[PATCH] knfsd: allow sockets to be passed to nfsd via 'portlist'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / list.h
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
10
11 /*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 struct list_head {
22 struct list_head *next, *prev;
23 };
24
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
26
27 #define LIST_HEAD(name) \
28 struct list_head name = LIST_HEAD_INIT(name)
29
30 static inline void INIT_LIST_HEAD(struct list_head *list)
31 {
32 list->next = list;
33 list->prev = list;
34 }
35
36 /*
37 * Insert a new entry between two known consecutive entries.
38 *
39 * This is only for internal list manipulation where we know
40 * the prev/next entries already!
41 */
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 struct list_head *prev,
45 struct list_head *next)
46 {
47 next->prev = new;
48 new->next = next;
49 new->prev = prev;
50 prev->next = new;
51 }
52 #else
53 extern void __list_add(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56 #endif
57
58 /**
59 * list_add - add a new entry
60 * @new: new entry to be added
61 * @head: list head to add it after
62 *
63 * Insert a new entry after the specified head.
64 * This is good for implementing stacks.
65 */
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
68 {
69 __list_add(new, head, head->next);
70 }
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
74
75
76 /**
77 * list_add_tail - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it before
80 *
81 * Insert a new entry before the specified head.
82 * This is useful for implementing queues.
83 */
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
85 {
86 __list_add(new, head->prev, head);
87 }
88
89 /*
90 * Insert a new entry between two known consecutive entries.
91 *
92 * This is only for internal list manipulation where we know
93 * the prev/next entries already!
94 */
95 static inline void __list_add_rcu(struct list_head * new,
96 struct list_head * prev, struct list_head * next)
97 {
98 new->next = next;
99 new->prev = prev;
100 smp_wmb();
101 next->prev = new;
102 prev->next = new;
103 }
104
105 /**
106 * list_add_rcu - add a new entry to rcu-protected list
107 * @new: new entry to be added
108 * @head: list head to add it after
109 *
110 * Insert a new entry after the specified head.
111 * This is good for implementing stacks.
112 *
113 * The caller must take whatever precautions are necessary
114 * (such as holding appropriate locks) to avoid racing
115 * with another list-mutation primitive, such as list_add_rcu()
116 * or list_del_rcu(), running on this same list.
117 * However, it is perfectly legal to run concurrently with
118 * the _rcu list-traversal primitives, such as
119 * list_for_each_entry_rcu().
120 */
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
122 {
123 __list_add_rcu(new, head, head->next);
124 }
125
126 /**
127 * list_add_tail_rcu - add a new entry to rcu-protected list
128 * @new: new entry to be added
129 * @head: list head to add it before
130 *
131 * Insert a new entry before the specified head.
132 * This is useful for implementing queues.
133 *
134 * The caller must take whatever precautions are necessary
135 * (such as holding appropriate locks) to avoid racing
136 * with another list-mutation primitive, such as list_add_tail_rcu()
137 * or list_del_rcu(), running on this same list.
138 * However, it is perfectly legal to run concurrently with
139 * the _rcu list-traversal primitives, such as
140 * list_for_each_entry_rcu().
141 */
142 static inline void list_add_tail_rcu(struct list_head *new,
143 struct list_head *head)
144 {
145 __list_add_rcu(new, head->prev, head);
146 }
147
148 /*
149 * Delete a list entry by making the prev/next entries
150 * point to each other.
151 *
152 * This is only for internal list manipulation where we know
153 * the prev/next entries already!
154 */
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
156 {
157 next->prev = prev;
158 prev->next = next;
159 }
160
161 /**
162 * list_del - deletes entry from list.
163 * @entry: the element to delete from the list.
164 * Note: list_empty on entry does not return true after this, the entry is
165 * in an undefined state.
166 */
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
169 {
170 __list_del(entry->prev, entry->next);
171 entry->next = LIST_POISON1;
172 entry->prev = LIST_POISON2;
173 }
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
177
178 /**
179 * list_del_rcu - deletes entry from list without re-initialization
180 * @entry: the element to delete from the list.
181 *
182 * Note: list_empty on entry does not return true after this,
183 * the entry is in an undefined state. It is useful for RCU based
184 * lockfree traversal.
185 *
186 * In particular, it means that we can not poison the forward
187 * pointers that may still be used for walking the list.
188 *
189 * The caller must take whatever precautions are necessary
190 * (such as holding appropriate locks) to avoid racing
191 * with another list-mutation primitive, such as list_del_rcu()
192 * or list_add_rcu(), running on this same list.
193 * However, it is perfectly legal to run concurrently with
194 * the _rcu list-traversal primitives, such as
195 * list_for_each_entry_rcu().
196 *
197 * Note that the caller is not permitted to immediately free
198 * the newly deleted entry. Instead, either synchronize_rcu()
199 * or call_rcu() must be used to defer freeing until an RCU
200 * grace period has elapsed.
201 */
202 static inline void list_del_rcu(struct list_head *entry)
203 {
204 __list_del(entry->prev, entry->next);
205 entry->prev = LIST_POISON2;
206 }
207
208 /**
209 * list_replace - replace old entry by new one
210 * @old : the element to be replaced
211 * @new : the new element to insert
212 * Note: if 'old' was empty, it will be overwritten.
213 */
214 static inline void list_replace(struct list_head *old,
215 struct list_head *new)
216 {
217 new->next = old->next;
218 new->next->prev = new;
219 new->prev = old->prev;
220 new->prev->next = new;
221 }
222
223 static inline void list_replace_init(struct list_head *old,
224 struct list_head *new)
225 {
226 list_replace(old, new);
227 INIT_LIST_HEAD(old);
228 }
229
230 /*
231 * list_replace_rcu - replace old entry by new one
232 * @old : the element to be replaced
233 * @new : the new element to insert
234 *
235 * The old entry will be replaced with the new entry atomically.
236 * Note: 'old' should not be empty.
237 */
238 static inline void list_replace_rcu(struct list_head *old,
239 struct list_head *new)
240 {
241 new->next = old->next;
242 new->prev = old->prev;
243 smp_wmb();
244 new->next->prev = new;
245 new->prev->next = new;
246 old->prev = LIST_POISON2;
247 }
248
249 /**
250 * list_del_init - deletes entry from list and reinitialize it.
251 * @entry: the element to delete from the list.
252 */
253 static inline void list_del_init(struct list_head *entry)
254 {
255 __list_del(entry->prev, entry->next);
256 INIT_LIST_HEAD(entry);
257 }
258
259 /**
260 * list_move - delete from one list and add as another's head
261 * @list: the entry to move
262 * @head: the head that will precede our entry
263 */
264 static inline void list_move(struct list_head *list, struct list_head *head)
265 {
266 __list_del(list->prev, list->next);
267 list_add(list, head);
268 }
269
270 /**
271 * list_move_tail - delete from one list and add as another's tail
272 * @list: the entry to move
273 * @head: the head that will follow our entry
274 */
275 static inline void list_move_tail(struct list_head *list,
276 struct list_head *head)
277 {
278 __list_del(list->prev, list->next);
279 list_add_tail(list, head);
280 }
281
282 /**
283 * list_is_last - tests whether @list is the last entry in list @head
284 * @list: the entry to test
285 * @head: the head of the list
286 */
287 static inline int list_is_last(const struct list_head *list,
288 const struct list_head *head)
289 {
290 return list->next == head;
291 }
292
293 /**
294 * list_empty - tests whether a list is empty
295 * @head: the list to test.
296 */
297 static inline int list_empty(const struct list_head *head)
298 {
299 return head->next == head;
300 }
301
302 /**
303 * list_empty_careful - tests whether a list is empty and not being modified
304 * @head: the list to test
305 *
306 * Description:
307 * tests whether a list is empty _and_ checks that no other CPU might be
308 * in the process of modifying either member (next or prev)
309 *
310 * NOTE: using list_empty_careful() without synchronization
311 * can only be safe if the only activity that can happen
312 * to the list entry is list_del_init(). Eg. it cannot be used
313 * if another CPU could re-list_add() it.
314 */
315 static inline int list_empty_careful(const struct list_head *head)
316 {
317 struct list_head *next = head->next;
318 return (next == head) && (next == head->prev);
319 }
320
321 static inline void __list_splice(struct list_head *list,
322 struct list_head *head)
323 {
324 struct list_head *first = list->next;
325 struct list_head *last = list->prev;
326 struct list_head *at = head->next;
327
328 first->prev = head;
329 head->next = first;
330
331 last->next = at;
332 at->prev = last;
333 }
334
335 /**
336 * list_splice - join two lists
337 * @list: the new list to add.
338 * @head: the place to add it in the first list.
339 */
340 static inline void list_splice(struct list_head *list, struct list_head *head)
341 {
342 if (!list_empty(list))
343 __list_splice(list, head);
344 }
345
346 /**
347 * list_splice_init - join two lists and reinitialise the emptied list.
348 * @list: the new list to add.
349 * @head: the place to add it in the first list.
350 *
351 * The list at @list is reinitialised
352 */
353 static inline void list_splice_init(struct list_head *list,
354 struct list_head *head)
355 {
356 if (!list_empty(list)) {
357 __list_splice(list, head);
358 INIT_LIST_HEAD(list);
359 }
360 }
361
362 /**
363 * list_entry - get the struct for this entry
364 * @ptr: the &struct list_head pointer.
365 * @type: the type of the struct this is embedded in.
366 * @member: the name of the list_struct within the struct.
367 */
368 #define list_entry(ptr, type, member) \
369 container_of(ptr, type, member)
370
371 /**
372 * list_for_each - iterate over a list
373 * @pos: the &struct list_head to use as a loop cursor.
374 * @head: the head for your list.
375 */
376 #define list_for_each(pos, head) \
377 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
378 pos = pos->next)
379
380 /**
381 * __list_for_each - iterate over a list
382 * @pos: the &struct list_head to use as a loop cursor.
383 * @head: the head for your list.
384 *
385 * This variant differs from list_for_each() in that it's the
386 * simplest possible list iteration code, no prefetching is done.
387 * Use this for code that knows the list to be very short (empty
388 * or 1 entry) most of the time.
389 */
390 #define __list_for_each(pos, head) \
391 for (pos = (head)->next; pos != (head); pos = pos->next)
392
393 /**
394 * list_for_each_prev - iterate over a list backwards
395 * @pos: the &struct list_head to use as a loop cursor.
396 * @head: the head for your list.
397 */
398 #define list_for_each_prev(pos, head) \
399 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
400 pos = pos->prev)
401
402 /**
403 * list_for_each_safe - iterate over a list safe against removal of list entry
404 * @pos: the &struct list_head to use as a loop cursor.
405 * @n: another &struct list_head to use as temporary storage
406 * @head: the head for your list.
407 */
408 #define list_for_each_safe(pos, n, head) \
409 for (pos = (head)->next, n = pos->next; pos != (head); \
410 pos = n, n = pos->next)
411
412 /**
413 * list_for_each_entry - iterate over list of given type
414 * @pos: the type * to use as a loop cursor.
415 * @head: the head for your list.
416 * @member: the name of the list_struct within the struct.
417 */
418 #define list_for_each_entry(pos, head, member) \
419 for (pos = list_entry((head)->next, typeof(*pos), member); \
420 prefetch(pos->member.next), &pos->member != (head); \
421 pos = list_entry(pos->member.next, typeof(*pos), member))
422
423 /**
424 * list_for_each_entry_reverse - iterate backwards over list of given type.
425 * @pos: the type * to use as a loop cursor.
426 * @head: the head for your list.
427 * @member: the name of the list_struct within the struct.
428 */
429 #define list_for_each_entry_reverse(pos, head, member) \
430 for (pos = list_entry((head)->prev, typeof(*pos), member); \
431 prefetch(pos->member.prev), &pos->member != (head); \
432 pos = list_entry(pos->member.prev, typeof(*pos), member))
433
434 /**
435 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue
436 * @pos: the type * to use as a start point
437 * @head: the head of the list
438 * @member: the name of the list_struct within the struct.
439 *
440 * Prepares a pos entry for use as a start point in list_for_each_entry_continue.
441 */
442 #define list_prepare_entry(pos, head, member) \
443 ((pos) ? : list_entry(head, typeof(*pos), member))
444
445 /**
446 * list_for_each_entry_continue - continue iteration over list of given type
447 * @pos: the type * to use as a loop cursor.
448 * @head: the head for your list.
449 * @member: the name of the list_struct within the struct.
450 *
451 * Continue to iterate over list of given type, continuing after
452 * the current position.
453 */
454 #define list_for_each_entry_continue(pos, head, member) \
455 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
456 prefetch(pos->member.next), &pos->member != (head); \
457 pos = list_entry(pos->member.next, typeof(*pos), member))
458
459 /**
460 * list_for_each_entry_from - iterate over list of given type from the current point
461 * @pos: the type * to use as a loop cursor.
462 * @head: the head for your list.
463 * @member: the name of the list_struct within the struct.
464 *
465 * Iterate over list of given type, continuing from current position.
466 */
467 #define list_for_each_entry_from(pos, head, member) \
468 for (; prefetch(pos->member.next), &pos->member != (head); \
469 pos = list_entry(pos->member.next, typeof(*pos), member))
470
471 /**
472 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
473 * @pos: the type * to use as a loop cursor.
474 * @n: another type * to use as temporary storage
475 * @head: the head for your list.
476 * @member: the name of the list_struct within the struct.
477 */
478 #define list_for_each_entry_safe(pos, n, head, member) \
479 for (pos = list_entry((head)->next, typeof(*pos), member), \
480 n = list_entry(pos->member.next, typeof(*pos), member); \
481 &pos->member != (head); \
482 pos = n, n = list_entry(n->member.next, typeof(*n), member))
483
484 /**
485 * list_for_each_entry_safe_continue
486 * @pos: the type * to use as a loop cursor.
487 * @n: another type * to use as temporary storage
488 * @head: the head for your list.
489 * @member: the name of the list_struct within the struct.
490 *
491 * Iterate over list of given type, continuing after current point,
492 * safe against removal of list entry.
493 */
494 #define list_for_each_entry_safe_continue(pos, n, head, member) \
495 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
496 n = list_entry(pos->member.next, typeof(*pos), member); \
497 &pos->member != (head); \
498 pos = n, n = list_entry(n->member.next, typeof(*n), member))
499
500 /**
501 * list_for_each_entry_safe_from
502 * @pos: the type * to use as a loop cursor.
503 * @n: another type * to use as temporary storage
504 * @head: the head for your list.
505 * @member: the name of the list_struct within the struct.
506 *
507 * Iterate over list of given type from current point, safe against
508 * removal of list entry.
509 */
510 #define list_for_each_entry_safe_from(pos, n, head, member) \
511 for (n = list_entry(pos->member.next, typeof(*pos), member); \
512 &pos->member != (head); \
513 pos = n, n = list_entry(n->member.next, typeof(*n), member))
514
515 /**
516 * list_for_each_entry_safe_reverse
517 * @pos: the type * to use as a loop cursor.
518 * @n: another type * to use as temporary storage
519 * @head: the head for your list.
520 * @member: the name of the list_struct within the struct.
521 *
522 * Iterate backwards over list of given type, safe against removal
523 * of list entry.
524 */
525 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
526 for (pos = list_entry((head)->prev, typeof(*pos), member), \
527 n = list_entry(pos->member.prev, typeof(*pos), member); \
528 &pos->member != (head); \
529 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
530
531 /**
532 * list_for_each_rcu - iterate over an rcu-protected list
533 * @pos: the &struct list_head to use as a loop cursor.
534 * @head: the head for your list.
535 *
536 * This list-traversal primitive may safely run concurrently with
537 * the _rcu list-mutation primitives such as list_add_rcu()
538 * as long as the traversal is guarded by rcu_read_lock().
539 */
540 #define list_for_each_rcu(pos, head) \
541 for (pos = (head)->next; \
542 prefetch(rcu_dereference(pos)->next), pos != (head); \
543 pos = pos->next)
544
545 #define __list_for_each_rcu(pos, head) \
546 for (pos = (head)->next; \
547 rcu_dereference(pos) != (head); \
548 pos = pos->next)
549
550 /**
551 * list_for_each_safe_rcu
552 * @pos: the &struct list_head to use as a loop cursor.
553 * @n: another &struct list_head to use as temporary storage
554 * @head: the head for your list.
555 *
556 * Iterate over an rcu-protected list, safe against removal of list entry.
557 *
558 * This list-traversal primitive may safely run concurrently with
559 * the _rcu list-mutation primitives such as list_add_rcu()
560 * as long as the traversal is guarded by rcu_read_lock().
561 */
562 #define list_for_each_safe_rcu(pos, n, head) \
563 for (pos = (head)->next; \
564 n = rcu_dereference(pos)->next, pos != (head); \
565 pos = n)
566
567 /**
568 * list_for_each_entry_rcu - iterate over rcu list of given type
569 * @pos: the type * to use as a loop cursor.
570 * @head: the head for your list.
571 * @member: the name of the list_struct within the struct.
572 *
573 * This list-traversal primitive may safely run concurrently with
574 * the _rcu list-mutation primitives such as list_add_rcu()
575 * as long as the traversal is guarded by rcu_read_lock().
576 */
577 #define list_for_each_entry_rcu(pos, head, member) \
578 for (pos = list_entry((head)->next, typeof(*pos), member); \
579 prefetch(rcu_dereference(pos)->member.next), \
580 &pos->member != (head); \
581 pos = list_entry(pos->member.next, typeof(*pos), member))
582
583
584 /**
585 * list_for_each_continue_rcu
586 * @pos: the &struct list_head to use as a loop cursor.
587 * @head: the head for your list.
588 *
589 * Iterate over an rcu-protected list, continuing after current point.
590 *
591 * This list-traversal primitive may safely run concurrently with
592 * the _rcu list-mutation primitives such as list_add_rcu()
593 * as long as the traversal is guarded by rcu_read_lock().
594 */
595 #define list_for_each_continue_rcu(pos, head) \
596 for ((pos) = (pos)->next; \
597 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
598 (pos) = (pos)->next)
599
600 /*
601 * Double linked lists with a single pointer list head.
602 * Mostly useful for hash tables where the two pointer list head is
603 * too wasteful.
604 * You lose the ability to access the tail in O(1).
605 */
606
607 struct hlist_head {
608 struct hlist_node *first;
609 };
610
611 struct hlist_node {
612 struct hlist_node *next, **pprev;
613 };
614
615 #define HLIST_HEAD_INIT { .first = NULL }
616 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
617 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
618 static inline void INIT_HLIST_NODE(struct hlist_node *h)
619 {
620 h->next = NULL;
621 h->pprev = NULL;
622 }
623
624 static inline int hlist_unhashed(const struct hlist_node *h)
625 {
626 return !h->pprev;
627 }
628
629 static inline int hlist_empty(const struct hlist_head *h)
630 {
631 return !h->first;
632 }
633
634 static inline void __hlist_del(struct hlist_node *n)
635 {
636 struct hlist_node *next = n->next;
637 struct hlist_node **pprev = n->pprev;
638 *pprev = next;
639 if (next)
640 next->pprev = pprev;
641 }
642
643 static inline void hlist_del(struct hlist_node *n)
644 {
645 __hlist_del(n);
646 n->next = LIST_POISON1;
647 n->pprev = LIST_POISON2;
648 }
649
650 /**
651 * hlist_del_rcu - deletes entry from hash list without re-initialization
652 * @n: the element to delete from the hash list.
653 *
654 * Note: list_unhashed() on entry does not return true after this,
655 * the entry is in an undefined state. It is useful for RCU based
656 * lockfree traversal.
657 *
658 * In particular, it means that we can not poison the forward
659 * pointers that may still be used for walking the hash list.
660 *
661 * The caller must take whatever precautions are necessary
662 * (such as holding appropriate locks) to avoid racing
663 * with another list-mutation primitive, such as hlist_add_head_rcu()
664 * or hlist_del_rcu(), running on this same list.
665 * However, it is perfectly legal to run concurrently with
666 * the _rcu list-traversal primitives, such as
667 * hlist_for_each_entry().
668 */
669 static inline void hlist_del_rcu(struct hlist_node *n)
670 {
671 __hlist_del(n);
672 n->pprev = LIST_POISON2;
673 }
674
675 static inline void hlist_del_init(struct hlist_node *n)
676 {
677 if (!hlist_unhashed(n)) {
678 __hlist_del(n);
679 INIT_HLIST_NODE(n);
680 }
681 }
682
683 /*
684 * hlist_replace_rcu - replace old entry by new one
685 * @old : the element to be replaced
686 * @new : the new element to insert
687 *
688 * The old entry will be replaced with the new entry atomically.
689 */
690 static inline void hlist_replace_rcu(struct hlist_node *old,
691 struct hlist_node *new)
692 {
693 struct hlist_node *next = old->next;
694
695 new->next = next;
696 new->pprev = old->pprev;
697 smp_wmb();
698 if (next)
699 new->next->pprev = &new->next;
700 *new->pprev = new;
701 old->pprev = LIST_POISON2;
702 }
703
704 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
705 {
706 struct hlist_node *first = h->first;
707 n->next = first;
708 if (first)
709 first->pprev = &n->next;
710 h->first = n;
711 n->pprev = &h->first;
712 }
713
714
715 /**
716 * hlist_add_head_rcu
717 * @n: the element to add to the hash list.
718 * @h: the list to add to.
719 *
720 * Description:
721 * Adds the specified element to the specified hlist,
722 * while permitting racing traversals.
723 *
724 * The caller must take whatever precautions are necessary
725 * (such as holding appropriate locks) to avoid racing
726 * with another list-mutation primitive, such as hlist_add_head_rcu()
727 * or hlist_del_rcu(), running on this same list.
728 * However, it is perfectly legal to run concurrently with
729 * the _rcu list-traversal primitives, such as
730 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
731 * problems on Alpha CPUs. Regardless of the type of CPU, the
732 * list-traversal primitive must be guarded by rcu_read_lock().
733 */
734 static inline void hlist_add_head_rcu(struct hlist_node *n,
735 struct hlist_head *h)
736 {
737 struct hlist_node *first = h->first;
738 n->next = first;
739 n->pprev = &h->first;
740 smp_wmb();
741 if (first)
742 first->pprev = &n->next;
743 h->first = n;
744 }
745
746 /* next must be != NULL */
747 static inline void hlist_add_before(struct hlist_node *n,
748 struct hlist_node *next)
749 {
750 n->pprev = next->pprev;
751 n->next = next;
752 next->pprev = &n->next;
753 *(n->pprev) = n;
754 }
755
756 static inline void hlist_add_after(struct hlist_node *n,
757 struct hlist_node *next)
758 {
759 next->next = n->next;
760 n->next = next;
761 next->pprev = &n->next;
762
763 if(next->next)
764 next->next->pprev = &next->next;
765 }
766
767 /**
768 * hlist_add_before_rcu
769 * @n: the new element to add to the hash list.
770 * @next: the existing element to add the new element before.
771 *
772 * Description:
773 * Adds the specified element to the specified hlist
774 * before the specified node while permitting racing traversals.
775 *
776 * The caller must take whatever precautions are necessary
777 * (such as holding appropriate locks) to avoid racing
778 * with another list-mutation primitive, such as hlist_add_head_rcu()
779 * or hlist_del_rcu(), running on this same list.
780 * However, it is perfectly legal to run concurrently with
781 * the _rcu list-traversal primitives, such as
782 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
783 * problems on Alpha CPUs.
784 */
785 static inline void hlist_add_before_rcu(struct hlist_node *n,
786 struct hlist_node *next)
787 {
788 n->pprev = next->pprev;
789 n->next = next;
790 smp_wmb();
791 next->pprev = &n->next;
792 *(n->pprev) = n;
793 }
794
795 /**
796 * hlist_add_after_rcu
797 * @prev: the existing element to add the new element after.
798 * @n: the new element to add to the hash list.
799 *
800 * Description:
801 * Adds the specified element to the specified hlist
802 * after the specified node while permitting racing traversals.
803 *
804 * The caller must take whatever precautions are necessary
805 * (such as holding appropriate locks) to avoid racing
806 * with another list-mutation primitive, such as hlist_add_head_rcu()
807 * or hlist_del_rcu(), running on this same list.
808 * However, it is perfectly legal to run concurrently with
809 * the _rcu list-traversal primitives, such as
810 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
811 * problems on Alpha CPUs.
812 */
813 static inline void hlist_add_after_rcu(struct hlist_node *prev,
814 struct hlist_node *n)
815 {
816 n->next = prev->next;
817 n->pprev = &prev->next;
818 smp_wmb();
819 prev->next = n;
820 if (n->next)
821 n->next->pprev = &n->next;
822 }
823
824 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
825
826 #define hlist_for_each(pos, head) \
827 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
828 pos = pos->next)
829
830 #define hlist_for_each_safe(pos, n, head) \
831 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
832 pos = n)
833
834 /**
835 * hlist_for_each_entry - iterate over list of given type
836 * @tpos: the type * to use as a loop cursor.
837 * @pos: the &struct hlist_node to use as a loop cursor.
838 * @head: the head for your list.
839 * @member: the name of the hlist_node within the struct.
840 */
841 #define hlist_for_each_entry(tpos, pos, head, member) \
842 for (pos = (head)->first; \
843 pos && ({ prefetch(pos->next); 1;}) && \
844 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
845 pos = pos->next)
846
847 /**
848 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
849 * @tpos: the type * to use as a loop cursor.
850 * @pos: the &struct hlist_node to use as a loop cursor.
851 * @member: the name of the hlist_node within the struct.
852 */
853 #define hlist_for_each_entry_continue(tpos, pos, member) \
854 for (pos = (pos)->next; \
855 pos && ({ prefetch(pos->next); 1;}) && \
856 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
857 pos = pos->next)
858
859 /**
860 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
861 * @tpos: the type * to use as a loop cursor.
862 * @pos: the &struct hlist_node to use as a loop cursor.
863 * @member: the name of the hlist_node within the struct.
864 */
865 #define hlist_for_each_entry_from(tpos, pos, member) \
866 for (; pos && ({ prefetch(pos->next); 1;}) && \
867 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
868 pos = pos->next)
869
870 /**
871 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
872 * @tpos: the type * to use as a loop cursor.
873 * @pos: the &struct hlist_node to use as a loop cursor.
874 * @n: another &struct hlist_node to use as temporary storage
875 * @head: the head for your list.
876 * @member: the name of the hlist_node within the struct.
877 */
878 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
879 for (pos = (head)->first; \
880 pos && ({ n = pos->next; 1; }) && \
881 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
882 pos = n)
883
884 /**
885 * hlist_for_each_entry_rcu - iterate over rcu list of given type
886 * @tpos: the type * to use as a loop cursor.
887 * @pos: the &struct hlist_node to use as a loop cursor.
888 * @head: the head for your list.
889 * @member: the name of the hlist_node within the struct.
890 *
891 * This list-traversal primitive may safely run concurrently with
892 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
893 * as long as the traversal is guarded by rcu_read_lock().
894 */
895 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
896 for (pos = (head)->first; \
897 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \
898 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
899 pos = pos->next)
900
901 #else
902 #warning "don't include kernel headers in userspace"
903 #endif /* __KERNEL__ */
904 #endif