Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / include / linux / gfp.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_GFP_H
3 #define __LINUX_GFP_H
4
5 #include <linux/mmdebug.h>
6 #include <linux/mmzone.h>
7 #include <linux/stddef.h>
8 #include <linux/linkage.h>
9 #include <linux/topology.h>
10
11 struct vm_area_struct;
12
13 /*
14 * In case of changes, please don't forget to update
15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
16 */
17
18 /* Plain integer GFP bitmasks. Do not use this directly. */
19 #define ___GFP_DMA 0x01u
20 #define ___GFP_HIGHMEM 0x02u
21 #define ___GFP_DMA32 0x04u
22 #define ___GFP_MOVABLE 0x08u
23 #define ___GFP_RECLAIMABLE 0x10u
24 #define ___GFP_HIGH 0x20u
25 #define ___GFP_IO 0x40u
26 #define ___GFP_FS 0x80u
27 #define ___GFP_COLD 0x100u
28 #define ___GFP_NOWARN 0x200u
29 #define ___GFP_RETRY_MAYFAIL 0x400u
30 #define ___GFP_NOFAIL 0x800u
31 #define ___GFP_NORETRY 0x1000u
32 #define ___GFP_MEMALLOC 0x2000u
33 #define ___GFP_COMP 0x4000u
34 #define ___GFP_ZERO 0x8000u
35 #define ___GFP_NOMEMALLOC 0x10000u
36 #define ___GFP_HARDWALL 0x20000u
37 #define ___GFP_THISNODE 0x40000u
38 #define ___GFP_ATOMIC 0x80000u
39 #define ___GFP_ACCOUNT 0x100000u
40 #define ___GFP_NOTRACK 0x200000u
41 #define ___GFP_DIRECT_RECLAIM 0x400000u
42 #define ___GFP_WRITE 0x800000u
43 #define ___GFP_KSWAPD_RECLAIM 0x1000000u
44 #ifdef CONFIG_LOCKDEP
45 #define ___GFP_NOLOCKDEP 0x2000000u
46 #else
47 #define ___GFP_NOLOCKDEP 0
48 #endif
49 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
50
51 /*
52 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
53 *
54 * Do not put any conditional on these. If necessary modify the definitions
55 * without the underscores and use them consistently. The definitions here may
56 * be used in bit comparisons.
57 */
58 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
59 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
60 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
61 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
62 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
63
64 /*
65 * Page mobility and placement hints
66 *
67 * These flags provide hints about how mobile the page is. Pages with similar
68 * mobility are placed within the same pageblocks to minimise problems due
69 * to external fragmentation.
70 *
71 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
72 * moved by page migration during memory compaction or can be reclaimed.
73 *
74 * __GFP_RECLAIMABLE is used for slab allocations that specify
75 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
76 *
77 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
78 * these pages will be spread between local zones to avoid all the dirty
79 * pages being in one zone (fair zone allocation policy).
80 *
81 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
82 *
83 * __GFP_THISNODE forces the allocation to be satisified from the requested
84 * node with no fallbacks or placement policy enforcements.
85 *
86 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
87 */
88 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
89 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
90 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
91 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
92 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
93
94 /*
95 * Watermark modifiers -- controls access to emergency reserves
96 *
97 * __GFP_HIGH indicates that the caller is high-priority and that granting
98 * the request is necessary before the system can make forward progress.
99 * For example, creating an IO context to clean pages.
100 *
101 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
102 * high priority. Users are typically interrupt handlers. This may be
103 * used in conjunction with __GFP_HIGH
104 *
105 * __GFP_MEMALLOC allows access to all memory. This should only be used when
106 * the caller guarantees the allocation will allow more memory to be freed
107 * very shortly e.g. process exiting or swapping. Users either should
108 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
109 *
110 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
111 * This takes precedence over the __GFP_MEMALLOC flag if both are set.
112 */
113 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
114 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
115 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
116 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
117
118 /*
119 * Reclaim modifiers
120 *
121 * __GFP_IO can start physical IO.
122 *
123 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
124 * allocator recursing into the filesystem which might already be holding
125 * locks.
126 *
127 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
128 * This flag can be cleared to avoid unnecessary delays when a fallback
129 * option is available.
130 *
131 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
132 * the low watermark is reached and have it reclaim pages until the high
133 * watermark is reached. A caller may wish to clear this flag when fallback
134 * options are available and the reclaim is likely to disrupt the system. The
135 * canonical example is THP allocation where a fallback is cheap but
136 * reclaim/compaction may cause indirect stalls.
137 *
138 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
139 *
140 * The default allocator behavior depends on the request size. We have a concept
141 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER).
142 * !costly allocations are too essential to fail so they are implicitly
143 * non-failing by default (with some exceptions like OOM victims might fail so
144 * the caller still has to check for failures) while costly requests try to be
145 * not disruptive and back off even without invoking the OOM killer.
146 * The following three modifiers might be used to override some of these
147 * implicit rules
148 *
149 * __GFP_NORETRY: The VM implementation will try only very lightweight
150 * memory direct reclaim to get some memory under memory pressure (thus
151 * it can sleep). It will avoid disruptive actions like OOM killer. The
152 * caller must handle the failure which is quite likely to happen under
153 * heavy memory pressure. The flag is suitable when failure can easily be
154 * handled at small cost, such as reduced throughput
155 *
156 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
157 * procedures that have previously failed if there is some indication
158 * that progress has been made else where. It can wait for other
159 * tasks to attempt high level approaches to freeing memory such as
160 * compaction (which removes fragmentation) and page-out.
161 * There is still a definite limit to the number of retries, but it is
162 * a larger limit than with __GFP_NORETRY.
163 * Allocations with this flag may fail, but only when there is
164 * genuinely little unused memory. While these allocations do not
165 * directly trigger the OOM killer, their failure indicates that
166 * the system is likely to need to use the OOM killer soon. The
167 * caller must handle failure, but can reasonably do so by failing
168 * a higher-level request, or completing it only in a much less
169 * efficient manner.
170 * If the allocation does fail, and the caller is in a position to
171 * free some non-essential memory, doing so could benefit the system
172 * as a whole.
173 *
174 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
175 * cannot handle allocation failures. The allocation could block
176 * indefinitely but will never return with failure. Testing for
177 * failure is pointless.
178 * New users should be evaluated carefully (and the flag should be
179 * used only when there is no reasonable failure policy) but it is
180 * definitely preferable to use the flag rather than opencode endless
181 * loop around allocator.
182 * Using this flag for costly allocations is _highly_ discouraged.
183 */
184 #define __GFP_IO ((__force gfp_t)___GFP_IO)
185 #define __GFP_FS ((__force gfp_t)___GFP_FS)
186 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
187 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
188 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
189 #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL)
190 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
191 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
192
193 /*
194 * Action modifiers
195 *
196 * __GFP_COLD indicates that the caller does not expect to be used in the near
197 * future. Where possible, a cache-cold page will be returned.
198 *
199 * __GFP_NOWARN suppresses allocation failure reports.
200 *
201 * __GFP_COMP address compound page metadata.
202 *
203 * __GFP_ZERO returns a zeroed page on success.
204 *
205 * __GFP_NOTRACK avoids tracking with kmemcheck.
206 *
207 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
208 * distinguishing in the source between false positives and allocations that
209 * cannot be supported (e.g. page tables).
210 */
211 #define __GFP_COLD ((__force gfp_t)___GFP_COLD)
212 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
213 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
214 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
215 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
216 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
217
218 /* Disable lockdep for GFP context tracking */
219 #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
220
221 /* Room for N __GFP_FOO bits */
222 #define __GFP_BITS_SHIFT (25 + IS_ENABLED(CONFIG_LOCKDEP))
223 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
224
225 /*
226 * Useful GFP flag combinations that are commonly used. It is recommended
227 * that subsystems start with one of these combinations and then set/clear
228 * __GFP_FOO flags as necessary.
229 *
230 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
231 * watermark is applied to allow access to "atomic reserves"
232 *
233 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
234 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
235 *
236 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
237 * accounted to kmemcg.
238 *
239 * GFP_NOWAIT is for kernel allocations that should not stall for direct
240 * reclaim, start physical IO or use any filesystem callback.
241 *
242 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
243 * that do not require the starting of any physical IO.
244 * Please try to avoid using this flag directly and instead use
245 * memalloc_noio_{save,restore} to mark the whole scope which cannot
246 * perform any IO with a short explanation why. All allocation requests
247 * will inherit GFP_NOIO implicitly.
248 *
249 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
250 * Please try to avoid using this flag directly and instead use
251 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
252 * recurse into the FS layer with a short explanation why. All allocation
253 * requests will inherit GFP_NOFS implicitly.
254 *
255 * GFP_USER is for userspace allocations that also need to be directly
256 * accessibly by the kernel or hardware. It is typically used by hardware
257 * for buffers that are mapped to userspace (e.g. graphics) that hardware
258 * still must DMA to. cpuset limits are enforced for these allocations.
259 *
260 * GFP_DMA exists for historical reasons and should be avoided where possible.
261 * The flags indicates that the caller requires that the lowest zone be
262 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
263 * it would require careful auditing as some users really require it and
264 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
265 * lowest zone as a type of emergency reserve.
266 *
267 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
268 * address.
269 *
270 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
271 * do not need to be directly accessible by the kernel but that cannot
272 * move once in use. An example may be a hardware allocation that maps
273 * data directly into userspace but has no addressing limitations.
274 *
275 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
276 * need direct access to but can use kmap() when access is required. They
277 * are expected to be movable via page reclaim or page migration. Typically,
278 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
279 *
280 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
281 * compound allocations that will generally fail quickly if memory is not
282 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
283 * version does not attempt reclaim/compaction at all and is by default used
284 * in page fault path, while the non-light is used by khugepaged.
285 */
286 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
287 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
288 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
289 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
290 #define GFP_NOIO (__GFP_RECLAIM)
291 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
292 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
293 #define GFP_DMA __GFP_DMA
294 #define GFP_DMA32 __GFP_DMA32
295 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
296 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
297 #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
298 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
299 #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
300
301 /* Convert GFP flags to their corresponding migrate type */
302 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
303 #define GFP_MOVABLE_SHIFT 3
304
305 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
306 {
307 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
308 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
309 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
310
311 if (unlikely(page_group_by_mobility_disabled))
312 return MIGRATE_UNMOVABLE;
313
314 /* Group based on mobility */
315 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
316 }
317 #undef GFP_MOVABLE_MASK
318 #undef GFP_MOVABLE_SHIFT
319
320 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
321 {
322 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
323 }
324
325 #ifdef CONFIG_HIGHMEM
326 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
327 #else
328 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
329 #endif
330
331 #ifdef CONFIG_ZONE_DMA
332 #define OPT_ZONE_DMA ZONE_DMA
333 #else
334 #define OPT_ZONE_DMA ZONE_NORMAL
335 #endif
336
337 #ifdef CONFIG_ZONE_DMA32
338 #define OPT_ZONE_DMA32 ZONE_DMA32
339 #else
340 #define OPT_ZONE_DMA32 ZONE_NORMAL
341 #endif
342
343 /*
344 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
345 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
346 * bits long and there are 16 of them to cover all possible combinations of
347 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
348 *
349 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
350 * But GFP_MOVABLE is not only a zone specifier but also an allocation
351 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
352 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
353 *
354 * bit result
355 * =================
356 * 0x0 => NORMAL
357 * 0x1 => DMA or NORMAL
358 * 0x2 => HIGHMEM or NORMAL
359 * 0x3 => BAD (DMA+HIGHMEM)
360 * 0x4 => DMA32 or DMA or NORMAL
361 * 0x5 => BAD (DMA+DMA32)
362 * 0x6 => BAD (HIGHMEM+DMA32)
363 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
364 * 0x8 => NORMAL (MOVABLE+0)
365 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
366 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
367 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
368 * 0xc => DMA32 (MOVABLE+DMA32)
369 * 0xd => BAD (MOVABLE+DMA32+DMA)
370 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
371 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
372 *
373 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
374 */
375
376 #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
377 /* ZONE_DEVICE is not a valid GFP zone specifier */
378 #define GFP_ZONES_SHIFT 2
379 #else
380 #define GFP_ZONES_SHIFT ZONES_SHIFT
381 #endif
382
383 #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
384 #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
385 #endif
386
387 #define GFP_ZONE_TABLE ( \
388 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
389 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
390 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
391 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
392 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
393 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
394 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
395 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
396 )
397
398 /*
399 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
400 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
401 * entry starting with bit 0. Bit is set if the combination is not
402 * allowed.
403 */
404 #define GFP_ZONE_BAD ( \
405 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
406 | 1 << (___GFP_DMA | ___GFP_DMA32) \
407 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
408 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
409 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
410 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
411 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
412 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
413 )
414
415 static inline enum zone_type gfp_zone(gfp_t flags)
416 {
417 enum zone_type z;
418 int bit = (__force int) (flags & GFP_ZONEMASK);
419
420 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
421 ((1 << GFP_ZONES_SHIFT) - 1);
422 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
423 return z;
424 }
425
426 /*
427 * There is only one page-allocator function, and two main namespaces to
428 * it. The alloc_page*() variants return 'struct page *' and as such
429 * can allocate highmem pages, the *get*page*() variants return
430 * virtual kernel addresses to the allocated page(s).
431 */
432
433 static inline int gfp_zonelist(gfp_t flags)
434 {
435 #ifdef CONFIG_NUMA
436 if (unlikely(flags & __GFP_THISNODE))
437 return ZONELIST_NOFALLBACK;
438 #endif
439 return ZONELIST_FALLBACK;
440 }
441
442 /*
443 * We get the zone list from the current node and the gfp_mask.
444 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
445 * There are two zonelists per node, one for all zones with memory and
446 * one containing just zones from the node the zonelist belongs to.
447 *
448 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
449 * optimized to &contig_page_data at compile-time.
450 */
451 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
452 {
453 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
454 }
455
456 #ifndef HAVE_ARCH_FREE_PAGE
457 static inline void arch_free_page(struct page *page, int order) { }
458 #endif
459 #ifndef HAVE_ARCH_ALLOC_PAGE
460 static inline void arch_alloc_page(struct page *page, int order) { }
461 #endif
462
463 struct page *
464 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
465 nodemask_t *nodemask);
466
467 static inline struct page *
468 __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid)
469 {
470 return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL);
471 }
472
473 /*
474 * Allocate pages, preferring the node given as nid. The node must be valid and
475 * online. For more general interface, see alloc_pages_node().
476 */
477 static inline struct page *
478 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
479 {
480 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
481 VM_WARN_ON(!node_online(nid));
482
483 return __alloc_pages(gfp_mask, order, nid);
484 }
485
486 /*
487 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
488 * prefer the current CPU's closest node. Otherwise node must be valid and
489 * online.
490 */
491 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
492 unsigned int order)
493 {
494 if (nid == NUMA_NO_NODE)
495 nid = numa_mem_id();
496
497 return __alloc_pages_node(nid, gfp_mask, order);
498 }
499
500 #ifdef CONFIG_NUMA
501 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
502
503 static inline struct page *
504 alloc_pages(gfp_t gfp_mask, unsigned int order)
505 {
506 return alloc_pages_current(gfp_mask, order);
507 }
508 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
509 struct vm_area_struct *vma, unsigned long addr,
510 int node, bool hugepage);
511 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
512 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
513 #else
514 #define alloc_pages(gfp_mask, order) \
515 alloc_pages_node(numa_node_id(), gfp_mask, order)
516 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
517 alloc_pages(gfp_mask, order)
518 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
519 alloc_pages(gfp_mask, order)
520 #endif
521 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
522 #define alloc_page_vma(gfp_mask, vma, addr) \
523 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
524 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \
525 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
526
527 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
528 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
529
530 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
531 void free_pages_exact(void *virt, size_t size);
532 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
533
534 #define __get_free_page(gfp_mask) \
535 __get_free_pages((gfp_mask), 0)
536
537 #define __get_dma_pages(gfp_mask, order) \
538 __get_free_pages((gfp_mask) | GFP_DMA, (order))
539
540 extern void __free_pages(struct page *page, unsigned int order);
541 extern void free_pages(unsigned long addr, unsigned int order);
542 extern void free_hot_cold_page(struct page *page, bool cold);
543 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
544
545 struct page_frag_cache;
546 extern void __page_frag_cache_drain(struct page *page, unsigned int count);
547 extern void *page_frag_alloc(struct page_frag_cache *nc,
548 unsigned int fragsz, gfp_t gfp_mask);
549 extern void page_frag_free(void *addr);
550
551 #define __free_page(page) __free_pages((page), 0)
552 #define free_page(addr) free_pages((addr), 0)
553
554 void page_alloc_init(void);
555 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
556 void drain_all_pages(struct zone *zone);
557 void drain_local_pages(struct zone *zone);
558
559 void page_alloc_init_late(void);
560
561 /*
562 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
563 * GFP flags are used before interrupts are enabled. Once interrupts are
564 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
565 * hibernation, it is used by PM to avoid I/O during memory allocation while
566 * devices are suspended.
567 */
568 extern gfp_t gfp_allowed_mask;
569
570 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
571 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
572
573 extern void pm_restrict_gfp_mask(void);
574 extern void pm_restore_gfp_mask(void);
575
576 #ifdef CONFIG_PM_SLEEP
577 extern bool pm_suspended_storage(void);
578 #else
579 static inline bool pm_suspended_storage(void)
580 {
581 return false;
582 }
583 #endif /* CONFIG_PM_SLEEP */
584
585 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
586 /* The below functions must be run on a range from a single zone. */
587 extern int alloc_contig_range(unsigned long start, unsigned long end,
588 unsigned migratetype, gfp_t gfp_mask);
589 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
590 #endif
591
592 #ifdef CONFIG_CMA
593 /* CMA stuff */
594 extern void init_cma_reserved_pageblock(struct page *page);
595 #endif
596
597 #endif /* __LINUX_GFP_H */