dmaengine: add async_tx_clear_ack() macro
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21 #ifndef DMAENGINE_H
22 #define DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/kref.h>
27 #include <linux/completion.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dma-mapping.h>
30
31 /**
32 * typedef dma_cookie_t - an opaque DMA cookie
33 *
34 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
35 */
36 typedef s32 dma_cookie_t;
37
38 #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
39
40 /**
41 * enum dma_status - DMA transaction status
42 * @DMA_SUCCESS: transaction completed successfully
43 * @DMA_IN_PROGRESS: transaction not yet processed
44 * @DMA_ERROR: transaction failed
45 */
46 enum dma_status {
47 DMA_SUCCESS,
48 DMA_IN_PROGRESS,
49 DMA_ERROR,
50 };
51
52 /**
53 * enum dma_transaction_type - DMA transaction types/indexes
54 */
55 enum dma_transaction_type {
56 DMA_MEMCPY,
57 DMA_XOR,
58 DMA_PQ_XOR,
59 DMA_DUAL_XOR,
60 DMA_PQ_UPDATE,
61 DMA_ZERO_SUM,
62 DMA_PQ_ZERO_SUM,
63 DMA_MEMSET,
64 DMA_MEMCPY_CRC32C,
65 DMA_INTERRUPT,
66 DMA_PRIVATE,
67 DMA_SLAVE,
68 };
69
70 /* last transaction type for creation of the capabilities mask */
71 #define DMA_TX_TYPE_END (DMA_SLAVE + 1)
72
73
74 /**
75 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
76 * control completion, and communicate status.
77 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
78 * this transaction
79 * @DMA_CTRL_ACK - the descriptor cannot be reused until the client
80 * acknowledges receipt, i.e. has has a chance to establish any
81 * dependency chains
82 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
83 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
84 */
85 enum dma_ctrl_flags {
86 DMA_PREP_INTERRUPT = (1 << 0),
87 DMA_CTRL_ACK = (1 << 1),
88 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
89 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
90 };
91
92 /**
93 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
94 * See linux/cpumask.h
95 */
96 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
97
98 /**
99 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
100 * @refcount: local_t used for open-coded "bigref" counting
101 * @memcpy_count: transaction counter
102 * @bytes_transferred: byte counter
103 */
104
105 struct dma_chan_percpu {
106 /* stats */
107 unsigned long memcpy_count;
108 unsigned long bytes_transferred;
109 };
110
111 /**
112 * struct dma_chan - devices supply DMA channels, clients use them
113 * @device: ptr to the dma device who supplies this channel, always !%NULL
114 * @cookie: last cookie value returned to client
115 * @chan_id: channel ID for sysfs
116 * @dev: class device for sysfs
117 * @refcount: kref, used in "bigref" slow-mode
118 * @slow_ref: indicates that the DMA channel is free
119 * @rcu: the DMA channel's RCU head
120 * @device_node: used to add this to the device chan list
121 * @local: per-cpu pointer to a struct dma_chan_percpu
122 * @client-count: how many clients are using this channel
123 * @table_count: number of appearances in the mem-to-mem allocation table
124 */
125 struct dma_chan {
126 struct dma_device *device;
127 dma_cookie_t cookie;
128
129 /* sysfs */
130 int chan_id;
131 struct dma_chan_dev *dev;
132
133 struct list_head device_node;
134 struct dma_chan_percpu *local;
135 int client_count;
136 int table_count;
137 };
138
139 /**
140 * struct dma_chan_dev - relate sysfs device node to backing channel device
141 * @chan - driver channel device
142 * @device - sysfs device
143 * @dev_id - parent dma_device dev_id
144 * @idr_ref - reference count to gate release of dma_device dev_id
145 */
146 struct dma_chan_dev {
147 struct dma_chan *chan;
148 struct device device;
149 int dev_id;
150 atomic_t *idr_ref;
151 };
152
153 static inline const char *dma_chan_name(struct dma_chan *chan)
154 {
155 return dev_name(&chan->dev->device);
156 }
157
158 void dma_chan_cleanup(struct kref *kref);
159
160 /**
161 * typedef dma_filter_fn - callback filter for dma_request_channel
162 * @chan: channel to be reviewed
163 * @filter_param: opaque parameter passed through dma_request_channel
164 *
165 * When this optional parameter is specified in a call to dma_request_channel a
166 * suitable channel is passed to this routine for further dispositioning before
167 * being returned. Where 'suitable' indicates a non-busy channel that
168 * satisfies the given capability mask. It returns 'true' to indicate that the
169 * channel is suitable.
170 */
171 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
172
173 typedef void (*dma_async_tx_callback)(void *dma_async_param);
174 /**
175 * struct dma_async_tx_descriptor - async transaction descriptor
176 * ---dma generic offload fields---
177 * @cookie: tracking cookie for this transaction, set to -EBUSY if
178 * this tx is sitting on a dependency list
179 * @flags: flags to augment operation preparation, control completion, and
180 * communicate status
181 * @phys: physical address of the descriptor
182 * @tx_list: driver common field for operations that require multiple
183 * descriptors
184 * @chan: target channel for this operation
185 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
186 * @callback: routine to call after this operation is complete
187 * @callback_param: general parameter to pass to the callback routine
188 * ---async_tx api specific fields---
189 * @next: at completion submit this descriptor
190 * @parent: pointer to the next level up in the dependency chain
191 * @lock: protect the parent and next pointers
192 */
193 struct dma_async_tx_descriptor {
194 dma_cookie_t cookie;
195 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
196 dma_addr_t phys;
197 struct list_head tx_list;
198 struct dma_chan *chan;
199 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
200 dma_async_tx_callback callback;
201 void *callback_param;
202 struct dma_async_tx_descriptor *next;
203 struct dma_async_tx_descriptor *parent;
204 spinlock_t lock;
205 };
206
207 /**
208 * struct dma_device - info on the entity supplying DMA services
209 * @chancnt: how many DMA channels are supported
210 * @channels: the list of struct dma_chan
211 * @global_node: list_head for global dma_device_list
212 * @cap_mask: one or more dma_capability flags
213 * @max_xor: maximum number of xor sources, 0 if no capability
214 * @refcount: reference count
215 * @done: IO completion struct
216 * @dev_id: unique device ID
217 * @dev: struct device reference for dma mapping api
218 * @device_alloc_chan_resources: allocate resources and return the
219 * number of allocated descriptors
220 * @device_free_chan_resources: release DMA channel's resources
221 * @device_prep_dma_memcpy: prepares a memcpy operation
222 * @device_prep_dma_xor: prepares a xor operation
223 * @device_prep_dma_zero_sum: prepares a zero_sum operation
224 * @device_prep_dma_memset: prepares a memset operation
225 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
226 * @device_prep_slave_sg: prepares a slave dma operation
227 * @device_terminate_all: terminate all pending operations
228 * @device_issue_pending: push pending transactions to hardware
229 */
230 struct dma_device {
231
232 unsigned int chancnt;
233 struct list_head channels;
234 struct list_head global_node;
235 dma_cap_mask_t cap_mask;
236 int max_xor;
237
238 int dev_id;
239 struct device *dev;
240
241 int (*device_alloc_chan_resources)(struct dma_chan *chan);
242 void (*device_free_chan_resources)(struct dma_chan *chan);
243
244 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
245 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
246 size_t len, unsigned long flags);
247 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
248 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
249 unsigned int src_cnt, size_t len, unsigned long flags);
250 struct dma_async_tx_descriptor *(*device_prep_dma_zero_sum)(
251 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
252 size_t len, u32 *result, unsigned long flags);
253 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
254 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
255 unsigned long flags);
256 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
257 struct dma_chan *chan, unsigned long flags);
258
259 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
260 struct dma_chan *chan, struct scatterlist *sgl,
261 unsigned int sg_len, enum dma_data_direction direction,
262 unsigned long flags);
263 void (*device_terminate_all)(struct dma_chan *chan);
264
265 enum dma_status (*device_is_tx_complete)(struct dma_chan *chan,
266 dma_cookie_t cookie, dma_cookie_t *last,
267 dma_cookie_t *used);
268 void (*device_issue_pending)(struct dma_chan *chan);
269 };
270
271 /* --- public DMA engine API --- */
272
273 void dmaengine_get(void);
274 void dmaengine_put(void);
275 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
276 void *dest, void *src, size_t len);
277 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
278 struct page *page, unsigned int offset, void *kdata, size_t len);
279 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
280 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
281 unsigned int src_off, size_t len);
282 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
283 struct dma_chan *chan);
284
285 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
286 {
287 tx->flags |= DMA_CTRL_ACK;
288 }
289
290 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
291 {
292 tx->flags &= ~DMA_CTRL_ACK;
293 }
294
295 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
296 {
297 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
298 }
299
300 #define first_dma_cap(mask) __first_dma_cap(&(mask))
301 static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
302 {
303 return min_t(int, DMA_TX_TYPE_END,
304 find_first_bit(srcp->bits, DMA_TX_TYPE_END));
305 }
306
307 #define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
308 static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
309 {
310 return min_t(int, DMA_TX_TYPE_END,
311 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
312 }
313
314 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
315 static inline void
316 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
317 {
318 set_bit(tx_type, dstp->bits);
319 }
320
321 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
322 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
323 {
324 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
325 }
326
327 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
328 static inline int
329 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
330 {
331 return test_bit(tx_type, srcp->bits);
332 }
333
334 #define for_each_dma_cap_mask(cap, mask) \
335 for ((cap) = first_dma_cap(mask); \
336 (cap) < DMA_TX_TYPE_END; \
337 (cap) = next_dma_cap((cap), (mask)))
338
339 /**
340 * dma_async_issue_pending - flush pending transactions to HW
341 * @chan: target DMA channel
342 *
343 * This allows drivers to push copies to HW in batches,
344 * reducing MMIO writes where possible.
345 */
346 static inline void dma_async_issue_pending(struct dma_chan *chan)
347 {
348 chan->device->device_issue_pending(chan);
349 }
350
351 #define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
352
353 /**
354 * dma_async_is_tx_complete - poll for transaction completion
355 * @chan: DMA channel
356 * @cookie: transaction identifier to check status of
357 * @last: returns last completed cookie, can be NULL
358 * @used: returns last issued cookie, can be NULL
359 *
360 * If @last and @used are passed in, upon return they reflect the driver
361 * internal state and can be used with dma_async_is_complete() to check
362 * the status of multiple cookies without re-checking hardware state.
363 */
364 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
365 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
366 {
367 return chan->device->device_is_tx_complete(chan, cookie, last, used);
368 }
369
370 #define dma_async_memcpy_complete(chan, cookie, last, used)\
371 dma_async_is_tx_complete(chan, cookie, last, used)
372
373 /**
374 * dma_async_is_complete - test a cookie against chan state
375 * @cookie: transaction identifier to test status of
376 * @last_complete: last know completed transaction
377 * @last_used: last cookie value handed out
378 *
379 * dma_async_is_complete() is used in dma_async_memcpy_complete()
380 * the test logic is separated for lightweight testing of multiple cookies
381 */
382 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
383 dma_cookie_t last_complete, dma_cookie_t last_used)
384 {
385 if (last_complete <= last_used) {
386 if ((cookie <= last_complete) || (cookie > last_used))
387 return DMA_SUCCESS;
388 } else {
389 if ((cookie <= last_complete) && (cookie > last_used))
390 return DMA_SUCCESS;
391 }
392 return DMA_IN_PROGRESS;
393 }
394
395 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
396 #ifdef CONFIG_DMA_ENGINE
397 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
398 void dma_issue_pending_all(void);
399 #else
400 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
401 {
402 return DMA_SUCCESS;
403 }
404 static inline void dma_issue_pending_all(void)
405 {
406 do { } while (0);
407 }
408 #endif
409
410 /* --- DMA device --- */
411
412 int dma_async_device_register(struct dma_device *device);
413 void dma_async_device_unregister(struct dma_device *device);
414 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
415 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
416 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
417 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
418 void dma_release_channel(struct dma_chan *chan);
419
420 /* --- Helper iov-locking functions --- */
421
422 struct dma_page_list {
423 char __user *base_address;
424 int nr_pages;
425 struct page **pages;
426 };
427
428 struct dma_pinned_list {
429 int nr_iovecs;
430 struct dma_page_list page_list[0];
431 };
432
433 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
434 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
435
436 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
437 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
438 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
439 struct dma_pinned_list *pinned_list, struct page *page,
440 unsigned int offset, size_t len);
441
442 #endif /* DMAENGINE_H */