x86: consolidate header guards
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-x86 / xen / hypercall.h
1 /******************************************************************************
2 * hypercall.h
3 *
4 * Linux-specific hypervisor handling.
5 *
6 * Copyright (c) 2002-2004, K A Fraser
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #ifndef ASM_X86__XEN__HYPERCALL_H
34 #define ASM_X86__XEN__HYPERCALL_H
35
36 #include <linux/errno.h>
37 #include <linux/string.h>
38
39 #include <xen/interface/xen.h>
40 #include <xen/interface/sched.h>
41 #include <xen/interface/physdev.h>
42
43 /*
44 * The hypercall asms have to meet several constraints:
45 * - Work on 32- and 64-bit.
46 * The two architectures put their arguments in different sets of
47 * registers.
48 *
49 * - Work around asm syntax quirks
50 * It isn't possible to specify one of the rNN registers in a
51 * constraint, so we use explicit register variables to get the
52 * args into the right place.
53 *
54 * - Mark all registers as potentially clobbered
55 * Even unused parameters can be clobbered by the hypervisor, so we
56 * need to make sure gcc knows it.
57 *
58 * - Avoid compiler bugs.
59 * This is the tricky part. Because x86_32 has such a constrained
60 * register set, gcc versions below 4.3 have trouble generating
61 * code when all the arg registers and memory are trashed by the
62 * asm. There are syntactically simpler ways of achieving the
63 * semantics below, but they cause the compiler to crash.
64 *
65 * The only combination I found which works is:
66 * - assign the __argX variables first
67 * - list all actually used parameters as "+r" (__argX)
68 * - clobber the rest
69 *
70 * The result certainly isn't pretty, and it really shows up cpp's
71 * weakness as as macro language. Sorry. (But let's just give thanks
72 * there aren't more than 5 arguments...)
73 */
74
75 extern struct { char _entry[32]; } hypercall_page[];
76
77 #define __HYPERCALL "call hypercall_page+%c[offset]"
78 #define __HYPERCALL_ENTRY(x) \
79 [offset] "i" (__HYPERVISOR_##x * sizeof(hypercall_page[0]))
80
81 #ifdef CONFIG_X86_32
82 #define __HYPERCALL_RETREG "eax"
83 #define __HYPERCALL_ARG1REG "ebx"
84 #define __HYPERCALL_ARG2REG "ecx"
85 #define __HYPERCALL_ARG3REG "edx"
86 #define __HYPERCALL_ARG4REG "esi"
87 #define __HYPERCALL_ARG5REG "edi"
88 #else
89 #define __HYPERCALL_RETREG "rax"
90 #define __HYPERCALL_ARG1REG "rdi"
91 #define __HYPERCALL_ARG2REG "rsi"
92 #define __HYPERCALL_ARG3REG "rdx"
93 #define __HYPERCALL_ARG4REG "r10"
94 #define __HYPERCALL_ARG5REG "r8"
95 #endif
96
97 #define __HYPERCALL_DECLS \
98 register unsigned long __res asm(__HYPERCALL_RETREG); \
99 register unsigned long __arg1 asm(__HYPERCALL_ARG1REG) = __arg1; \
100 register unsigned long __arg2 asm(__HYPERCALL_ARG2REG) = __arg2; \
101 register unsigned long __arg3 asm(__HYPERCALL_ARG3REG) = __arg3; \
102 register unsigned long __arg4 asm(__HYPERCALL_ARG4REG) = __arg4; \
103 register unsigned long __arg5 asm(__HYPERCALL_ARG5REG) = __arg5;
104
105 #define __HYPERCALL_0PARAM "=r" (__res)
106 #define __HYPERCALL_1PARAM __HYPERCALL_0PARAM, "+r" (__arg1)
107 #define __HYPERCALL_2PARAM __HYPERCALL_1PARAM, "+r" (__arg2)
108 #define __HYPERCALL_3PARAM __HYPERCALL_2PARAM, "+r" (__arg3)
109 #define __HYPERCALL_4PARAM __HYPERCALL_3PARAM, "+r" (__arg4)
110 #define __HYPERCALL_5PARAM __HYPERCALL_4PARAM, "+r" (__arg5)
111
112 #define __HYPERCALL_0ARG()
113 #define __HYPERCALL_1ARG(a1) \
114 __HYPERCALL_0ARG() __arg1 = (unsigned long)(a1);
115 #define __HYPERCALL_2ARG(a1,a2) \
116 __HYPERCALL_1ARG(a1) __arg2 = (unsigned long)(a2);
117 #define __HYPERCALL_3ARG(a1,a2,a3) \
118 __HYPERCALL_2ARG(a1,a2) __arg3 = (unsigned long)(a3);
119 #define __HYPERCALL_4ARG(a1,a2,a3,a4) \
120 __HYPERCALL_3ARG(a1,a2,a3) __arg4 = (unsigned long)(a4);
121 #define __HYPERCALL_5ARG(a1,a2,a3,a4,a5) \
122 __HYPERCALL_4ARG(a1,a2,a3,a4) __arg5 = (unsigned long)(a5);
123
124 #define __HYPERCALL_CLOBBER5 "memory"
125 #define __HYPERCALL_CLOBBER4 __HYPERCALL_CLOBBER5, __HYPERCALL_ARG5REG
126 #define __HYPERCALL_CLOBBER3 __HYPERCALL_CLOBBER4, __HYPERCALL_ARG4REG
127 #define __HYPERCALL_CLOBBER2 __HYPERCALL_CLOBBER3, __HYPERCALL_ARG3REG
128 #define __HYPERCALL_CLOBBER1 __HYPERCALL_CLOBBER2, __HYPERCALL_ARG2REG
129 #define __HYPERCALL_CLOBBER0 __HYPERCALL_CLOBBER1, __HYPERCALL_ARG1REG
130
131 #define _hypercall0(type, name) \
132 ({ \
133 __HYPERCALL_DECLS; \
134 __HYPERCALL_0ARG(); \
135 asm volatile (__HYPERCALL \
136 : __HYPERCALL_0PARAM \
137 : __HYPERCALL_ENTRY(name) \
138 : __HYPERCALL_CLOBBER0); \
139 (type)__res; \
140 })
141
142 #define _hypercall1(type, name, a1) \
143 ({ \
144 __HYPERCALL_DECLS; \
145 __HYPERCALL_1ARG(a1); \
146 asm volatile (__HYPERCALL \
147 : __HYPERCALL_1PARAM \
148 : __HYPERCALL_ENTRY(name) \
149 : __HYPERCALL_CLOBBER1); \
150 (type)__res; \
151 })
152
153 #define _hypercall2(type, name, a1, a2) \
154 ({ \
155 __HYPERCALL_DECLS; \
156 __HYPERCALL_2ARG(a1, a2); \
157 asm volatile (__HYPERCALL \
158 : __HYPERCALL_2PARAM \
159 : __HYPERCALL_ENTRY(name) \
160 : __HYPERCALL_CLOBBER2); \
161 (type)__res; \
162 })
163
164 #define _hypercall3(type, name, a1, a2, a3) \
165 ({ \
166 __HYPERCALL_DECLS; \
167 __HYPERCALL_3ARG(a1, a2, a3); \
168 asm volatile (__HYPERCALL \
169 : __HYPERCALL_3PARAM \
170 : __HYPERCALL_ENTRY(name) \
171 : __HYPERCALL_CLOBBER3); \
172 (type)__res; \
173 })
174
175 #define _hypercall4(type, name, a1, a2, a3, a4) \
176 ({ \
177 __HYPERCALL_DECLS; \
178 __HYPERCALL_4ARG(a1, a2, a3, a4); \
179 asm volatile (__HYPERCALL \
180 : __HYPERCALL_4PARAM \
181 : __HYPERCALL_ENTRY(name) \
182 : __HYPERCALL_CLOBBER4); \
183 (type)__res; \
184 })
185
186 #define _hypercall5(type, name, a1, a2, a3, a4, a5) \
187 ({ \
188 __HYPERCALL_DECLS; \
189 __HYPERCALL_5ARG(a1, a2, a3, a4, a5); \
190 asm volatile (__HYPERCALL \
191 : __HYPERCALL_5PARAM \
192 : __HYPERCALL_ENTRY(name) \
193 : __HYPERCALL_CLOBBER5); \
194 (type)__res; \
195 })
196
197 static inline int
198 HYPERVISOR_set_trap_table(struct trap_info *table)
199 {
200 return _hypercall1(int, set_trap_table, table);
201 }
202
203 static inline int
204 HYPERVISOR_mmu_update(struct mmu_update *req, int count,
205 int *success_count, domid_t domid)
206 {
207 return _hypercall4(int, mmu_update, req, count, success_count, domid);
208 }
209
210 static inline int
211 HYPERVISOR_mmuext_op(struct mmuext_op *op, int count,
212 int *success_count, domid_t domid)
213 {
214 return _hypercall4(int, mmuext_op, op, count, success_count, domid);
215 }
216
217 static inline int
218 HYPERVISOR_set_gdt(unsigned long *frame_list, int entries)
219 {
220 return _hypercall2(int, set_gdt, frame_list, entries);
221 }
222
223 static inline int
224 HYPERVISOR_stack_switch(unsigned long ss, unsigned long esp)
225 {
226 return _hypercall2(int, stack_switch, ss, esp);
227 }
228
229 #ifdef CONFIG_X86_32
230 static inline int
231 HYPERVISOR_set_callbacks(unsigned long event_selector,
232 unsigned long event_address,
233 unsigned long failsafe_selector,
234 unsigned long failsafe_address)
235 {
236 return _hypercall4(int, set_callbacks,
237 event_selector, event_address,
238 failsafe_selector, failsafe_address);
239 }
240 #else /* CONFIG_X86_64 */
241 static inline int
242 HYPERVISOR_set_callbacks(unsigned long event_address,
243 unsigned long failsafe_address,
244 unsigned long syscall_address)
245 {
246 return _hypercall3(int, set_callbacks,
247 event_address, failsafe_address,
248 syscall_address);
249 }
250 #endif /* CONFIG_X86_{32,64} */
251
252 static inline int
253 HYPERVISOR_callback_op(int cmd, void *arg)
254 {
255 return _hypercall2(int, callback_op, cmd, arg);
256 }
257
258 static inline int
259 HYPERVISOR_fpu_taskswitch(int set)
260 {
261 return _hypercall1(int, fpu_taskswitch, set);
262 }
263
264 static inline int
265 HYPERVISOR_sched_op(int cmd, void *arg)
266 {
267 return _hypercall2(int, sched_op_new, cmd, arg);
268 }
269
270 static inline long
271 HYPERVISOR_set_timer_op(u64 timeout)
272 {
273 unsigned long timeout_hi = (unsigned long)(timeout>>32);
274 unsigned long timeout_lo = (unsigned long)timeout;
275 return _hypercall2(long, set_timer_op, timeout_lo, timeout_hi);
276 }
277
278 static inline int
279 HYPERVISOR_set_debugreg(int reg, unsigned long value)
280 {
281 return _hypercall2(int, set_debugreg, reg, value);
282 }
283
284 static inline unsigned long
285 HYPERVISOR_get_debugreg(int reg)
286 {
287 return _hypercall1(unsigned long, get_debugreg, reg);
288 }
289
290 static inline int
291 HYPERVISOR_update_descriptor(u64 ma, u64 desc)
292 {
293 return _hypercall4(int, update_descriptor, ma, ma>>32, desc, desc>>32);
294 }
295
296 static inline int
297 HYPERVISOR_memory_op(unsigned int cmd, void *arg)
298 {
299 return _hypercall2(int, memory_op, cmd, arg);
300 }
301
302 static inline int
303 HYPERVISOR_multicall(void *call_list, int nr_calls)
304 {
305 return _hypercall2(int, multicall, call_list, nr_calls);
306 }
307
308 static inline int
309 HYPERVISOR_update_va_mapping(unsigned long va, pte_t new_val,
310 unsigned long flags)
311 {
312 if (sizeof(new_val) == sizeof(long))
313 return _hypercall3(int, update_va_mapping, va,
314 new_val.pte, flags);
315 else
316 return _hypercall4(int, update_va_mapping, va,
317 new_val.pte, new_val.pte >> 32, flags);
318 }
319
320 static inline int
321 HYPERVISOR_event_channel_op(int cmd, void *arg)
322 {
323 int rc = _hypercall2(int, event_channel_op, cmd, arg);
324 if (unlikely(rc == -ENOSYS)) {
325 struct evtchn_op op;
326 op.cmd = cmd;
327 memcpy(&op.u, arg, sizeof(op.u));
328 rc = _hypercall1(int, event_channel_op_compat, &op);
329 memcpy(arg, &op.u, sizeof(op.u));
330 }
331 return rc;
332 }
333
334 static inline int
335 HYPERVISOR_xen_version(int cmd, void *arg)
336 {
337 return _hypercall2(int, xen_version, cmd, arg);
338 }
339
340 static inline int
341 HYPERVISOR_console_io(int cmd, int count, char *str)
342 {
343 return _hypercall3(int, console_io, cmd, count, str);
344 }
345
346 static inline int
347 HYPERVISOR_physdev_op(int cmd, void *arg)
348 {
349 int rc = _hypercall2(int, physdev_op, cmd, arg);
350 if (unlikely(rc == -ENOSYS)) {
351 struct physdev_op op;
352 op.cmd = cmd;
353 memcpy(&op.u, arg, sizeof(op.u));
354 rc = _hypercall1(int, physdev_op_compat, &op);
355 memcpy(arg, &op.u, sizeof(op.u));
356 }
357 return rc;
358 }
359
360 static inline int
361 HYPERVISOR_grant_table_op(unsigned int cmd, void *uop, unsigned int count)
362 {
363 return _hypercall3(int, grant_table_op, cmd, uop, count);
364 }
365
366 static inline int
367 HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, pte_t new_val,
368 unsigned long flags, domid_t domid)
369 {
370 if (sizeof(new_val) == sizeof(long))
371 return _hypercall4(int, update_va_mapping_otherdomain, va,
372 new_val.pte, flags, domid);
373 else
374 return _hypercall5(int, update_va_mapping_otherdomain, va,
375 new_val.pte, new_val.pte >> 32,
376 flags, domid);
377 }
378
379 static inline int
380 HYPERVISOR_vm_assist(unsigned int cmd, unsigned int type)
381 {
382 return _hypercall2(int, vm_assist, cmd, type);
383 }
384
385 static inline int
386 HYPERVISOR_vcpu_op(int cmd, int vcpuid, void *extra_args)
387 {
388 return _hypercall3(int, vcpu_op, cmd, vcpuid, extra_args);
389 }
390
391 #ifdef CONFIG_X86_64
392 static inline int
393 HYPERVISOR_set_segment_base(int reg, unsigned long value)
394 {
395 return _hypercall2(int, set_segment_base, reg, value);
396 }
397 #endif
398
399 static inline int
400 HYPERVISOR_suspend(unsigned long srec)
401 {
402 return _hypercall3(int, sched_op, SCHEDOP_shutdown,
403 SHUTDOWN_suspend, srec);
404 }
405
406 static inline int
407 HYPERVISOR_nmi_op(unsigned long op, unsigned long arg)
408 {
409 return _hypercall2(int, nmi_op, op, arg);
410 }
411
412 static inline void
413 MULTI_fpu_taskswitch(struct multicall_entry *mcl, int set)
414 {
415 mcl->op = __HYPERVISOR_fpu_taskswitch;
416 mcl->args[0] = set;
417 }
418
419 static inline void
420 MULTI_update_va_mapping(struct multicall_entry *mcl, unsigned long va,
421 pte_t new_val, unsigned long flags)
422 {
423 mcl->op = __HYPERVISOR_update_va_mapping;
424 mcl->args[0] = va;
425 if (sizeof(new_val) == sizeof(long)) {
426 mcl->args[1] = new_val.pte;
427 mcl->args[2] = flags;
428 } else {
429 mcl->args[1] = new_val.pte;
430 mcl->args[2] = new_val.pte >> 32;
431 mcl->args[3] = flags;
432 }
433 }
434
435 static inline void
436 MULTI_grant_table_op(struct multicall_entry *mcl, unsigned int cmd,
437 void *uop, unsigned int count)
438 {
439 mcl->op = __HYPERVISOR_grant_table_op;
440 mcl->args[0] = cmd;
441 mcl->args[1] = (unsigned long)uop;
442 mcl->args[2] = count;
443 }
444
445 static inline void
446 MULTI_update_va_mapping_otherdomain(struct multicall_entry *mcl, unsigned long va,
447 pte_t new_val, unsigned long flags,
448 domid_t domid)
449 {
450 mcl->op = __HYPERVISOR_update_va_mapping_otherdomain;
451 mcl->args[0] = va;
452 if (sizeof(new_val) == sizeof(long)) {
453 mcl->args[1] = new_val.pte;
454 mcl->args[2] = flags;
455 mcl->args[3] = domid;
456 } else {
457 mcl->args[1] = new_val.pte;
458 mcl->args[2] = new_val.pte >> 32;
459 mcl->args[3] = flags;
460 mcl->args[4] = domid;
461 }
462 }
463
464 static inline void
465 MULTI_update_descriptor(struct multicall_entry *mcl, u64 maddr,
466 struct desc_struct desc)
467 {
468 mcl->op = __HYPERVISOR_update_descriptor;
469 if (sizeof(maddr) == sizeof(long)) {
470 mcl->args[0] = maddr;
471 mcl->args[1] = *(unsigned long *)&desc;
472 } else {
473 mcl->args[0] = maddr;
474 mcl->args[1] = maddr >> 32;
475 mcl->args[2] = desc.a;
476 mcl->args[3] = desc.b;
477 }
478 }
479
480 static inline void
481 MULTI_memory_op(struct multicall_entry *mcl, unsigned int cmd, void *arg)
482 {
483 mcl->op = __HYPERVISOR_memory_op;
484 mcl->args[0] = cmd;
485 mcl->args[1] = (unsigned long)arg;
486 }
487
488 static inline void
489 MULTI_mmu_update(struct multicall_entry *mcl, struct mmu_update *req,
490 int count, int *success_count, domid_t domid)
491 {
492 mcl->op = __HYPERVISOR_mmu_update;
493 mcl->args[0] = (unsigned long)req;
494 mcl->args[1] = count;
495 mcl->args[2] = (unsigned long)success_count;
496 mcl->args[3] = domid;
497 }
498
499 static inline void
500 MULTI_mmuext_op(struct multicall_entry *mcl, struct mmuext_op *op, int count,
501 int *success_count, domid_t domid)
502 {
503 mcl->op = __HYPERVISOR_mmuext_op;
504 mcl->args[0] = (unsigned long)op;
505 mcl->args[1] = count;
506 mcl->args[2] = (unsigned long)success_count;
507 mcl->args[3] = domid;
508 }
509
510 static inline void
511 MULTI_set_gdt(struct multicall_entry *mcl, unsigned long *frames, int entries)
512 {
513 mcl->op = __HYPERVISOR_set_gdt;
514 mcl->args[0] = (unsigned long)frames;
515 mcl->args[1] = entries;
516 }
517
518 static inline void
519 MULTI_stack_switch(struct multicall_entry *mcl,
520 unsigned long ss, unsigned long esp)
521 {
522 mcl->op = __HYPERVISOR_stack_switch;
523 mcl->args[0] = ss;
524 mcl->args[1] = esp;
525 }
526
527 #endif /* ASM_X86__XEN__HYPERCALL_H */