Merge branch 'bug-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / kfifo.h
1 /*
2 * A generic kernel FIFO implementation
3 *
4 * Copyright (C) 2009/2010 Stefani Seibold <stefani@seibold.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 *
20 */
21
22 #ifndef _LINUX_KFIFO_H
23 #define _LINUX_KFIFO_H
24
25 /*
26 * How to porting drivers to the new generic FIFO API:
27 *
28 * - Modify the declaration of the "struct kfifo *" object into a
29 * in-place "struct kfifo" object
30 * - Init the in-place object with kfifo_alloc() or kfifo_init()
31 * Note: The address of the in-place "struct kfifo" object must be
32 * passed as the first argument to this functions
33 * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get
34 * into kfifo_out
35 * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get
36 * into kfifo_out_spinlocked
37 * Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc
38 * must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked
39 * as the last parameter
40 * - The formerly __kfifo_* functions are renamed into kfifo_*
41 */
42
43 /*
44 * Note about locking : There is no locking required until only * one reader
45 * and one writer is using the fifo and no kfifo_reset() will be * called
46 * kfifo_reset_out() can be safely used, until it will be only called
47 * in the reader thread.
48 * For multiple writer and one reader there is only a need to lock the writer.
49 * And vice versa for only one writer and multiple reader there is only a need
50 * to lock the reader.
51 */
52
53 #include <linux/kernel.h>
54 #include <linux/spinlock.h>
55 #include <linux/stddef.h>
56 #include <linux/scatterlist.h>
57
58 struct __kfifo {
59 unsigned int in;
60 unsigned int out;
61 unsigned int mask;
62 unsigned int esize;
63 void *data;
64 };
65
66 #define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \
67 union { \
68 struct __kfifo kfifo; \
69 datatype *type; \
70 char (*rectype)[recsize]; \
71 ptrtype *ptr; \
72 const ptrtype *ptr_const; \
73 }
74
75 #define __STRUCT_KFIFO(type, size, recsize, ptrtype) \
76 { \
77 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
78 type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
79 }
80
81 #define STRUCT_KFIFO(type, size) \
82 struct __STRUCT_KFIFO(type, size, 0, type)
83
84 #define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \
85 { \
86 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
87 type buf[0]; \
88 }
89
90 #define STRUCT_KFIFO_PTR(type) \
91 struct __STRUCT_KFIFO_PTR(type, 0, type)
92
93 /*
94 * define compatibility "struct kfifo" for dynamic allocated fifos
95 */
96 struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void);
97
98 #define STRUCT_KFIFO_REC_1(size) \
99 struct __STRUCT_KFIFO(unsigned char, size, 1, void)
100
101 #define STRUCT_KFIFO_REC_2(size) \
102 struct __STRUCT_KFIFO(unsigned char, size, 2, void)
103
104 /*
105 * define kfifo_rec types
106 */
107 struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void);
108 struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void);
109
110 /*
111 * helper macro to distinguish between real in place fifo where the fifo
112 * array is a part of the structure and the fifo type where the array is
113 * outside of the fifo structure.
114 */
115 #define __is_kfifo_ptr(fifo) (sizeof(*fifo) == sizeof(struct __kfifo))
116
117 /**
118 * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object
119 * @fifo: name of the declared fifo
120 * @type: type of the fifo elements
121 */
122 #define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo
123
124 /**
125 * DECLARE_KFIFO - macro to declare a fifo object
126 * @fifo: name of the declared fifo
127 * @type: type of the fifo elements
128 * @size: the number of elements in the fifo, this must be a power of 2
129 */
130 #define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo
131
132 /**
133 * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO
134 * @fifo: name of the declared fifo datatype
135 */
136 #define INIT_KFIFO(fifo) \
137 (void)({ \
138 typeof(&(fifo)) __tmp = &(fifo); \
139 struct __kfifo *__kfifo = &__tmp->kfifo; \
140 __kfifo->in = 0; \
141 __kfifo->out = 0; \
142 __kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\
143 __kfifo->esize = sizeof(*__tmp->buf); \
144 __kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \
145 })
146
147 /**
148 * DEFINE_KFIFO - macro to define and initialize a fifo
149 * @fifo: name of the declared fifo datatype
150 * @type: type of the fifo elements
151 * @size: the number of elements in the fifo, this must be a power of 2
152 *
153 * Note: the macro can be used for global and local fifo data type variables.
154 */
155 #define DEFINE_KFIFO(fifo, type, size) \
156 DECLARE_KFIFO(fifo, type, size) = \
157 (typeof(fifo)) { \
158 { \
159 { \
160 .in = 0, \
161 .out = 0, \
162 .mask = __is_kfifo_ptr(&(fifo)) ? \
163 0 : \
164 ARRAY_SIZE((fifo).buf) - 1, \
165 .esize = sizeof(*(fifo).buf), \
166 .data = __is_kfifo_ptr(&(fifo)) ? \
167 NULL : \
168 (fifo).buf, \
169 } \
170 } \
171 }
172
173
174 static inline unsigned int __must_check
175 __kfifo_must_check_helper(unsigned int val)
176 {
177 return val;
178 }
179
180 /**
181 * kfifo_initialized - Check if the fifo is initialized
182 * @fifo: address of the fifo to check
183 *
184 * Return %true if fifo is initialized, otherwise %false.
185 * Assumes the fifo was 0 before.
186 */
187 #define kfifo_initialized(fifo) ((fifo)->kfifo.mask)
188
189 /**
190 * kfifo_esize - returns the size of the element managed by the fifo
191 * @fifo: address of the fifo to be used
192 */
193 #define kfifo_esize(fifo) ((fifo)->kfifo.esize)
194
195 /**
196 * kfifo_recsize - returns the size of the record length field
197 * @fifo: address of the fifo to be used
198 */
199 #define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype))
200
201 /**
202 * kfifo_size - returns the size of the fifo in elements
203 * @fifo: address of the fifo to be used
204 */
205 #define kfifo_size(fifo) ((fifo)->kfifo.mask + 1)
206
207 /**
208 * kfifo_reset - removes the entire fifo content
209 * @fifo: address of the fifo to be used
210 *
211 * Note: usage of kfifo_reset() is dangerous. It should be only called when the
212 * fifo is exclusived locked or when it is secured that no other thread is
213 * accessing the fifo.
214 */
215 #define kfifo_reset(fifo) \
216 (void)({ \
217 typeof((fifo) + 1) __tmp = (fifo); \
218 __tmp->kfifo.in = __tmp->kfifo.out = 0; \
219 })
220
221 /**
222 * kfifo_reset_out - skip fifo content
223 * @fifo: address of the fifo to be used
224 *
225 * Note: The usage of kfifo_reset_out() is safe until it will be only called
226 * from the reader thread and there is only one concurrent reader. Otherwise
227 * it is dangerous and must be handled in the same way as kfifo_reset().
228 */
229 #define kfifo_reset_out(fifo) \
230 (void)({ \
231 typeof((fifo) + 1) __tmp = (fifo); \
232 __tmp->kfifo.out = __tmp->kfifo.in; \
233 })
234
235 /**
236 * kfifo_len - returns the number of used elements in the fifo
237 * @fifo: address of the fifo to be used
238 */
239 #define kfifo_len(fifo) \
240 ({ \
241 typeof((fifo) + 1) __tmpl = (fifo); \
242 __tmpl->kfifo.in - __tmpl->kfifo.out; \
243 })
244
245 /**
246 * kfifo_is_empty - returns true if the fifo is empty
247 * @fifo: address of the fifo to be used
248 */
249 #define kfifo_is_empty(fifo) \
250 ({ \
251 typeof((fifo) + 1) __tmpq = (fifo); \
252 __tmpq->kfifo.in == __tmpq->kfifo.out; \
253 })
254
255 /**
256 * kfifo_is_full - returns true if the fifo is full
257 * @fifo: address of the fifo to be used
258 */
259 #define kfifo_is_full(fifo) \
260 ({ \
261 typeof((fifo) + 1) __tmpq = (fifo); \
262 kfifo_len(__tmpq) > __tmpq->kfifo.mask; \
263 })
264
265 /**
266 * kfifo_avail - returns the number of unused elements in the fifo
267 * @fifo: address of the fifo to be used
268 */
269 #define kfifo_avail(fifo) \
270 __kfifo_must_check_helper( \
271 ({ \
272 typeof((fifo) + 1) __tmpq = (fifo); \
273 const size_t __recsize = sizeof(*__tmpq->rectype); \
274 unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \
275 (__recsize) ? ((__avail <= __recsize) ? 0 : \
276 __kfifo_max_r(__avail - __recsize, __recsize)) : \
277 __avail; \
278 }) \
279 )
280
281 /**
282 * kfifo_skip - skip output data
283 * @fifo: address of the fifo to be used
284 */
285 #define kfifo_skip(fifo) \
286 (void)({ \
287 typeof((fifo) + 1) __tmp = (fifo); \
288 const size_t __recsize = sizeof(*__tmp->rectype); \
289 struct __kfifo *__kfifo = &__tmp->kfifo; \
290 if (__recsize) \
291 __kfifo_skip_r(__kfifo, __recsize); \
292 else \
293 __kfifo->out++; \
294 })
295
296 /**
297 * kfifo_peek_len - gets the size of the next fifo record
298 * @fifo: address of the fifo to be used
299 *
300 * This function returns the size of the next fifo record in number of bytes.
301 */
302 #define kfifo_peek_len(fifo) \
303 __kfifo_must_check_helper( \
304 ({ \
305 typeof((fifo) + 1) __tmp = (fifo); \
306 const size_t __recsize = sizeof(*__tmp->rectype); \
307 struct __kfifo *__kfifo = &__tmp->kfifo; \
308 (!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \
309 __kfifo_len_r(__kfifo, __recsize); \
310 }) \
311 )
312
313 /**
314 * kfifo_alloc - dynamically allocates a new fifo buffer
315 * @fifo: pointer to the fifo
316 * @size: the number of elements in the fifo, this must be a power of 2
317 * @gfp_mask: get_free_pages mask, passed to kmalloc()
318 *
319 * This macro dynamically allocates a new fifo buffer.
320 *
321 * The numer of elements will be rounded-up to a power of 2.
322 * The fifo will be release with kfifo_free().
323 * Return 0 if no error, otherwise an error code.
324 */
325 #define kfifo_alloc(fifo, size, gfp_mask) \
326 __kfifo_must_check_helper( \
327 ({ \
328 typeof((fifo) + 1) __tmp = (fifo); \
329 struct __kfifo *__kfifo = &__tmp->kfifo; \
330 __is_kfifo_ptr(__tmp) ? \
331 __kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \
332 -EINVAL; \
333 }) \
334 )
335
336 /**
337 * kfifo_free - frees the fifo
338 * @fifo: the fifo to be freed
339 */
340 #define kfifo_free(fifo) \
341 ({ \
342 typeof((fifo) + 1) __tmp = (fifo); \
343 struct __kfifo *__kfifo = &__tmp->kfifo; \
344 if (__is_kfifo_ptr(__tmp)) \
345 __kfifo_free(__kfifo); \
346 })
347
348 /**
349 * kfifo_init - initialize a fifo using a preallocated buffer
350 * @fifo: the fifo to assign the buffer
351 * @buffer: the preallocated buffer to be used
352 * @size: the size of the internal buffer, this have to be a power of 2
353 *
354 * This macro initialize a fifo using a preallocated buffer.
355 *
356 * The numer of elements will be rounded-up to a power of 2.
357 * Return 0 if no error, otherwise an error code.
358 */
359 #define kfifo_init(fifo, buffer, size) \
360 ({ \
361 typeof((fifo) + 1) __tmp = (fifo); \
362 struct __kfifo *__kfifo = &__tmp->kfifo; \
363 __is_kfifo_ptr(__tmp) ? \
364 __kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \
365 -EINVAL; \
366 })
367
368 /**
369 * kfifo_put - put data into the fifo
370 * @fifo: address of the fifo to be used
371 * @val: the data to be added
372 *
373 * This macro copies the given value into the fifo.
374 * It returns 0 if the fifo was full. Otherwise it returns the number
375 * processed elements.
376 *
377 * Note that with only one concurrent reader and one concurrent
378 * writer, you don't need extra locking to use these macro.
379 */
380 #define kfifo_put(fifo, val) \
381 ({ \
382 typeof((fifo) + 1) __tmp = (fifo); \
383 typeof((val) + 1) __val = (val); \
384 unsigned int __ret; \
385 const size_t __recsize = sizeof(*__tmp->rectype); \
386 struct __kfifo *__kfifo = &__tmp->kfifo; \
387 if (0) { \
388 typeof(__tmp->ptr_const) __dummy __attribute__ ((unused)); \
389 __dummy = (typeof(__val))NULL; \
390 } \
391 if (__recsize) \
392 __ret = __kfifo_in_r(__kfifo, __val, sizeof(*__val), \
393 __recsize); \
394 else { \
395 __ret = !kfifo_is_full(__tmp); \
396 if (__ret) { \
397 (__is_kfifo_ptr(__tmp) ? \
398 ((typeof(__tmp->type))__kfifo->data) : \
399 (__tmp->buf) \
400 )[__kfifo->in & __tmp->kfifo.mask] = \
401 *(typeof(__tmp->type))__val; \
402 smp_wmb(); \
403 __kfifo->in++; \
404 } \
405 } \
406 __ret; \
407 })
408
409 /**
410 * kfifo_get - get data from the fifo
411 * @fifo: address of the fifo to be used
412 * @val: the var where to store the data to be added
413 *
414 * This macro reads the data from the fifo.
415 * It returns 0 if the fifo was empty. Otherwise it returns the number
416 * processed elements.
417 *
418 * Note that with only one concurrent reader and one concurrent
419 * writer, you don't need extra locking to use these macro.
420 */
421 #define kfifo_get(fifo, val) \
422 __kfifo_must_check_helper( \
423 ({ \
424 typeof((fifo) + 1) __tmp = (fifo); \
425 typeof((val) + 1) __val = (val); \
426 unsigned int __ret; \
427 const size_t __recsize = sizeof(*__tmp->rectype); \
428 struct __kfifo *__kfifo = &__tmp->kfifo; \
429 if (0) \
430 __val = (typeof(__tmp->ptr))0; \
431 if (__recsize) \
432 __ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \
433 __recsize); \
434 else { \
435 __ret = !kfifo_is_empty(__tmp); \
436 if (__ret) { \
437 *(typeof(__tmp->type))__val = \
438 (__is_kfifo_ptr(__tmp) ? \
439 ((typeof(__tmp->type))__kfifo->data) : \
440 (__tmp->buf) \
441 )[__kfifo->out & __tmp->kfifo.mask]; \
442 smp_wmb(); \
443 __kfifo->out++; \
444 } \
445 } \
446 __ret; \
447 }) \
448 )
449
450 /**
451 * kfifo_peek - get data from the fifo without removing
452 * @fifo: address of the fifo to be used
453 * @val: the var where to store the data to be added
454 *
455 * This reads the data from the fifo without removing it from the fifo.
456 * It returns 0 if the fifo was empty. Otherwise it returns the number
457 * processed elements.
458 *
459 * Note that with only one concurrent reader and one concurrent
460 * writer, you don't need extra locking to use these macro.
461 */
462 #define kfifo_peek(fifo, val) \
463 __kfifo_must_check_helper( \
464 ({ \
465 typeof((fifo) + 1) __tmp = (fifo); \
466 typeof((val) + 1) __val = (val); \
467 unsigned int __ret; \
468 const size_t __recsize = sizeof(*__tmp->rectype); \
469 struct __kfifo *__kfifo = &__tmp->kfifo; \
470 if (0) \
471 __val = (typeof(__tmp->ptr))NULL; \
472 if (__recsize) \
473 __ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \
474 __recsize); \
475 else { \
476 __ret = !kfifo_is_empty(__tmp); \
477 if (__ret) { \
478 *(typeof(__tmp->type))__val = \
479 (__is_kfifo_ptr(__tmp) ? \
480 ((typeof(__tmp->type))__kfifo->data) : \
481 (__tmp->buf) \
482 )[__kfifo->out & __tmp->kfifo.mask]; \
483 smp_wmb(); \
484 } \
485 } \
486 __ret; \
487 }) \
488 )
489
490 /**
491 * kfifo_in - put data into the fifo
492 * @fifo: address of the fifo to be used
493 * @buf: the data to be added
494 * @n: number of elements to be added
495 *
496 * This macro copies the given buffer into the fifo and returns the
497 * number of copied elements.
498 *
499 * Note that with only one concurrent reader and one concurrent
500 * writer, you don't need extra locking to use these macro.
501 */
502 #define kfifo_in(fifo, buf, n) \
503 ({ \
504 typeof((fifo) + 1) __tmp = (fifo); \
505 typeof((buf) + 1) __buf = (buf); \
506 unsigned long __n = (n); \
507 const size_t __recsize = sizeof(*__tmp->rectype); \
508 struct __kfifo *__kfifo = &__tmp->kfifo; \
509 if (0) { \
510 typeof(__tmp->ptr_const) __dummy __attribute__ ((unused)); \
511 __dummy = (typeof(__buf))NULL; \
512 } \
513 (__recsize) ?\
514 __kfifo_in_r(__kfifo, __buf, __n, __recsize) : \
515 __kfifo_in(__kfifo, __buf, __n); \
516 })
517
518 /**
519 * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking
520 * @fifo: address of the fifo to be used
521 * @buf: the data to be added
522 * @n: number of elements to be added
523 * @lock: pointer to the spinlock to use for locking
524 *
525 * This macro copies the given values buffer into the fifo and returns the
526 * number of copied elements.
527 */
528 #define kfifo_in_spinlocked(fifo, buf, n, lock) \
529 ({ \
530 unsigned long __flags; \
531 unsigned int __ret; \
532 spin_lock_irqsave(lock, __flags); \
533 __ret = kfifo_in(fifo, buf, n); \
534 spin_unlock_irqrestore(lock, __flags); \
535 __ret; \
536 })
537
538 /* alias for kfifo_in_spinlocked, will be removed in a future release */
539 #define kfifo_in_locked(fifo, buf, n, lock) \
540 kfifo_in_spinlocked(fifo, buf, n, lock)
541
542 /**
543 * kfifo_out - get data from the fifo
544 * @fifo: address of the fifo to be used
545 * @buf: pointer to the storage buffer
546 * @n: max. number of elements to get
547 *
548 * This macro get some data from the fifo and return the numbers of elements
549 * copied.
550 *
551 * Note that with only one concurrent reader and one concurrent
552 * writer, you don't need extra locking to use these macro.
553 */
554 #define kfifo_out(fifo, buf, n) \
555 __kfifo_must_check_helper( \
556 ({ \
557 typeof((fifo) + 1) __tmp = (fifo); \
558 typeof((buf) + 1) __buf = (buf); \
559 unsigned long __n = (n); \
560 const size_t __recsize = sizeof(*__tmp->rectype); \
561 struct __kfifo *__kfifo = &__tmp->kfifo; \
562 if (0) { \
563 typeof(__tmp->ptr) __dummy = NULL; \
564 __buf = __dummy; \
565 } \
566 (__recsize) ?\
567 __kfifo_out_r(__kfifo, __buf, __n, __recsize) : \
568 __kfifo_out(__kfifo, __buf, __n); \
569 }) \
570 )
571
572 /**
573 * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking
574 * @fifo: address of the fifo to be used
575 * @buf: pointer to the storage buffer
576 * @n: max. number of elements to get
577 * @lock: pointer to the spinlock to use for locking
578 *
579 * This macro get the data from the fifo and return the numbers of elements
580 * copied.
581 */
582 #define kfifo_out_spinlocked(fifo, buf, n, lock) \
583 __kfifo_must_check_helper( \
584 ({ \
585 unsigned long __flags; \
586 unsigned int __ret; \
587 spin_lock_irqsave(lock, __flags); \
588 __ret = kfifo_out(fifo, buf, n); \
589 spin_unlock_irqrestore(lock, __flags); \
590 __ret; \
591 }) \
592 )
593
594 /* alias for kfifo_out_spinlocked, will be removed in a future release */
595 #define kfifo_out_locked(fifo, buf, n, lock) \
596 kfifo_out_spinlocked(fifo, buf, n, lock)
597
598 /**
599 * kfifo_from_user - puts some data from user space into the fifo
600 * @fifo: address of the fifo to be used
601 * @from: pointer to the data to be added
602 * @len: the length of the data to be added
603 * @copied: pointer to output variable to store the number of copied bytes
604 *
605 * This macro copies at most @len bytes from the @from into the
606 * fifo, depending of the available space and returns -EFAULT/0.
607 *
608 * Note that with only one concurrent reader and one concurrent
609 * writer, you don't need extra locking to use these macro.
610 */
611 #define kfifo_from_user(fifo, from, len, copied) \
612 __kfifo_must_check_helper( \
613 ({ \
614 typeof((fifo) + 1) __tmp = (fifo); \
615 const void __user *__from = (from); \
616 unsigned int __len = (len); \
617 unsigned int *__copied = (copied); \
618 const size_t __recsize = sizeof(*__tmp->rectype); \
619 struct __kfifo *__kfifo = &__tmp->kfifo; \
620 (__recsize) ? \
621 __kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \
622 __kfifo_from_user(__kfifo, __from, __len, __copied); \
623 }) \
624 )
625
626 /**
627 * kfifo_to_user - copies data from the fifo into user space
628 * @fifo: address of the fifo to be used
629 * @to: where the data must be copied
630 * @len: the size of the destination buffer
631 * @copied: pointer to output variable to store the number of copied bytes
632 *
633 * This macro copies at most @len bytes from the fifo into the
634 * @to buffer and returns -EFAULT/0.
635 *
636 * Note that with only one concurrent reader and one concurrent
637 * writer, you don't need extra locking to use these macro.
638 */
639 #define kfifo_to_user(fifo, to, len, copied) \
640 __kfifo_must_check_helper( \
641 ({ \
642 typeof((fifo) + 1) __tmp = (fifo); \
643 void __user *__to = (to); \
644 unsigned int __len = (len); \
645 unsigned int *__copied = (copied); \
646 const size_t __recsize = sizeof(*__tmp->rectype); \
647 struct __kfifo *__kfifo = &__tmp->kfifo; \
648 (__recsize) ? \
649 __kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \
650 __kfifo_to_user(__kfifo, __to, __len, __copied); \
651 }) \
652 )
653
654 /**
655 * kfifo_dma_in_prepare - setup a scatterlist for DMA input
656 * @fifo: address of the fifo to be used
657 * @sgl: pointer to the scatterlist array
658 * @nents: number of entries in the scatterlist array
659 * @len: number of elements to transfer
660 *
661 * This macro fills a scatterlist for DMA input.
662 * It returns the number entries in the scatterlist array.
663 *
664 * Note that with only one concurrent reader and one concurrent
665 * writer, you don't need extra locking to use these macros.
666 */
667 #define kfifo_dma_in_prepare(fifo, sgl, nents, len) \
668 ({ \
669 typeof((fifo) + 1) __tmp = (fifo); \
670 struct scatterlist *__sgl = (sgl); \
671 int __nents = (nents); \
672 unsigned int __len = (len); \
673 const size_t __recsize = sizeof(*__tmp->rectype); \
674 struct __kfifo *__kfifo = &__tmp->kfifo; \
675 (__recsize) ? \
676 __kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
677 __kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len); \
678 })
679
680 /**
681 * kfifo_dma_in_finish - finish a DMA IN operation
682 * @fifo: address of the fifo to be used
683 * @len: number of bytes to received
684 *
685 * This macro finish a DMA IN operation. The in counter will be updated by
686 * the len parameter. No error checking will be done.
687 *
688 * Note that with only one concurrent reader and one concurrent
689 * writer, you don't need extra locking to use these macros.
690 */
691 #define kfifo_dma_in_finish(fifo, len) \
692 (void)({ \
693 typeof((fifo) + 1) __tmp = (fifo); \
694 unsigned int __len = (len); \
695 const size_t __recsize = sizeof(*__tmp->rectype); \
696 struct __kfifo *__kfifo = &__tmp->kfifo; \
697 if (__recsize) \
698 __kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \
699 else \
700 __kfifo->in += __len / sizeof(*__tmp->type); \
701 })
702
703 /**
704 * kfifo_dma_out_prepare - setup a scatterlist for DMA output
705 * @fifo: address of the fifo to be used
706 * @sgl: pointer to the scatterlist array
707 * @nents: number of entries in the scatterlist array
708 * @len: number of elements to transfer
709 *
710 * This macro fills a scatterlist for DMA output which at most @len bytes
711 * to transfer.
712 * It returns the number entries in the scatterlist array.
713 * A zero means there is no space available and the scatterlist is not filled.
714 *
715 * Note that with only one concurrent reader and one concurrent
716 * writer, you don't need extra locking to use these macros.
717 */
718 #define kfifo_dma_out_prepare(fifo, sgl, nents, len) \
719 ({ \
720 typeof((fifo) + 1) __tmp = (fifo); \
721 struct scatterlist *__sgl = (sgl); \
722 int __nents = (nents); \
723 unsigned int __len = (len); \
724 const size_t __recsize = sizeof(*__tmp->rectype); \
725 struct __kfifo *__kfifo = &__tmp->kfifo; \
726 (__recsize) ? \
727 __kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
728 __kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len); \
729 })
730
731 /**
732 * kfifo_dma_out_finish - finish a DMA OUT operation
733 * @fifo: address of the fifo to be used
734 * @len: number of bytes transferd
735 *
736 * This macro finish a DMA OUT operation. The out counter will be updated by
737 * the len parameter. No error checking will be done.
738 *
739 * Note that with only one concurrent reader and one concurrent
740 * writer, you don't need extra locking to use these macros.
741 */
742 #define kfifo_dma_out_finish(fifo, len) \
743 (void)({ \
744 typeof((fifo) + 1) __tmp = (fifo); \
745 unsigned int __len = (len); \
746 const size_t __recsize = sizeof(*__tmp->rectype); \
747 struct __kfifo *__kfifo = &__tmp->kfifo; \
748 if (__recsize) \
749 __kfifo_dma_out_finish_r(__kfifo, __recsize); \
750 else \
751 __kfifo->out += __len / sizeof(*__tmp->type); \
752 })
753
754 /**
755 * kfifo_out_peek - gets some data from the fifo
756 * @fifo: address of the fifo to be used
757 * @buf: pointer to the storage buffer
758 * @n: max. number of elements to get
759 *
760 * This macro get the data from the fifo and return the numbers of elements
761 * copied. The data is not removed from the fifo.
762 *
763 * Note that with only one concurrent reader and one concurrent
764 * writer, you don't need extra locking to use these macro.
765 */
766 #define kfifo_out_peek(fifo, buf, n) \
767 __kfifo_must_check_helper( \
768 ({ \
769 typeof((fifo) + 1) __tmp = (fifo); \
770 typeof((buf) + 1) __buf = (buf); \
771 unsigned long __n = (n); \
772 const size_t __recsize = sizeof(*__tmp->rectype); \
773 struct __kfifo *__kfifo = &__tmp->kfifo; \
774 if (0) { \
775 typeof(__tmp->ptr) __dummy __attribute__ ((unused)) = NULL; \
776 __buf = __dummy; \
777 } \
778 (__recsize) ? \
779 __kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \
780 __kfifo_out_peek(__kfifo, __buf, __n); \
781 }) \
782 )
783
784 extern int __kfifo_alloc(struct __kfifo *fifo, unsigned int size,
785 size_t esize, gfp_t gfp_mask);
786
787 extern void __kfifo_free(struct __kfifo *fifo);
788
789 extern int __kfifo_init(struct __kfifo *fifo, void *buffer,
790 unsigned int size, size_t esize);
791
792 extern unsigned int __kfifo_in(struct __kfifo *fifo,
793 const void *buf, unsigned int len);
794
795 extern unsigned int __kfifo_out(struct __kfifo *fifo,
796 void *buf, unsigned int len);
797
798 extern int __kfifo_from_user(struct __kfifo *fifo,
799 const void __user *from, unsigned long len, unsigned int *copied);
800
801 extern int __kfifo_to_user(struct __kfifo *fifo,
802 void __user *to, unsigned long len, unsigned int *copied);
803
804 extern unsigned int __kfifo_dma_in_prepare(struct __kfifo *fifo,
805 struct scatterlist *sgl, int nents, unsigned int len);
806
807 extern unsigned int __kfifo_dma_out_prepare(struct __kfifo *fifo,
808 struct scatterlist *sgl, int nents, unsigned int len);
809
810 extern unsigned int __kfifo_out_peek(struct __kfifo *fifo,
811 void *buf, unsigned int len);
812
813 extern unsigned int __kfifo_in_r(struct __kfifo *fifo,
814 const void *buf, unsigned int len, size_t recsize);
815
816 extern unsigned int __kfifo_out_r(struct __kfifo *fifo,
817 void *buf, unsigned int len, size_t recsize);
818
819 extern int __kfifo_from_user_r(struct __kfifo *fifo,
820 const void __user *from, unsigned long len, unsigned int *copied,
821 size_t recsize);
822
823 extern int __kfifo_to_user_r(struct __kfifo *fifo, void __user *to,
824 unsigned long len, unsigned int *copied, size_t recsize);
825
826 extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo *fifo,
827 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize);
828
829 extern void __kfifo_dma_in_finish_r(struct __kfifo *fifo,
830 unsigned int len, size_t recsize);
831
832 extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo *fifo,
833 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize);
834
835 extern void __kfifo_dma_out_finish_r(struct __kfifo *fifo, size_t recsize);
836
837 extern unsigned int __kfifo_len_r(struct __kfifo *fifo, size_t recsize);
838
839 extern void __kfifo_skip_r(struct __kfifo *fifo, size_t recsize);
840
841 extern unsigned int __kfifo_out_peek_r(struct __kfifo *fifo,
842 void *buf, unsigned int len, size_t recsize);
843
844 extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize);
845
846 #endif