 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
970 * is used.
971 *
972 * (see walk_page_range for more details)
973 */
974 struct mm_walk {
975 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
976 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
977 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
978 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
979 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
980 int (*hugetlb_entry)(pte_t *, unsigned long,
981 unsigned long, unsigned long, struct mm_walk *);
982 struct mm_struct *mm;
983 void *private;
984 };
985
986 int walk_page_range(unsigned long addr, unsigned long end,
987 struct mm_walk *walk);
988 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
989 unsigned long end, unsigned long floor, unsigned long ceiling);
990 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
991 struct vm_area_struct *vma);
992 void unmap_mapping_range(struct address_space *mapping,
993 loff_t const holebegin, loff_t const holelen, int even_cows);
994 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
995 unsigned long *pfn);
996 int follow_phys(struct vm_area_struct *vma, unsigned long address,
997 unsigned int flags, unsigned long *prot, resource_size_t *phys);
998 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
999 void *buf, int len, int write);
1000
1001 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1002 loff_t const holebegin, loff_t const holelen)
1003 {
1004 unmap_mapping_range(mapping, holebegin, holelen, 0);
1005 }
1006
1007 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1008 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1009 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1010 int truncate_inode_page(struct address_space *mapping, struct page *page);
1011 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1012 int invalidate_inode_page(struct page *page);
1013
1014 #ifdef CONFIG_MMU
1015 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1016 unsigned long address, unsigned int flags);
1017 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long address, unsigned int fault_flags);
1019 #else
1020 static inline int handle_mm_fault(struct mm_struct *mm,
1021 struct vm_area_struct *vma, unsigned long address,
1022 unsigned int flags)
1023 {
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return VM_FAULT_SIGBUS;
1027 }
1028 static inline int fixup_user_fault(struct task_struct *tsk,
1029 struct mm_struct *mm, unsigned long address,
1030 unsigned int fault_flags)
1031 {
1032 /* should never happen if there's no MMU */
1033 BUG();
1034 return -EFAULT;
1035 }
1036 #endif
1037
1038 extern int make_pages_present(unsigned long addr, unsigned long end);
1039 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1040 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1041 void *buf, int len, int write);
1042
1043 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1044 unsigned long start, int len, unsigned int foll_flags,
1045 struct page **pages, struct vm_area_struct **vmas,
1046 int *nonblocking);
1047 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1048 unsigned long start, int nr_pages, int write, int force,
1049 struct page **pages, struct vm_area_struct **vmas);
1050 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 struct page **pages);
1052 struct kvec;
1053 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 struct page **pages);
1055 int get_kernel_page(unsigned long start, int write, struct page **pages);
1056 struct page *get_dump_page(unsigned long addr);
1057
1058 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059 extern void do_invalidatepage(struct page *page, unsigned long offset);
1060
1061 int __set_page_dirty_nobuffers(struct page *page);
1062 int __set_page_dirty_no_writeback(struct page *page);
1063 int redirty_page_for_writepage(struct writeback_control *wbc,
1064 struct page *page);
1065 void account_page_dirtied(struct page *page, struct address_space *mapping);
1066 void account_page_writeback(struct page *page);
1067 int set_page_dirty(struct page *page);
1068 int set_page_dirty_lock(struct page *page);
1069 int clear_page_dirty_for_io(struct page *page);
1070
1071 /* Is the vma a continuation of the stack vma above it? */
1072 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1073 {
1074 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1075 }
1076
1077 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1078 unsigned long addr)
1079 {
1080 return (vma->vm_flags & VM_GROWSDOWN) &&
1081 (vma->vm_start == addr) &&
1082 !vma_growsdown(vma->vm_prev, addr);
1083 }
1084
1085 /* Is the vma a continuation of the stack vma below it? */
1086 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1087 {
1088 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1089 }
1090
1091 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1092 unsigned long addr)
1093 {
1094 return (vma->vm_flags & VM_GROWSUP) &&
1095 (vma->vm_end == addr) &&
1096 !vma_growsup(vma->vm_next, addr);
1097 }
1098
1099 extern pid_t
1100 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1101
1102 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1103 unsigned long old_addr, struct vm_area_struct *new_vma,
1104 unsigned long new_addr, unsigned long len,
1105 bool need_rmap_locks);
1106 extern unsigned long do_mremap(unsigned long addr,
1107 unsigned long old_len, unsigned long new_len,
1108 unsigned long flags, unsigned long new_addr);
1109 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1110 unsigned long end, pgprot_t newprot,
1111 int dirty_accountable, int prot_numa);
1112 extern int mprotect_fixup(struct vm_area_struct *vma,
1113 struct vm_area_struct **pprev, unsigned long start,
1114 unsigned long end, unsigned long newflags);
1115
1116 /*
1117 * doesn't attempt to fault and will return short.
1118 */
1119 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1120 struct page **pages);
1121 /*
1122 * per-process(per-mm_struct) statistics.
1123 */
1124 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1125 {
1126 long val = atomic_long_read(&mm->rss_stat.count[member]);
1127
1128 #ifdef SPLIT_RSS_COUNTING
1129 /*
1130 * counter is updated in asynchronous manner and may go to minus.
1131 * But it's never be expected number for users.
1132 */
1133 if (val < 0)
1134 val = 0;
1135 #endif
1136 return (unsigned long)val;
1137 }
1138
1139 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1140 {
1141 atomic_long_add(value, &mm->rss_stat.count[member]);
1142 }
1143
1144 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1145 {
1146 atomic_long_inc(&mm->rss_stat.count[member]);
1147 }
1148
1149 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1150 {
1151 atomic_long_dec(&mm->rss_stat.count[member]);
1152 }
1153
1154 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1155 {
1156 return get_mm_counter(mm, MM_FILEPAGES) +
1157 get_mm_counter(mm, MM_ANONPAGES);
1158 }
1159
1160 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1161 {
1162 return max(mm->hiwater_rss, get_mm_rss(mm));
1163 }
1164
1165 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1166 {
1167 return max(mm->hiwater_vm, mm->total_vm);
1168 }
1169
1170 static inline void update_hiwater_rss(struct mm_struct *mm)
1171 {
1172 unsigned long _rss = get_mm_rss(mm);
1173
1174 if ((mm)->hiwater_rss < _rss)
1175 (mm)->hiwater_rss = _rss;
1176 }
1177
1178 static inline void update_hiwater_vm(struct mm_struct *mm)
1179 {
1180 if (mm->hiwater_vm < mm->total_vm)
1181 mm->hiwater_vm = mm->total_vm;
1182 }
1183
1184 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1185 struct mm_struct *mm)
1186 {
1187 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1188
1189 if (*maxrss < hiwater_rss)
1190 *maxrss = hiwater_rss;
1191 }
1192
1193 #if defined(SPLIT_RSS_COUNTING)
1194 void sync_mm_rss(struct mm_struct *mm);
1195 #else
1196 static inline void sync_mm_rss(struct mm_struct *mm)
1197 {
1198 }
1199 #endif
1200
1201 int vma_wants_writenotify(struct vm_area_struct *vma);
1202
1203 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1204 spinlock_t **ptl);
1205 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1206 spinlock_t **ptl)
1207 {
1208 pte_t *ptep;
1209 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1210 return ptep;
1211 }
1212
1213 #ifdef __PAGETABLE_PUD_FOLDED
1214 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1215 unsigned long address)
1216 {
1217 return 0;
1218 }
1219 #else
1220 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1221 #endif
1222
1223 #ifdef __PAGETABLE_PMD_FOLDED
1224 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1225 unsigned long address)
1226 {
1227 return 0;
1228 }
1229 #else
1230 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1231 #endif
1232
1233 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1234 pmd_t *pmd, unsigned long address);
1235 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1236
1237 /*
1238 * The following ifdef needed to get the 4level-fixup.h header to work.
1239 * Remove it when 4level-fixup.h has been removed.
1240 */
1241 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1242 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1243 {
1244 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1245 NULL: pud_offset(pgd, address);
1246 }
1247
1248 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1249 {
1250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1251 NULL: pmd_offset(pud, address);
1252 }
1253 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1254
1255 #if USE_SPLIT_PTLOCKS
1256 /*
1257 * We tuck a spinlock to guard each pagetable page into its struct page,
1258 * at page->private, with BUILD_BUG_ON to make sure that this will not
1259 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1260 * When freeing, reset page->mapping so free_pages_check won't complain.
1261 */
1262 #define __pte_lockptr(page) &((page)->ptl)
1263 #define pte_lock_init(_page) do { \
1264 spin_lock_init(__pte_lockptr(_page)); \
1265 } while (0)
1266 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1267 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1268 #else /* !USE_SPLIT_PTLOCKS */
1269 /*
1270 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1271 */
1272 #define pte_lock_init(page) do {} while (0)
1273 #define pte_lock_deinit(page) do {} while (0)
1274 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1275 #endif /* USE_SPLIT_PTLOCKS */
1276
1277 static inline void pgtable_page_ctor(struct page *page)
1278 {
1279 pte_lock_init(page);
1280 inc_zone_page_state(page, NR_PAGETABLE);
1281 }
1282
1283 static inline void pgtable_page_dtor(struct page *page)
1284 {
1285 pte_lock_deinit(page);
1286 dec_zone_page_state(page, NR_PAGETABLE);
1287 }
1288
1289 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1290 ({ \
1291 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1292 pte_t *__pte = pte_offset_map(pmd, address); \
1293 *(ptlp) = __ptl; \
1294 spin_lock(__ptl); \
1295 __pte; \
1296 })
1297
1298 #define pte_unmap_unlock(pte, ptl) do { \
1299 spin_unlock(ptl); \
1300 pte_unmap(pte); \
1301 } while (0)
1302
1303 #define pte_alloc_map(mm, vma, pmd, address) \
1304 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1305 pmd, address))? \
1306 NULL: pte_offset_map(pmd, address))
1307
1308 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1309 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1310 pmd, address))? \
1311 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1312
1313 #define pte_alloc_kernel(pmd, address) \
1314 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1315 NULL: pte_offset_kernel(pmd, address))
1316
1317 extern void free_area_init(unsigned long * zones_size);
1318 extern void free_area_init_node(int nid, unsigned long * zones_size,
1319 unsigned long zone_start_pfn, unsigned long *zholes_size);
1320 extern void free_initmem(void);
1321
1322 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1323 /*
1324 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1325 * zones, allocate the backing mem_map and account for memory holes in a more
1326 * architecture independent manner. This is a substitute for creating the
1327 * zone_sizes[] and zholes_size[] arrays and passing them to
1328 * free_area_init_node()
1329 *
1330 * An architecture is expected to register range of page frames backed by
1331 * physical memory with memblock_add[_node]() before calling
1332 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1333 * usage, an architecture is expected to do something like
1334 *
1335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1336 * max_highmem_pfn};
1337 * for_each_valid_physical_page_range()
1338 * memblock_add_node(base, size, nid)
1339 * free_area_init_nodes(max_zone_pfns);
1340 *
1341 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1342 * registered physical page range. Similarly
1343 * sparse_memory_present_with_active_regions() calls memory_present() for
1344 * each range when SPARSEMEM is enabled.
1345 *
1346 * See mm/page_alloc.c for more information on each function exposed by
1347 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1348 */
1349 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1350 unsigned long node_map_pfn_alignment(void);
1351 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1352 unsigned long end_pfn);
1353 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1354 unsigned long end_pfn);
1355 extern void get_pfn_range_for_nid(unsigned int nid,
1356 unsigned long *start_pfn, unsigned long *end_pfn);
1357 extern unsigned long find_min_pfn_with_active_regions(void);
1358 extern void free_bootmem_with_active_regions(int nid,
1359 unsigned long max_low_pfn);
1360 extern void sparse_memory_present_with_active_regions(int nid);
1361
1362 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1363
1364 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1365 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1366 static inline int __early_pfn_to_nid(unsigned long pfn)
1367 {
1368 return 0;
1369 }
1370 #else
1371 /* please see mm/page_alloc.c */
1372 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1373 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1374 /* there is a per-arch backend function. */
1375 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1376 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1377 #endif
1378
1379 extern void set_dma_reserve(unsigned long new_dma_reserve);
1380 extern void memmap_init_zone(unsigned long, int, unsigned long,
1381 unsigned long, enum memmap_context);
1382 extern void setup_per_zone_wmarks(void);
1383 extern int __meminit init_per_zone_wmark_min(void);
1384 extern void mem_init(void);
1385 extern void __init mmap_init(void);
1386 extern void show_mem(unsigned int flags);
1387 extern void si_meminfo(struct sysinfo * val);
1388 extern void si_meminfo_node(struct sysinfo *val, int nid);
1389 extern int after_bootmem;
1390
1391 extern __printf(3, 4)
1392 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1393
1394 extern void setup_per_cpu_pageset(void);
1395
1396 extern void zone_pcp_update(struct zone *zone);
1397 extern void zone_pcp_reset(struct zone *zone);
1398
1399 /* nommu.c */
1400 extern atomic_long_t mmap_pages_allocated;
1401 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1402
1403 /* interval_tree.c */
1404 void vma_interval_tree_insert(struct vm_area_struct *node,
1405 struct rb_root *root);
1406 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1407 struct vm_area_struct *prev,
1408 struct rb_root *root);
1409 void vma_interval_tree_remove(struct vm_area_struct *node,
1410 struct rb_root *root);
1411 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1412 unsigned long start, unsigned long last);
1413 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1414 unsigned long start, unsigned long last);
1415
1416 #define vma_interval_tree_foreach(vma, root, start, last) \
1417 for (vma = vma_interval_tree_iter_first(root, start, last); \
1418 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1419
1420 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1421 struct list_head *list)
1422 {
1423 list_add_tail(&vma->shared.nonlinear, list);
1424 }
1425
1426 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1427 struct rb_root *root);
1428 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1429 struct rb_root *root);
1430 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1431 struct rb_root *root, unsigned long start, unsigned long last);
1432 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1433 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1434 #ifdef CONFIG_DEBUG_VM_RB
1435 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1436 #endif
1437
1438 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1439 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1440 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1441
1442 /* mmap.c */
1443 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1444 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1445 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1446 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1447 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1448 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1449 struct mempolicy *);
1450 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1451 extern int split_vma(struct mm_struct *,
1452 struct vm_area_struct *, unsigned long addr, int new_below);
1453 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1454 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1455 struct rb_node **, struct rb_node *);
1456 extern void unlink_file_vma(struct vm_area_struct *);
1457 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1458 unsigned long addr, unsigned long len, pgoff_t pgoff,
1459 bool *need_rmap_locks);
1460 extern void exit_mmap(struct mm_struct *);
1461
1462 extern int mm_take_all_locks(struct mm_struct *mm);
1463 extern void mm_drop_all_locks(struct mm_struct *mm);
1464
1465 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1466 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1467
1468 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1469 extern int install_special_mapping(struct mm_struct *mm,
1470 unsigned long addr, unsigned long len,
1471 unsigned long flags, struct page **pages);
1472
1473 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1474
1475 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1476 unsigned long len, unsigned long flags,
1477 vm_flags_t vm_flags, unsigned long pgoff);
1478 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1479 unsigned long, unsigned long,
1480 unsigned long, unsigned long);
1481 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1482
1483 /* These take the mm semaphore themselves */
1484 extern unsigned long vm_brk(unsigned long, unsigned long);
1485 extern int vm_munmap(unsigned long, size_t);
1486 extern unsigned long vm_mmap(struct file *, unsigned long,
1487 unsigned long, unsigned long,
1488 unsigned long, unsigned long);
1489
1490 struct vm_unmapped_area_info {
1491 #define VM_UNMAPPED_AREA_TOPDOWN 1
1492 unsigned long flags;
1493 unsigned long length;
1494 unsigned long low_limit;
1495 unsigned long high_limit;
1496 unsigned long align_mask;
1497 unsigned long align_offset;
1498 };
1499
1500 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1501 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1502
1503 /*
1504 * Search for an unmapped address range.
1505 *
1506 * We are looking for a range that:
1507 * - does not intersect with any VMA;
1508 * - is contained within the [low_limit, high_limit) interval;
1509 * - is at least the desired size.
1510 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1511 */
1512 static inline unsigned long
1513 vm_unmapped_area(struct vm_unmapped_area_info *info)
1514 {
1515 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1516 return unmapped_area(info);
1517 else
1518 return unmapped_area_topdown(info);
1519 }
1520
1521 /* truncate.c */
1522 extern void truncate_inode_pages(struct address_space *, loff_t);
1523 extern void truncate_inode_pages_range(struct address_space *,
1524 loff_t lstart, loff_t lend);
1525
1526 /* generic vm_area_ops exported for stackable file systems */
1527 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1528 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1529
1530 /* mm/page-writeback.c */
1531 int write_one_page(struct page *page, int wait);
1532 void task_dirty_inc(struct task_struct *tsk);
1533
1534 /* readahead.c */
1535 #define VM_MAX_READAHEAD 128 /* kbytes */
1536 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1537
1538 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1539 pgoff_t offset, unsigned long nr_to_read);
1540
1541 void page_cache_sync_readahead(struct address_space *mapping,
1542 struct file_ra_state *ra,
1543 struct file *filp,
1544 pgoff_t offset,
1545 unsigned long size);
1546
1547 void page_cache_async_readahead(struct address_space *mapping,
1548 struct file_ra_state *ra,
1549 struct file *filp,
1550 struct page *pg,
1551 pgoff_t offset,
1552 unsigned long size);
1553
1554 unsigned long max_sane_readahead(unsigned long nr);
1555 unsigned long ra_submit(struct file_ra_state *ra,
1556 struct address_space *mapping,
1557 struct file *filp);
1558
1559 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1560 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1561
1562 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1563 extern int expand_downwards(struct vm_area_struct *vma,
1564 unsigned long address);
1565 #if VM_GROWSUP
1566 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1567 #else
1568 #define expand_upwards(vma, address) do { } while (0)
1569 #endif
1570
1571 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1572 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1573 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1574 struct vm_area_struct **pprev);
1575
1576 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1577 NULL if none. Assume start_addr < end_addr. */
1578 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1579 {
1580 struct vm_area_struct * vma = find_vma(mm,start_addr);
1581
1582 if (vma && end_addr <= vma->vm_start)
1583 vma = NULL;
1584 return vma;
1585 }
1586
1587 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1588 {
1589 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1590 }
1591
1592 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1593 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1594 unsigned long vm_start, unsigned long vm_end)
1595 {
1596 struct vm_area_struct *vma = find_vma(mm, vm_start);
1597
1598 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1599 vma = NULL;
1600
1601 return vma;
1602 }
1603
1604 #ifdef CONFIG_MMU
1605 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1606 #else
1607 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1608 {
1609 return __pgprot(0);
1610 }
1611 #endif
1612
1613 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1614 unsigned long change_prot_numa(struct vm_area_struct *vma,
1615 unsigned long start, unsigned long end);
1616 #endif
1617
1618 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1619 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1620 unsigned long pfn, unsigned long size, pgprot_t);
1621 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1622 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1623 unsigned long pfn);
1624 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1625 unsigned long pfn);
1626
1627 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1628 unsigned int foll_flags);
1629 #define FOLL_WRITE 0x01 /* check pte is writable */
1630 #define FOLL_TOUCH 0x02 /* mark page accessed */
1631 #define FOLL_GET 0x04 /* do get_page on page */
1632 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1633 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1634 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1635 * and return without waiting upon it */
1636 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1637 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1638 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1639 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1640
1641 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1642 void *data);
1643 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1644 unsigned long size, pte_fn_t fn, void *data);
1645
1646 #ifdef CONFIG_PROC_FS
1647 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1648 #else
1649 static inline void vm_stat_account(struct mm_struct *mm,
1650 unsigned long flags, struct file *file, long pages)
1651 {
1652 mm->total_vm += pages;
1653 }
1654 #endif /* CONFIG_PROC_FS */
1655
1656 #ifdef CONFIG_DEBUG_PAGEALLOC
1657 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1658 #ifdef CONFIG_HIBERNATION
1659 extern bool kernel_page_present(struct page *page);
1660 #endif /* CONFIG_HIBERNATION */
1661 #else
1662 static inline void
1663 kernel_map_pages(struct page *page, int numpages, int enable) {}
1664 #ifdef CONFIG_HIBERNATION
1665 static inline bool kernel_page_present(struct page *page) { return true; }
1666 #endif /* CONFIG_HIBERNATION */
1667 #endif
1668
1669 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1670 #ifdef __HAVE_ARCH_GATE_AREA
1671 int in_gate_area_no_mm(unsigned long addr);
1672 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1673 #else
1674 int in_gate_area_no_mm(unsigned long addr);
1675 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1676 #endif /* __HAVE_ARCH_GATE_AREA */
1677
1678 int drop_caches_sysctl_handler(struct ctl_table *, int,
1679 void __user *, size_t *, loff_t *);
1680 unsigned long shrink_slab(struct shrink_control *shrink,
1681 unsigned long nr_pages_scanned,
1682 unsigned long lru_pages);
1683
1684 #ifndef CONFIG_MMU
1685 #define randomize_va_space 0
1686 #else
1687 extern int randomize_va_space;
1688 #endif
1689
1690 const char * arch_vma_name(struct vm_area_struct *vma);
1691 void print_vma_addr(char *prefix, unsigned long rip);
1692
1693 void sparse_mem_maps_populate_node(struct page **map_map,
1694 unsigned long pnum_begin,
1695 unsigned long pnum_end,
1696 unsigned long map_count,
1697 int nodeid);
1698
1699 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1700 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1701 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1702 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1703 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1704 void *vmemmap_alloc_block(unsigned long size, int node);
1705 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1706 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1707 int vmemmap_populate_basepages(struct page *start_page,
1708 unsigned long pages, int node);
1709 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1710 void vmemmap_populate_print_last(void);
1711
1712
1713 enum mf_flags {
1714 MF_COUNT_INCREASED = 1 << 0,
1715 MF_ACTION_REQUIRED = 1 << 1,
1716 MF_MUST_KILL = 1 << 2,
1717 };
1718 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1719 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1720 extern int unpoison_memory(unsigned long pfn);
1721 extern int sysctl_memory_failure_early_kill;
1722 extern int sysctl_memory_failure_recovery;
1723 extern void shake_page(struct page *p, int access);
1724 extern atomic_long_t mce_bad_pages;
1725 extern int soft_offline_page(struct page *page, int flags);
1726
1727 extern void dump_page(struct page *page);
1728
1729 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1730 extern void clear_huge_page(struct page *page,
1731 unsigned long addr,
1732 unsigned int pages_per_huge_page);
1733 extern void copy_user_huge_page(struct page *dst, struct page *src,
1734 unsigned long addr, struct vm_area_struct *vma,
1735 unsigned int pages_per_huge_page);
1736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1737
1738 #ifdef CONFIG_DEBUG_PAGEALLOC
1739 extern unsigned int _debug_guardpage_minorder;
1740
1741 static inline unsigned int debug_guardpage_minorder(void)
1742 {
1743 return _debug_guardpage_minorder;
1744 }
1745
1746 static inline bool page_is_guard(struct page *page)
1747 {
1748 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1749 }
1750 #else
1751 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1752 static inline bool page_is_guard(struct page *page) { return false; }
1753 #endif /* CONFIG_DEBUG_PAGEALLOC */
1754
1755 #endif /* __KERNEL__ */
1756 #endif /* _LINUX_MM_H */