x86: cpufeature: fix SMX flag
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-x86 / paravirt.h
1 #ifndef __ASM_PARAVIRT_H
2 #define __ASM_PARAVIRT_H
3 /* Various instructions on x86 need to be replaced for
4 * para-virtualization: those hooks are defined here. */
5
6 #ifdef CONFIG_PARAVIRT
7 #include <asm/page.h>
8 #include <asm/asm.h>
9
10 /* Bitmask of what can be clobbered: usually at least eax. */
11 #define CLBR_NONE 0
12 #define CLBR_EAX (1 << 0)
13 #define CLBR_ECX (1 << 1)
14 #define CLBR_EDX (1 << 2)
15
16 #ifdef CONFIG_X86_64
17 #define CLBR_RSI (1 << 3)
18 #define CLBR_RDI (1 << 4)
19 #define CLBR_R8 (1 << 5)
20 #define CLBR_R9 (1 << 6)
21 #define CLBR_R10 (1 << 7)
22 #define CLBR_R11 (1 << 8)
23 #define CLBR_ANY ((1 << 9) - 1)
24 #include <asm/desc_defs.h>
25 #else
26 /* CLBR_ANY should match all regs platform has. For i386, that's just it */
27 #define CLBR_ANY ((1 << 3) - 1)
28 #endif /* X86_64 */
29
30 #ifndef __ASSEMBLY__
31 #include <linux/types.h>
32 #include <linux/cpumask.h>
33 #include <asm/kmap_types.h>
34 #include <asm/desc_defs.h>
35
36 struct page;
37 struct thread_struct;
38 struct desc_ptr;
39 struct tss_struct;
40 struct mm_struct;
41 struct desc_struct;
42
43 /* general info */
44 struct pv_info {
45 unsigned int kernel_rpl;
46 int shared_kernel_pmd;
47 int paravirt_enabled;
48 const char *name;
49 };
50
51 struct pv_init_ops {
52 /*
53 * Patch may replace one of the defined code sequences with
54 * arbitrary code, subject to the same register constraints.
55 * This generally means the code is not free to clobber any
56 * registers other than EAX. The patch function should return
57 * the number of bytes of code generated, as we nop pad the
58 * rest in generic code.
59 */
60 unsigned (*patch)(u8 type, u16 clobber, void *insnbuf,
61 unsigned long addr, unsigned len);
62
63 /* Basic arch-specific setup */
64 void (*arch_setup)(void);
65 char *(*memory_setup)(void);
66 void (*post_allocator_init)(void);
67
68 /* Print a banner to identify the environment */
69 void (*banner)(void);
70 };
71
72
73 struct pv_lazy_ops {
74 /* Set deferred update mode, used for batching operations. */
75 void (*enter)(void);
76 void (*leave)(void);
77 };
78
79 struct pv_time_ops {
80 void (*time_init)(void);
81
82 /* Set and set time of day */
83 unsigned long (*get_wallclock)(void);
84 int (*set_wallclock)(unsigned long);
85
86 unsigned long long (*sched_clock)(void);
87 unsigned long (*get_tsc_khz)(void);
88 };
89
90 struct pv_cpu_ops {
91 /* hooks for various privileged instructions */
92 unsigned long (*get_debugreg)(int regno);
93 void (*set_debugreg)(int regno, unsigned long value);
94
95 void (*clts)(void);
96
97 unsigned long (*read_cr0)(void);
98 void (*write_cr0)(unsigned long);
99
100 unsigned long (*read_cr4_safe)(void);
101 unsigned long (*read_cr4)(void);
102 void (*write_cr4)(unsigned long);
103
104 #ifdef CONFIG_X86_64
105 unsigned long (*read_cr8)(void);
106 void (*write_cr8)(unsigned long);
107 #endif
108
109 /* Segment descriptor handling */
110 void (*load_tr_desc)(void);
111 void (*load_gdt)(const struct desc_ptr *);
112 void (*load_idt)(const struct desc_ptr *);
113 void (*store_gdt)(struct desc_ptr *);
114 void (*store_idt)(struct desc_ptr *);
115 void (*set_ldt)(const void *desc, unsigned entries);
116 unsigned long (*store_tr)(void);
117 void (*load_tls)(struct thread_struct *t, unsigned int cpu);
118 #ifdef CONFIG_X86_64
119 void (*load_gs_index)(unsigned int idx);
120 #endif
121 void (*write_ldt_entry)(struct desc_struct *ldt, int entrynum,
122 const void *desc);
123 void (*write_gdt_entry)(struct desc_struct *,
124 int entrynum, const void *desc, int size);
125 void (*write_idt_entry)(gate_desc *,
126 int entrynum, const gate_desc *gate);
127 void (*load_sp0)(struct tss_struct *tss, struct thread_struct *t);
128
129 void (*set_iopl_mask)(unsigned mask);
130
131 void (*wbinvd)(void);
132 void (*io_delay)(void);
133
134 /* cpuid emulation, mostly so that caps bits can be disabled */
135 void (*cpuid)(unsigned int *eax, unsigned int *ebx,
136 unsigned int *ecx, unsigned int *edx);
137
138 /* MSR, PMC and TSR operations.
139 err = 0/-EFAULT. wrmsr returns 0/-EFAULT. */
140 u64 (*read_msr)(unsigned int msr, int *err);
141 int (*write_msr)(unsigned int msr, unsigned low, unsigned high);
142
143 u64 (*read_tsc)(void);
144 u64 (*read_pmc)(int counter);
145 unsigned long long (*read_tscp)(unsigned int *aux);
146
147 /*
148 * Atomically enable interrupts and return to userspace. This
149 * is only ever used to return to 32-bit processes; in a
150 * 64-bit kernel, it's used for 32-on-64 compat processes, but
151 * never native 64-bit processes. (Jump, not call.)
152 */
153 void (*irq_enable_sysexit)(void);
154
155 /*
156 * Switch to usermode gs and return to 64-bit usermode using
157 * sysret. Only used in 64-bit kernels to return to 64-bit
158 * processes. Usermode register state, including %rsp, must
159 * already be restored.
160 */
161 void (*usergs_sysret64)(void);
162
163 /*
164 * Switch to usermode gs and return to 32-bit usermode using
165 * sysret. Used to return to 32-on-64 compat processes.
166 * Other usermode register state, including %esp, must already
167 * be restored.
168 */
169 void (*usergs_sysret32)(void);
170
171 /* Normal iret. Jump to this with the standard iret stack
172 frame set up. */
173 void (*iret)(void);
174
175 void (*swapgs)(void);
176
177 struct pv_lazy_ops lazy_mode;
178 };
179
180 struct pv_irq_ops {
181 void (*init_IRQ)(void);
182
183 /*
184 * Get/set interrupt state. save_fl and restore_fl are only
185 * expected to use X86_EFLAGS_IF; all other bits
186 * returned from save_fl are undefined, and may be ignored by
187 * restore_fl.
188 */
189 unsigned long (*save_fl)(void);
190 void (*restore_fl)(unsigned long);
191 void (*irq_disable)(void);
192 void (*irq_enable)(void);
193 void (*safe_halt)(void);
194 void (*halt)(void);
195
196 #ifdef CONFIG_X86_64
197 void (*adjust_exception_frame)(void);
198 #endif
199 };
200
201 struct pv_apic_ops {
202 #ifdef CONFIG_X86_LOCAL_APIC
203 /*
204 * Direct APIC operations, principally for VMI. Ideally
205 * these shouldn't be in this interface.
206 */
207 void (*apic_write)(unsigned long reg, u32 v);
208 u32 (*apic_read)(unsigned long reg);
209 void (*setup_boot_clock)(void);
210 void (*setup_secondary_clock)(void);
211
212 void (*startup_ipi_hook)(int phys_apicid,
213 unsigned long start_eip,
214 unsigned long start_esp);
215 #endif
216 };
217
218 struct pv_mmu_ops {
219 /*
220 * Called before/after init_mm pagetable setup. setup_start
221 * may reset %cr3, and may pre-install parts of the pagetable;
222 * pagetable setup is expected to preserve any existing
223 * mapping.
224 */
225 void (*pagetable_setup_start)(pgd_t *pgd_base);
226 void (*pagetable_setup_done)(pgd_t *pgd_base);
227
228 unsigned long (*read_cr2)(void);
229 void (*write_cr2)(unsigned long);
230
231 unsigned long (*read_cr3)(void);
232 void (*write_cr3)(unsigned long);
233
234 /*
235 * Hooks for intercepting the creation/use/destruction of an
236 * mm_struct.
237 */
238 void (*activate_mm)(struct mm_struct *prev,
239 struct mm_struct *next);
240 void (*dup_mmap)(struct mm_struct *oldmm,
241 struct mm_struct *mm);
242 void (*exit_mmap)(struct mm_struct *mm);
243
244
245 /* TLB operations */
246 void (*flush_tlb_user)(void);
247 void (*flush_tlb_kernel)(void);
248 void (*flush_tlb_single)(unsigned long addr);
249 void (*flush_tlb_others)(const cpumask_t *cpus, struct mm_struct *mm,
250 unsigned long va);
251
252 /* Hooks for allocating and freeing a pagetable top-level */
253 int (*pgd_alloc)(struct mm_struct *mm);
254 void (*pgd_free)(struct mm_struct *mm, pgd_t *pgd);
255
256 /*
257 * Hooks for allocating/releasing pagetable pages when they're
258 * attached to a pagetable
259 */
260 void (*alloc_pte)(struct mm_struct *mm, u32 pfn);
261 void (*alloc_pmd)(struct mm_struct *mm, u32 pfn);
262 void (*alloc_pmd_clone)(u32 pfn, u32 clonepfn, u32 start, u32 count);
263 void (*alloc_pud)(struct mm_struct *mm, u32 pfn);
264 void (*release_pte)(u32 pfn);
265 void (*release_pmd)(u32 pfn);
266 void (*release_pud)(u32 pfn);
267
268 /* Pagetable manipulation functions */
269 void (*set_pte)(pte_t *ptep, pte_t pteval);
270 void (*set_pte_at)(struct mm_struct *mm, unsigned long addr,
271 pte_t *ptep, pte_t pteval);
272 void (*set_pmd)(pmd_t *pmdp, pmd_t pmdval);
273 void (*pte_update)(struct mm_struct *mm, unsigned long addr,
274 pte_t *ptep);
275 void (*pte_update_defer)(struct mm_struct *mm,
276 unsigned long addr, pte_t *ptep);
277
278 pte_t (*ptep_modify_prot_start)(struct mm_struct *mm, unsigned long addr,
279 pte_t *ptep);
280 void (*ptep_modify_prot_commit)(struct mm_struct *mm, unsigned long addr,
281 pte_t *ptep, pte_t pte);
282
283 pteval_t (*pte_val)(pte_t);
284 pteval_t (*pte_flags)(pte_t);
285 pte_t (*make_pte)(pteval_t pte);
286
287 pgdval_t (*pgd_val)(pgd_t);
288 pgd_t (*make_pgd)(pgdval_t pgd);
289
290 #if PAGETABLE_LEVELS >= 3
291 #ifdef CONFIG_X86_PAE
292 void (*set_pte_atomic)(pte_t *ptep, pte_t pteval);
293 void (*set_pte_present)(struct mm_struct *mm, unsigned long addr,
294 pte_t *ptep, pte_t pte);
295 void (*pte_clear)(struct mm_struct *mm, unsigned long addr,
296 pte_t *ptep);
297 void (*pmd_clear)(pmd_t *pmdp);
298
299 #endif /* CONFIG_X86_PAE */
300
301 void (*set_pud)(pud_t *pudp, pud_t pudval);
302
303 pmdval_t (*pmd_val)(pmd_t);
304 pmd_t (*make_pmd)(pmdval_t pmd);
305
306 #if PAGETABLE_LEVELS == 4
307 pudval_t (*pud_val)(pud_t);
308 pud_t (*make_pud)(pudval_t pud);
309
310 void (*set_pgd)(pgd_t *pudp, pgd_t pgdval);
311 #endif /* PAGETABLE_LEVELS == 4 */
312 #endif /* PAGETABLE_LEVELS >= 3 */
313
314 #ifdef CONFIG_HIGHPTE
315 void *(*kmap_atomic_pte)(struct page *page, enum km_type type);
316 #endif
317
318 struct pv_lazy_ops lazy_mode;
319
320 /* dom0 ops */
321
322 /* Sometimes the physical address is a pfn, and sometimes its
323 an mfn. We can tell which is which from the index. */
324 void (*set_fixmap)(unsigned /* enum fixed_addresses */ idx,
325 unsigned long phys, pgprot_t flags);
326 };
327
328 struct raw_spinlock;
329 struct pv_lock_ops {
330 int (*spin_is_locked)(struct raw_spinlock *lock);
331 int (*spin_is_contended)(struct raw_spinlock *lock);
332 void (*spin_lock)(struct raw_spinlock *lock);
333 int (*spin_trylock)(struct raw_spinlock *lock);
334 void (*spin_unlock)(struct raw_spinlock *lock);
335 };
336
337 /* This contains all the paravirt structures: we get a convenient
338 * number for each function using the offset which we use to indicate
339 * what to patch. */
340 struct paravirt_patch_template {
341 struct pv_init_ops pv_init_ops;
342 struct pv_time_ops pv_time_ops;
343 struct pv_cpu_ops pv_cpu_ops;
344 struct pv_irq_ops pv_irq_ops;
345 struct pv_apic_ops pv_apic_ops;
346 struct pv_mmu_ops pv_mmu_ops;
347 struct pv_lock_ops pv_lock_ops;
348 };
349
350 extern struct pv_info pv_info;
351 extern struct pv_init_ops pv_init_ops;
352 extern struct pv_time_ops pv_time_ops;
353 extern struct pv_cpu_ops pv_cpu_ops;
354 extern struct pv_irq_ops pv_irq_ops;
355 extern struct pv_apic_ops pv_apic_ops;
356 extern struct pv_mmu_ops pv_mmu_ops;
357 extern struct pv_lock_ops pv_lock_ops;
358
359 #define PARAVIRT_PATCH(x) \
360 (offsetof(struct paravirt_patch_template, x) / sizeof(void *))
361
362 #define paravirt_type(op) \
363 [paravirt_typenum] "i" (PARAVIRT_PATCH(op)), \
364 [paravirt_opptr] "m" (op)
365 #define paravirt_clobber(clobber) \
366 [paravirt_clobber] "i" (clobber)
367
368 /*
369 * Generate some code, and mark it as patchable by the
370 * apply_paravirt() alternate instruction patcher.
371 */
372 #define _paravirt_alt(insn_string, type, clobber) \
373 "771:\n\t" insn_string "\n" "772:\n" \
374 ".pushsection .parainstructions,\"a\"\n" \
375 _ASM_ALIGN "\n" \
376 _ASM_PTR " 771b\n" \
377 " .byte " type "\n" \
378 " .byte 772b-771b\n" \
379 " .short " clobber "\n" \
380 ".popsection\n"
381
382 /* Generate patchable code, with the default asm parameters. */
383 #define paravirt_alt(insn_string) \
384 _paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
385
386 /* Simple instruction patching code. */
387 #define DEF_NATIVE(ops, name, code) \
388 extern const char start_##ops##_##name[], end_##ops##_##name[]; \
389 asm("start_" #ops "_" #name ": " code "; end_" #ops "_" #name ":")
390
391 unsigned paravirt_patch_nop(void);
392 unsigned paravirt_patch_ignore(unsigned len);
393 unsigned paravirt_patch_call(void *insnbuf,
394 const void *target, u16 tgt_clobbers,
395 unsigned long addr, u16 site_clobbers,
396 unsigned len);
397 unsigned paravirt_patch_jmp(void *insnbuf, const void *target,
398 unsigned long addr, unsigned len);
399 unsigned paravirt_patch_default(u8 type, u16 clobbers, void *insnbuf,
400 unsigned long addr, unsigned len);
401
402 unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
403 const char *start, const char *end);
404
405 unsigned native_patch(u8 type, u16 clobbers, void *ibuf,
406 unsigned long addr, unsigned len);
407
408 int paravirt_disable_iospace(void);
409
410 /*
411 * This generates an indirect call based on the operation type number.
412 * The type number, computed in PARAVIRT_PATCH, is derived from the
413 * offset into the paravirt_patch_template structure, and can therefore be
414 * freely converted back into a structure offset.
415 */
416 #define PARAVIRT_CALL "call *%[paravirt_opptr];"
417
418 /*
419 * These macros are intended to wrap calls through one of the paravirt
420 * ops structs, so that they can be later identified and patched at
421 * runtime.
422 *
423 * Normally, a call to a pv_op function is a simple indirect call:
424 * (pv_op_struct.operations)(args...).
425 *
426 * Unfortunately, this is a relatively slow operation for modern CPUs,
427 * because it cannot necessarily determine what the destination
428 * address is. In this case, the address is a runtime constant, so at
429 * the very least we can patch the call to e a simple direct call, or
430 * ideally, patch an inline implementation into the callsite. (Direct
431 * calls are essentially free, because the call and return addresses
432 * are completely predictable.)
433 *
434 * For i386, these macros rely on the standard gcc "regparm(3)" calling
435 * convention, in which the first three arguments are placed in %eax,
436 * %edx, %ecx (in that order), and the remaining arguments are placed
437 * on the stack. All caller-save registers (eax,edx,ecx) are expected
438 * to be modified (either clobbered or used for return values).
439 * X86_64, on the other hand, already specifies a register-based calling
440 * conventions, returning at %rax, with parameteres going on %rdi, %rsi,
441 * %rdx, and %rcx. Note that for this reason, x86_64 does not need any
442 * special handling for dealing with 4 arguments, unlike i386.
443 * However, x86_64 also have to clobber all caller saved registers, which
444 * unfortunately, are quite a bit (r8 - r11)
445 *
446 * The call instruction itself is marked by placing its start address
447 * and size into the .parainstructions section, so that
448 * apply_paravirt() in arch/i386/kernel/alternative.c can do the
449 * appropriate patching under the control of the backend pv_init_ops
450 * implementation.
451 *
452 * Unfortunately there's no way to get gcc to generate the args setup
453 * for the call, and then allow the call itself to be generated by an
454 * inline asm. Because of this, we must do the complete arg setup and
455 * return value handling from within these macros. This is fairly
456 * cumbersome.
457 *
458 * There are 5 sets of PVOP_* macros for dealing with 0-4 arguments.
459 * It could be extended to more arguments, but there would be little
460 * to be gained from that. For each number of arguments, there are
461 * the two VCALL and CALL variants for void and non-void functions.
462 *
463 * When there is a return value, the invoker of the macro must specify
464 * the return type. The macro then uses sizeof() on that type to
465 * determine whether its a 32 or 64 bit value, and places the return
466 * in the right register(s) (just %eax for 32-bit, and %edx:%eax for
467 * 64-bit). For x86_64 machines, it just returns at %rax regardless of
468 * the return value size.
469 *
470 * 64-bit arguments are passed as a pair of adjacent 32-bit arguments
471 * i386 also passes 64-bit arguments as a pair of adjacent 32-bit arguments
472 * in low,high order
473 *
474 * Small structures are passed and returned in registers. The macro
475 * calling convention can't directly deal with this, so the wrapper
476 * functions must do this.
477 *
478 * These PVOP_* macros are only defined within this header. This
479 * means that all uses must be wrapped in inline functions. This also
480 * makes sure the incoming and outgoing types are always correct.
481 */
482 #ifdef CONFIG_X86_32
483 #define PVOP_VCALL_ARGS unsigned long __eax, __edx, __ecx
484 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS
485 #define PVOP_VCALL_CLOBBERS "=a" (__eax), "=d" (__edx), \
486 "=c" (__ecx)
487 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS
488 #define EXTRA_CLOBBERS
489 #define VEXTRA_CLOBBERS
490 #else
491 #define PVOP_VCALL_ARGS unsigned long __edi, __esi, __edx, __ecx
492 #define PVOP_CALL_ARGS PVOP_VCALL_ARGS, __eax
493 #define PVOP_VCALL_CLOBBERS "=D" (__edi), \
494 "=S" (__esi), "=d" (__edx), \
495 "=c" (__ecx)
496
497 #define PVOP_CALL_CLOBBERS PVOP_VCALL_CLOBBERS, "=a" (__eax)
498
499 #define EXTRA_CLOBBERS , "r8", "r9", "r10", "r11"
500 #define VEXTRA_CLOBBERS , "rax", "r8", "r9", "r10", "r11"
501 #endif
502
503 #ifdef CONFIG_PARAVIRT_DEBUG
504 #define PVOP_TEST_NULL(op) BUG_ON(op == NULL)
505 #else
506 #define PVOP_TEST_NULL(op) ((void)op)
507 #endif
508
509 #define __PVOP_CALL(rettype, op, pre, post, ...) \
510 ({ \
511 rettype __ret; \
512 PVOP_CALL_ARGS; \
513 PVOP_TEST_NULL(op); \
514 /* This is 32-bit specific, but is okay in 64-bit */ \
515 /* since this condition will never hold */ \
516 if (sizeof(rettype) > sizeof(unsigned long)) { \
517 asm volatile(pre \
518 paravirt_alt(PARAVIRT_CALL) \
519 post \
520 : PVOP_CALL_CLOBBERS \
521 : paravirt_type(op), \
522 paravirt_clobber(CLBR_ANY), \
523 ##__VA_ARGS__ \
524 : "memory", "cc" EXTRA_CLOBBERS); \
525 __ret = (rettype)((((u64)__edx) << 32) | __eax); \
526 } else { \
527 asm volatile(pre \
528 paravirt_alt(PARAVIRT_CALL) \
529 post \
530 : PVOP_CALL_CLOBBERS \
531 : paravirt_type(op), \
532 paravirt_clobber(CLBR_ANY), \
533 ##__VA_ARGS__ \
534 : "memory", "cc" EXTRA_CLOBBERS); \
535 __ret = (rettype)__eax; \
536 } \
537 __ret; \
538 })
539 #define __PVOP_VCALL(op, pre, post, ...) \
540 ({ \
541 PVOP_VCALL_ARGS; \
542 PVOP_TEST_NULL(op); \
543 asm volatile(pre \
544 paravirt_alt(PARAVIRT_CALL) \
545 post \
546 : PVOP_VCALL_CLOBBERS \
547 : paravirt_type(op), \
548 paravirt_clobber(CLBR_ANY), \
549 ##__VA_ARGS__ \
550 : "memory", "cc" VEXTRA_CLOBBERS); \
551 })
552
553 #define PVOP_CALL0(rettype, op) \
554 __PVOP_CALL(rettype, op, "", "")
555 #define PVOP_VCALL0(op) \
556 __PVOP_VCALL(op, "", "")
557
558 #define PVOP_CALL1(rettype, op, arg1) \
559 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)))
560 #define PVOP_VCALL1(op, arg1) \
561 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)))
562
563 #define PVOP_CALL2(rettype, op, arg1, arg2) \
564 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
565 "1" ((unsigned long)(arg2)))
566 #define PVOP_VCALL2(op, arg1, arg2) \
567 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
568 "1" ((unsigned long)(arg2)))
569
570 #define PVOP_CALL3(rettype, op, arg1, arg2, arg3) \
571 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
572 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
573 #define PVOP_VCALL3(op, arg1, arg2, arg3) \
574 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
575 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)))
576
577 /* This is the only difference in x86_64. We can make it much simpler */
578 #ifdef CONFIG_X86_32
579 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
580 __PVOP_CALL(rettype, op, \
581 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
582 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
583 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
584 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
585 __PVOP_VCALL(op, \
586 "push %[_arg4];", "lea 4(%%esp),%%esp;", \
587 "0" ((u32)(arg1)), "1" ((u32)(arg2)), \
588 "2" ((u32)(arg3)), [_arg4] "mr" ((u32)(arg4)))
589 #else
590 #define PVOP_CALL4(rettype, op, arg1, arg2, arg3, arg4) \
591 __PVOP_CALL(rettype, op, "", "", "0" ((unsigned long)(arg1)), \
592 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
593 "3"((unsigned long)(arg4)))
594 #define PVOP_VCALL4(op, arg1, arg2, arg3, arg4) \
595 __PVOP_VCALL(op, "", "", "0" ((unsigned long)(arg1)), \
596 "1"((unsigned long)(arg2)), "2"((unsigned long)(arg3)), \
597 "3"((unsigned long)(arg4)))
598 #endif
599
600 static inline int paravirt_enabled(void)
601 {
602 return pv_info.paravirt_enabled;
603 }
604
605 static inline void load_sp0(struct tss_struct *tss,
606 struct thread_struct *thread)
607 {
608 PVOP_VCALL2(pv_cpu_ops.load_sp0, tss, thread);
609 }
610
611 #define ARCH_SETUP pv_init_ops.arch_setup();
612 static inline unsigned long get_wallclock(void)
613 {
614 return PVOP_CALL0(unsigned long, pv_time_ops.get_wallclock);
615 }
616
617 static inline int set_wallclock(unsigned long nowtime)
618 {
619 return PVOP_CALL1(int, pv_time_ops.set_wallclock, nowtime);
620 }
621
622 static inline void (*choose_time_init(void))(void)
623 {
624 return pv_time_ops.time_init;
625 }
626
627 /* The paravirtualized CPUID instruction. */
628 static inline void __cpuid(unsigned int *eax, unsigned int *ebx,
629 unsigned int *ecx, unsigned int *edx)
630 {
631 PVOP_VCALL4(pv_cpu_ops.cpuid, eax, ebx, ecx, edx);
632 }
633
634 /*
635 * These special macros can be used to get or set a debugging register
636 */
637 static inline unsigned long paravirt_get_debugreg(int reg)
638 {
639 return PVOP_CALL1(unsigned long, pv_cpu_ops.get_debugreg, reg);
640 }
641 #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg)
642 static inline void set_debugreg(unsigned long val, int reg)
643 {
644 PVOP_VCALL2(pv_cpu_ops.set_debugreg, reg, val);
645 }
646
647 static inline void clts(void)
648 {
649 PVOP_VCALL0(pv_cpu_ops.clts);
650 }
651
652 static inline unsigned long read_cr0(void)
653 {
654 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr0);
655 }
656
657 static inline void write_cr0(unsigned long x)
658 {
659 PVOP_VCALL1(pv_cpu_ops.write_cr0, x);
660 }
661
662 static inline unsigned long read_cr2(void)
663 {
664 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr2);
665 }
666
667 static inline void write_cr2(unsigned long x)
668 {
669 PVOP_VCALL1(pv_mmu_ops.write_cr2, x);
670 }
671
672 static inline unsigned long read_cr3(void)
673 {
674 return PVOP_CALL0(unsigned long, pv_mmu_ops.read_cr3);
675 }
676
677 static inline void write_cr3(unsigned long x)
678 {
679 PVOP_VCALL1(pv_mmu_ops.write_cr3, x);
680 }
681
682 static inline unsigned long read_cr4(void)
683 {
684 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4);
685 }
686 static inline unsigned long read_cr4_safe(void)
687 {
688 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr4_safe);
689 }
690
691 static inline void write_cr4(unsigned long x)
692 {
693 PVOP_VCALL1(pv_cpu_ops.write_cr4, x);
694 }
695
696 #ifdef CONFIG_X86_64
697 static inline unsigned long read_cr8(void)
698 {
699 return PVOP_CALL0(unsigned long, pv_cpu_ops.read_cr8);
700 }
701
702 static inline void write_cr8(unsigned long x)
703 {
704 PVOP_VCALL1(pv_cpu_ops.write_cr8, x);
705 }
706 #endif
707
708 static inline void raw_safe_halt(void)
709 {
710 PVOP_VCALL0(pv_irq_ops.safe_halt);
711 }
712
713 static inline void halt(void)
714 {
715 PVOP_VCALL0(pv_irq_ops.safe_halt);
716 }
717
718 static inline void wbinvd(void)
719 {
720 PVOP_VCALL0(pv_cpu_ops.wbinvd);
721 }
722
723 #define get_kernel_rpl() (pv_info.kernel_rpl)
724
725 static inline u64 paravirt_read_msr(unsigned msr, int *err)
726 {
727 return PVOP_CALL2(u64, pv_cpu_ops.read_msr, msr, err);
728 }
729 static inline int paravirt_write_msr(unsigned msr, unsigned low, unsigned high)
730 {
731 return PVOP_CALL3(int, pv_cpu_ops.write_msr, msr, low, high);
732 }
733
734 /* These should all do BUG_ON(_err), but our headers are too tangled. */
735 #define rdmsr(msr, val1, val2) \
736 do { \
737 int _err; \
738 u64 _l = paravirt_read_msr(msr, &_err); \
739 val1 = (u32)_l; \
740 val2 = _l >> 32; \
741 } while (0)
742
743 #define wrmsr(msr, val1, val2) \
744 do { \
745 paravirt_write_msr(msr, val1, val2); \
746 } while (0)
747
748 #define rdmsrl(msr, val) \
749 do { \
750 int _err; \
751 val = paravirt_read_msr(msr, &_err); \
752 } while (0)
753
754 #define wrmsrl(msr, val) wrmsr(msr, (u32)((u64)(val)), ((u64)(val))>>32)
755 #define wrmsr_safe(msr, a, b) paravirt_write_msr(msr, a, b)
756
757 /* rdmsr with exception handling */
758 #define rdmsr_safe(msr, a, b) \
759 ({ \
760 int _err; \
761 u64 _l = paravirt_read_msr(msr, &_err); \
762 (*a) = (u32)_l; \
763 (*b) = _l >> 32; \
764 _err; \
765 })
766
767 static inline int rdmsrl_safe(unsigned msr, unsigned long long *p)
768 {
769 int err;
770
771 *p = paravirt_read_msr(msr, &err);
772 return err;
773 }
774
775 static inline u64 paravirt_read_tsc(void)
776 {
777 return PVOP_CALL0(u64, pv_cpu_ops.read_tsc);
778 }
779
780 #define rdtscl(low) \
781 do { \
782 u64 _l = paravirt_read_tsc(); \
783 low = (int)_l; \
784 } while (0)
785
786 #define rdtscll(val) (val = paravirt_read_tsc())
787
788 static inline unsigned long long paravirt_sched_clock(void)
789 {
790 return PVOP_CALL0(unsigned long long, pv_time_ops.sched_clock);
791 }
792 #define calibrate_tsc() (pv_time_ops.get_tsc_khz())
793
794 static inline unsigned long long paravirt_read_pmc(int counter)
795 {
796 return PVOP_CALL1(u64, pv_cpu_ops.read_pmc, counter);
797 }
798
799 #define rdpmc(counter, low, high) \
800 do { \
801 u64 _l = paravirt_read_pmc(counter); \
802 low = (u32)_l; \
803 high = _l >> 32; \
804 } while (0)
805
806 static inline unsigned long long paravirt_rdtscp(unsigned int *aux)
807 {
808 return PVOP_CALL1(u64, pv_cpu_ops.read_tscp, aux);
809 }
810
811 #define rdtscp(low, high, aux) \
812 do { \
813 int __aux; \
814 unsigned long __val = paravirt_rdtscp(&__aux); \
815 (low) = (u32)__val; \
816 (high) = (u32)(__val >> 32); \
817 (aux) = __aux; \
818 } while (0)
819
820 #define rdtscpll(val, aux) \
821 do { \
822 unsigned long __aux; \
823 val = paravirt_rdtscp(&__aux); \
824 (aux) = __aux; \
825 } while (0)
826
827 static inline void load_TR_desc(void)
828 {
829 PVOP_VCALL0(pv_cpu_ops.load_tr_desc);
830 }
831 static inline void load_gdt(const struct desc_ptr *dtr)
832 {
833 PVOP_VCALL1(pv_cpu_ops.load_gdt, dtr);
834 }
835 static inline void load_idt(const struct desc_ptr *dtr)
836 {
837 PVOP_VCALL1(pv_cpu_ops.load_idt, dtr);
838 }
839 static inline void set_ldt(const void *addr, unsigned entries)
840 {
841 PVOP_VCALL2(pv_cpu_ops.set_ldt, addr, entries);
842 }
843 static inline void store_gdt(struct desc_ptr *dtr)
844 {
845 PVOP_VCALL1(pv_cpu_ops.store_gdt, dtr);
846 }
847 static inline void store_idt(struct desc_ptr *dtr)
848 {
849 PVOP_VCALL1(pv_cpu_ops.store_idt, dtr);
850 }
851 static inline unsigned long paravirt_store_tr(void)
852 {
853 return PVOP_CALL0(unsigned long, pv_cpu_ops.store_tr);
854 }
855 #define store_tr(tr) ((tr) = paravirt_store_tr())
856 static inline void load_TLS(struct thread_struct *t, unsigned cpu)
857 {
858 PVOP_VCALL2(pv_cpu_ops.load_tls, t, cpu);
859 }
860
861 #ifdef CONFIG_X86_64
862 static inline void load_gs_index(unsigned int gs)
863 {
864 PVOP_VCALL1(pv_cpu_ops.load_gs_index, gs);
865 }
866 #endif
867
868 static inline void write_ldt_entry(struct desc_struct *dt, int entry,
869 const void *desc)
870 {
871 PVOP_VCALL3(pv_cpu_ops.write_ldt_entry, dt, entry, desc);
872 }
873
874 static inline void write_gdt_entry(struct desc_struct *dt, int entry,
875 void *desc, int type)
876 {
877 PVOP_VCALL4(pv_cpu_ops.write_gdt_entry, dt, entry, desc, type);
878 }
879
880 static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g)
881 {
882 PVOP_VCALL3(pv_cpu_ops.write_idt_entry, dt, entry, g);
883 }
884 static inline void set_iopl_mask(unsigned mask)
885 {
886 PVOP_VCALL1(pv_cpu_ops.set_iopl_mask, mask);
887 }
888
889 /* The paravirtualized I/O functions */
890 static inline void slow_down_io(void)
891 {
892 pv_cpu_ops.io_delay();
893 #ifdef REALLY_SLOW_IO
894 pv_cpu_ops.io_delay();
895 pv_cpu_ops.io_delay();
896 pv_cpu_ops.io_delay();
897 #endif
898 }
899
900 #ifdef CONFIG_X86_LOCAL_APIC
901 /*
902 * Basic functions accessing APICs.
903 */
904 static inline void apic_write(unsigned long reg, u32 v)
905 {
906 PVOP_VCALL2(pv_apic_ops.apic_write, reg, v);
907 }
908
909 static inline u32 apic_read(unsigned long reg)
910 {
911 return PVOP_CALL1(unsigned long, pv_apic_ops.apic_read, reg);
912 }
913
914 static inline void setup_boot_clock(void)
915 {
916 PVOP_VCALL0(pv_apic_ops.setup_boot_clock);
917 }
918
919 static inline void setup_secondary_clock(void)
920 {
921 PVOP_VCALL0(pv_apic_ops.setup_secondary_clock);
922 }
923 #endif
924
925 static inline void paravirt_post_allocator_init(void)
926 {
927 if (pv_init_ops.post_allocator_init)
928 (*pv_init_ops.post_allocator_init)();
929 }
930
931 static inline void paravirt_pagetable_setup_start(pgd_t *base)
932 {
933 (*pv_mmu_ops.pagetable_setup_start)(base);
934 }
935
936 static inline void paravirt_pagetable_setup_done(pgd_t *base)
937 {
938 (*pv_mmu_ops.pagetable_setup_done)(base);
939 }
940
941 #ifdef CONFIG_SMP
942 static inline void startup_ipi_hook(int phys_apicid, unsigned long start_eip,
943 unsigned long start_esp)
944 {
945 PVOP_VCALL3(pv_apic_ops.startup_ipi_hook,
946 phys_apicid, start_eip, start_esp);
947 }
948 #endif
949
950 static inline void paravirt_activate_mm(struct mm_struct *prev,
951 struct mm_struct *next)
952 {
953 PVOP_VCALL2(pv_mmu_ops.activate_mm, prev, next);
954 }
955
956 static inline void arch_dup_mmap(struct mm_struct *oldmm,
957 struct mm_struct *mm)
958 {
959 PVOP_VCALL2(pv_mmu_ops.dup_mmap, oldmm, mm);
960 }
961
962 static inline void arch_exit_mmap(struct mm_struct *mm)
963 {
964 PVOP_VCALL1(pv_mmu_ops.exit_mmap, mm);
965 }
966
967 static inline void __flush_tlb(void)
968 {
969 PVOP_VCALL0(pv_mmu_ops.flush_tlb_user);
970 }
971 static inline void __flush_tlb_global(void)
972 {
973 PVOP_VCALL0(pv_mmu_ops.flush_tlb_kernel);
974 }
975 static inline void __flush_tlb_single(unsigned long addr)
976 {
977 PVOP_VCALL1(pv_mmu_ops.flush_tlb_single, addr);
978 }
979
980 static inline void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
981 unsigned long va)
982 {
983 PVOP_VCALL3(pv_mmu_ops.flush_tlb_others, &cpumask, mm, va);
984 }
985
986 static inline int paravirt_pgd_alloc(struct mm_struct *mm)
987 {
988 return PVOP_CALL1(int, pv_mmu_ops.pgd_alloc, mm);
989 }
990
991 static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd)
992 {
993 PVOP_VCALL2(pv_mmu_ops.pgd_free, mm, pgd);
994 }
995
996 static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned pfn)
997 {
998 PVOP_VCALL2(pv_mmu_ops.alloc_pte, mm, pfn);
999 }
1000 static inline void paravirt_release_pte(unsigned pfn)
1001 {
1002 PVOP_VCALL1(pv_mmu_ops.release_pte, pfn);
1003 }
1004
1005 static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned pfn)
1006 {
1007 PVOP_VCALL2(pv_mmu_ops.alloc_pmd, mm, pfn);
1008 }
1009
1010 static inline void paravirt_alloc_pmd_clone(unsigned pfn, unsigned clonepfn,
1011 unsigned start, unsigned count)
1012 {
1013 PVOP_VCALL4(pv_mmu_ops.alloc_pmd_clone, pfn, clonepfn, start, count);
1014 }
1015 static inline void paravirt_release_pmd(unsigned pfn)
1016 {
1017 PVOP_VCALL1(pv_mmu_ops.release_pmd, pfn);
1018 }
1019
1020 static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned pfn)
1021 {
1022 PVOP_VCALL2(pv_mmu_ops.alloc_pud, mm, pfn);
1023 }
1024 static inline void paravirt_release_pud(unsigned pfn)
1025 {
1026 PVOP_VCALL1(pv_mmu_ops.release_pud, pfn);
1027 }
1028
1029 #ifdef CONFIG_HIGHPTE
1030 static inline void *kmap_atomic_pte(struct page *page, enum km_type type)
1031 {
1032 unsigned long ret;
1033 ret = PVOP_CALL2(unsigned long, pv_mmu_ops.kmap_atomic_pte, page, type);
1034 return (void *)ret;
1035 }
1036 #endif
1037
1038 static inline void pte_update(struct mm_struct *mm, unsigned long addr,
1039 pte_t *ptep)
1040 {
1041 PVOP_VCALL3(pv_mmu_ops.pte_update, mm, addr, ptep);
1042 }
1043
1044 static inline void pte_update_defer(struct mm_struct *mm, unsigned long addr,
1045 pte_t *ptep)
1046 {
1047 PVOP_VCALL3(pv_mmu_ops.pte_update_defer, mm, addr, ptep);
1048 }
1049
1050 static inline pte_t __pte(pteval_t val)
1051 {
1052 pteval_t ret;
1053
1054 if (sizeof(pteval_t) > sizeof(long))
1055 ret = PVOP_CALL2(pteval_t,
1056 pv_mmu_ops.make_pte,
1057 val, (u64)val >> 32);
1058 else
1059 ret = PVOP_CALL1(pteval_t,
1060 pv_mmu_ops.make_pte,
1061 val);
1062
1063 return (pte_t) { .pte = ret };
1064 }
1065
1066 static inline pteval_t pte_val(pte_t pte)
1067 {
1068 pteval_t ret;
1069
1070 if (sizeof(pteval_t) > sizeof(long))
1071 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_val,
1072 pte.pte, (u64)pte.pte >> 32);
1073 else
1074 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_val,
1075 pte.pte);
1076
1077 return ret;
1078 }
1079
1080 static inline pteval_t pte_flags(pte_t pte)
1081 {
1082 pteval_t ret;
1083
1084 if (sizeof(pteval_t) > sizeof(long))
1085 ret = PVOP_CALL2(pteval_t, pv_mmu_ops.pte_flags,
1086 pte.pte, (u64)pte.pte >> 32);
1087 else
1088 ret = PVOP_CALL1(pteval_t, pv_mmu_ops.pte_flags,
1089 pte.pte);
1090
1091 #ifdef CONFIG_PARAVIRT_DEBUG
1092 BUG_ON(ret & PTE_PFN_MASK);
1093 #endif
1094 return ret;
1095 }
1096
1097 static inline pgd_t __pgd(pgdval_t val)
1098 {
1099 pgdval_t ret;
1100
1101 if (sizeof(pgdval_t) > sizeof(long))
1102 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.make_pgd,
1103 val, (u64)val >> 32);
1104 else
1105 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.make_pgd,
1106 val);
1107
1108 return (pgd_t) { ret };
1109 }
1110
1111 static inline pgdval_t pgd_val(pgd_t pgd)
1112 {
1113 pgdval_t ret;
1114
1115 if (sizeof(pgdval_t) > sizeof(long))
1116 ret = PVOP_CALL2(pgdval_t, pv_mmu_ops.pgd_val,
1117 pgd.pgd, (u64)pgd.pgd >> 32);
1118 else
1119 ret = PVOP_CALL1(pgdval_t, pv_mmu_ops.pgd_val,
1120 pgd.pgd);
1121
1122 return ret;
1123 }
1124
1125 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1126 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr,
1127 pte_t *ptep)
1128 {
1129 pteval_t ret;
1130
1131 ret = PVOP_CALL3(pteval_t, pv_mmu_ops.ptep_modify_prot_start,
1132 mm, addr, ptep);
1133
1134 return (pte_t) { .pte = ret };
1135 }
1136
1137 static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
1138 pte_t *ptep, pte_t pte)
1139 {
1140 if (sizeof(pteval_t) > sizeof(long))
1141 /* 5 arg words */
1142 pv_mmu_ops.ptep_modify_prot_commit(mm, addr, ptep, pte);
1143 else
1144 PVOP_VCALL4(pv_mmu_ops.ptep_modify_prot_commit,
1145 mm, addr, ptep, pte.pte);
1146 }
1147
1148 static inline void set_pte(pte_t *ptep, pte_t pte)
1149 {
1150 if (sizeof(pteval_t) > sizeof(long))
1151 PVOP_VCALL3(pv_mmu_ops.set_pte, ptep,
1152 pte.pte, (u64)pte.pte >> 32);
1153 else
1154 PVOP_VCALL2(pv_mmu_ops.set_pte, ptep,
1155 pte.pte);
1156 }
1157
1158 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1159 pte_t *ptep, pte_t pte)
1160 {
1161 if (sizeof(pteval_t) > sizeof(long))
1162 /* 5 arg words */
1163 pv_mmu_ops.set_pte_at(mm, addr, ptep, pte);
1164 else
1165 PVOP_VCALL4(pv_mmu_ops.set_pte_at, mm, addr, ptep, pte.pte);
1166 }
1167
1168 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1169 {
1170 pmdval_t val = native_pmd_val(pmd);
1171
1172 if (sizeof(pmdval_t) > sizeof(long))
1173 PVOP_VCALL3(pv_mmu_ops.set_pmd, pmdp, val, (u64)val >> 32);
1174 else
1175 PVOP_VCALL2(pv_mmu_ops.set_pmd, pmdp, val);
1176 }
1177
1178 #if PAGETABLE_LEVELS >= 3
1179 static inline pmd_t __pmd(pmdval_t val)
1180 {
1181 pmdval_t ret;
1182
1183 if (sizeof(pmdval_t) > sizeof(long))
1184 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.make_pmd,
1185 val, (u64)val >> 32);
1186 else
1187 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.make_pmd,
1188 val);
1189
1190 return (pmd_t) { ret };
1191 }
1192
1193 static inline pmdval_t pmd_val(pmd_t pmd)
1194 {
1195 pmdval_t ret;
1196
1197 if (sizeof(pmdval_t) > sizeof(long))
1198 ret = PVOP_CALL2(pmdval_t, pv_mmu_ops.pmd_val,
1199 pmd.pmd, (u64)pmd.pmd >> 32);
1200 else
1201 ret = PVOP_CALL1(pmdval_t, pv_mmu_ops.pmd_val,
1202 pmd.pmd);
1203
1204 return ret;
1205 }
1206
1207 static inline void set_pud(pud_t *pudp, pud_t pud)
1208 {
1209 pudval_t val = native_pud_val(pud);
1210
1211 if (sizeof(pudval_t) > sizeof(long))
1212 PVOP_VCALL3(pv_mmu_ops.set_pud, pudp,
1213 val, (u64)val >> 32);
1214 else
1215 PVOP_VCALL2(pv_mmu_ops.set_pud, pudp,
1216 val);
1217 }
1218 #if PAGETABLE_LEVELS == 4
1219 static inline pud_t __pud(pudval_t val)
1220 {
1221 pudval_t ret;
1222
1223 if (sizeof(pudval_t) > sizeof(long))
1224 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.make_pud,
1225 val, (u64)val >> 32);
1226 else
1227 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.make_pud,
1228 val);
1229
1230 return (pud_t) { ret };
1231 }
1232
1233 static inline pudval_t pud_val(pud_t pud)
1234 {
1235 pudval_t ret;
1236
1237 if (sizeof(pudval_t) > sizeof(long))
1238 ret = PVOP_CALL2(pudval_t, pv_mmu_ops.pud_val,
1239 pud.pud, (u64)pud.pud >> 32);
1240 else
1241 ret = PVOP_CALL1(pudval_t, pv_mmu_ops.pud_val,
1242 pud.pud);
1243
1244 return ret;
1245 }
1246
1247 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1248 {
1249 pgdval_t val = native_pgd_val(pgd);
1250
1251 if (sizeof(pgdval_t) > sizeof(long))
1252 PVOP_VCALL3(pv_mmu_ops.set_pgd, pgdp,
1253 val, (u64)val >> 32);
1254 else
1255 PVOP_VCALL2(pv_mmu_ops.set_pgd, pgdp,
1256 val);
1257 }
1258
1259 static inline void pgd_clear(pgd_t *pgdp)
1260 {
1261 set_pgd(pgdp, __pgd(0));
1262 }
1263
1264 static inline void pud_clear(pud_t *pudp)
1265 {
1266 set_pud(pudp, __pud(0));
1267 }
1268
1269 #endif /* PAGETABLE_LEVELS == 4 */
1270
1271 #endif /* PAGETABLE_LEVELS >= 3 */
1272
1273 #ifdef CONFIG_X86_PAE
1274 /* Special-case pte-setting operations for PAE, which can't update a
1275 64-bit pte atomically */
1276 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1277 {
1278 PVOP_VCALL3(pv_mmu_ops.set_pte_atomic, ptep,
1279 pte.pte, pte.pte >> 32);
1280 }
1281
1282 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1283 pte_t *ptep, pte_t pte)
1284 {
1285 /* 5 arg words */
1286 pv_mmu_ops.set_pte_present(mm, addr, ptep, pte);
1287 }
1288
1289 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1290 pte_t *ptep)
1291 {
1292 PVOP_VCALL3(pv_mmu_ops.pte_clear, mm, addr, ptep);
1293 }
1294
1295 static inline void pmd_clear(pmd_t *pmdp)
1296 {
1297 PVOP_VCALL1(pv_mmu_ops.pmd_clear, pmdp);
1298 }
1299 #else /* !CONFIG_X86_PAE */
1300 static inline void set_pte_atomic(pte_t *ptep, pte_t pte)
1301 {
1302 set_pte(ptep, pte);
1303 }
1304
1305 static inline void set_pte_present(struct mm_struct *mm, unsigned long addr,
1306 pte_t *ptep, pte_t pte)
1307 {
1308 set_pte(ptep, pte);
1309 }
1310
1311 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
1312 pte_t *ptep)
1313 {
1314 set_pte_at(mm, addr, ptep, __pte(0));
1315 }
1316
1317 static inline void pmd_clear(pmd_t *pmdp)
1318 {
1319 set_pmd(pmdp, __pmd(0));
1320 }
1321 #endif /* CONFIG_X86_PAE */
1322
1323 /* Lazy mode for batching updates / context switch */
1324 enum paravirt_lazy_mode {
1325 PARAVIRT_LAZY_NONE,
1326 PARAVIRT_LAZY_MMU,
1327 PARAVIRT_LAZY_CPU,
1328 };
1329
1330 enum paravirt_lazy_mode paravirt_get_lazy_mode(void);
1331 void paravirt_enter_lazy_cpu(void);
1332 void paravirt_leave_lazy_cpu(void);
1333 void paravirt_enter_lazy_mmu(void);
1334 void paravirt_leave_lazy_mmu(void);
1335 void paravirt_leave_lazy(enum paravirt_lazy_mode mode);
1336
1337 #define __HAVE_ARCH_ENTER_LAZY_CPU_MODE
1338 static inline void arch_enter_lazy_cpu_mode(void)
1339 {
1340 PVOP_VCALL0(pv_cpu_ops.lazy_mode.enter);
1341 }
1342
1343 static inline void arch_leave_lazy_cpu_mode(void)
1344 {
1345 PVOP_VCALL0(pv_cpu_ops.lazy_mode.leave);
1346 }
1347
1348 static inline void arch_flush_lazy_cpu_mode(void)
1349 {
1350 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)) {
1351 arch_leave_lazy_cpu_mode();
1352 arch_enter_lazy_cpu_mode();
1353 }
1354 }
1355
1356
1357 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1358 static inline void arch_enter_lazy_mmu_mode(void)
1359 {
1360 PVOP_VCALL0(pv_mmu_ops.lazy_mode.enter);
1361 }
1362
1363 static inline void arch_leave_lazy_mmu_mode(void)
1364 {
1365 PVOP_VCALL0(pv_mmu_ops.lazy_mode.leave);
1366 }
1367
1368 static inline void arch_flush_lazy_mmu_mode(void)
1369 {
1370 if (unlikely(paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU)) {
1371 arch_leave_lazy_mmu_mode();
1372 arch_enter_lazy_mmu_mode();
1373 }
1374 }
1375
1376 static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx,
1377 unsigned long phys, pgprot_t flags)
1378 {
1379 pv_mmu_ops.set_fixmap(idx, phys, flags);
1380 }
1381
1382 void _paravirt_nop(void);
1383 #define paravirt_nop ((void *)_paravirt_nop)
1384
1385 void paravirt_use_bytelocks(void);
1386
1387 #ifdef CONFIG_SMP
1388
1389 static inline int __raw_spin_is_locked(struct raw_spinlock *lock)
1390 {
1391 return PVOP_CALL1(int, pv_lock_ops.spin_is_locked, lock);
1392 }
1393
1394 static inline int __raw_spin_is_contended(struct raw_spinlock *lock)
1395 {
1396 return PVOP_CALL1(int, pv_lock_ops.spin_is_contended, lock);
1397 }
1398
1399 static __always_inline void __raw_spin_lock(struct raw_spinlock *lock)
1400 {
1401 PVOP_VCALL1(pv_lock_ops.spin_lock, lock);
1402 }
1403
1404 static __always_inline int __raw_spin_trylock(struct raw_spinlock *lock)
1405 {
1406 return PVOP_CALL1(int, pv_lock_ops.spin_trylock, lock);
1407 }
1408
1409 static __always_inline void __raw_spin_unlock(struct raw_spinlock *lock)
1410 {
1411 PVOP_VCALL1(pv_lock_ops.spin_unlock, lock);
1412 }
1413
1414 #endif
1415
1416 /* These all sit in the .parainstructions section to tell us what to patch. */
1417 struct paravirt_patch_site {
1418 u8 *instr; /* original instructions */
1419 u8 instrtype; /* type of this instruction */
1420 u8 len; /* length of original instruction */
1421 u16 clobbers; /* what registers you may clobber */
1422 };
1423
1424 extern struct paravirt_patch_site __parainstructions[],
1425 __parainstructions_end[];
1426
1427 #ifdef CONFIG_X86_32
1428 #define PV_SAVE_REGS "pushl %%ecx; pushl %%edx;"
1429 #define PV_RESTORE_REGS "popl %%edx; popl %%ecx"
1430 #define PV_FLAGS_ARG "0"
1431 #define PV_EXTRA_CLOBBERS
1432 #define PV_VEXTRA_CLOBBERS
1433 #else
1434 /* We save some registers, but all of them, that's too much. We clobber all
1435 * caller saved registers but the argument parameter */
1436 #define PV_SAVE_REGS "pushq %%rdi;"
1437 #define PV_RESTORE_REGS "popq %%rdi;"
1438 #define PV_EXTRA_CLOBBERS EXTRA_CLOBBERS, "rcx" , "rdx", "rsi"
1439 #define PV_VEXTRA_CLOBBERS EXTRA_CLOBBERS, "rdi", "rcx" , "rdx", "rsi"
1440 #define PV_FLAGS_ARG "D"
1441 #endif
1442
1443 static inline unsigned long __raw_local_save_flags(void)
1444 {
1445 unsigned long f;
1446
1447 asm volatile(paravirt_alt(PV_SAVE_REGS
1448 PARAVIRT_CALL
1449 PV_RESTORE_REGS)
1450 : "=a"(f)
1451 : paravirt_type(pv_irq_ops.save_fl),
1452 paravirt_clobber(CLBR_EAX)
1453 : "memory", "cc" PV_VEXTRA_CLOBBERS);
1454 return f;
1455 }
1456
1457 static inline void raw_local_irq_restore(unsigned long f)
1458 {
1459 asm volatile(paravirt_alt(PV_SAVE_REGS
1460 PARAVIRT_CALL
1461 PV_RESTORE_REGS)
1462 : "=a"(f)
1463 : PV_FLAGS_ARG(f),
1464 paravirt_type(pv_irq_ops.restore_fl),
1465 paravirt_clobber(CLBR_EAX)
1466 : "memory", "cc" PV_EXTRA_CLOBBERS);
1467 }
1468
1469 static inline void raw_local_irq_disable(void)
1470 {
1471 asm volatile(paravirt_alt(PV_SAVE_REGS
1472 PARAVIRT_CALL
1473 PV_RESTORE_REGS)
1474 :
1475 : paravirt_type(pv_irq_ops.irq_disable),
1476 paravirt_clobber(CLBR_EAX)
1477 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1478 }
1479
1480 static inline void raw_local_irq_enable(void)
1481 {
1482 asm volatile(paravirt_alt(PV_SAVE_REGS
1483 PARAVIRT_CALL
1484 PV_RESTORE_REGS)
1485 :
1486 : paravirt_type(pv_irq_ops.irq_enable),
1487 paravirt_clobber(CLBR_EAX)
1488 : "memory", "eax", "cc" PV_EXTRA_CLOBBERS);
1489 }
1490
1491 static inline unsigned long __raw_local_irq_save(void)
1492 {
1493 unsigned long f;
1494
1495 f = __raw_local_save_flags();
1496 raw_local_irq_disable();
1497 return f;
1498 }
1499
1500
1501 /* Make sure as little as possible of this mess escapes. */
1502 #undef PARAVIRT_CALL
1503 #undef __PVOP_CALL
1504 #undef __PVOP_VCALL
1505 #undef PVOP_VCALL0
1506 #undef PVOP_CALL0
1507 #undef PVOP_VCALL1
1508 #undef PVOP_CALL1
1509 #undef PVOP_VCALL2
1510 #undef PVOP_CALL2
1511 #undef PVOP_VCALL3
1512 #undef PVOP_CALL3
1513 #undef PVOP_VCALL4
1514 #undef PVOP_CALL4
1515
1516 #else /* __ASSEMBLY__ */
1517
1518 #define _PVSITE(ptype, clobbers, ops, word, algn) \
1519 771:; \
1520 ops; \
1521 772:; \
1522 .pushsection .parainstructions,"a"; \
1523 .align algn; \
1524 word 771b; \
1525 .byte ptype; \
1526 .byte 772b-771b; \
1527 .short clobbers; \
1528 .popsection
1529
1530
1531 #ifdef CONFIG_X86_64
1532 #define PV_SAVE_REGS \
1533 push %rax; \
1534 push %rcx; \
1535 push %rdx; \
1536 push %rsi; \
1537 push %rdi; \
1538 push %r8; \
1539 push %r9; \
1540 push %r10; \
1541 push %r11
1542 #define PV_RESTORE_REGS \
1543 pop %r11; \
1544 pop %r10; \
1545 pop %r9; \
1546 pop %r8; \
1547 pop %rdi; \
1548 pop %rsi; \
1549 pop %rdx; \
1550 pop %rcx; \
1551 pop %rax
1552 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 8)
1553 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .quad, 8)
1554 #define PARA_INDIRECT(addr) *addr(%rip)
1555 #else
1556 #define PV_SAVE_REGS pushl %eax; pushl %edi; pushl %ecx; pushl %edx
1557 #define PV_RESTORE_REGS popl %edx; popl %ecx; popl %edi; popl %eax
1558 #define PARA_PATCH(struct, off) ((PARAVIRT_PATCH_##struct + (off)) / 4)
1559 #define PARA_SITE(ptype, clobbers, ops) _PVSITE(ptype, clobbers, ops, .long, 4)
1560 #define PARA_INDIRECT(addr) *%cs:addr
1561 #endif
1562
1563 #define INTERRUPT_RETURN \
1564 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_iret), CLBR_NONE, \
1565 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_iret))
1566
1567 #define DISABLE_INTERRUPTS(clobbers) \
1568 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_disable), clobbers, \
1569 PV_SAVE_REGS; \
1570 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_disable); \
1571 PV_RESTORE_REGS;) \
1572
1573 #define ENABLE_INTERRUPTS(clobbers) \
1574 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_irq_enable), clobbers, \
1575 PV_SAVE_REGS; \
1576 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_irq_enable); \
1577 PV_RESTORE_REGS;)
1578
1579 #define USERGS_SYSRET32 \
1580 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret32), \
1581 CLBR_NONE, \
1582 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret32))
1583
1584 #ifdef CONFIG_X86_32
1585 #define GET_CR0_INTO_EAX \
1586 push %ecx; push %edx; \
1587 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_read_cr0); \
1588 pop %edx; pop %ecx
1589
1590 #define ENABLE_INTERRUPTS_SYSEXIT \
1591 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1592 CLBR_NONE, \
1593 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1594
1595
1596 #else /* !CONFIG_X86_32 */
1597
1598 /*
1599 * If swapgs is used while the userspace stack is still current,
1600 * there's no way to call a pvop. The PV replacement *must* be
1601 * inlined, or the swapgs instruction must be trapped and emulated.
1602 */
1603 #define SWAPGS_UNSAFE_STACK \
1604 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1605 swapgs)
1606
1607 #define SWAPGS \
1608 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_swapgs), CLBR_NONE, \
1609 PV_SAVE_REGS; \
1610 call PARA_INDIRECT(pv_cpu_ops+PV_CPU_swapgs); \
1611 PV_RESTORE_REGS \
1612 )
1613
1614 #define GET_CR2_INTO_RCX \
1615 call PARA_INDIRECT(pv_mmu_ops+PV_MMU_read_cr2); \
1616 movq %rax, %rcx; \
1617 xorq %rax, %rax;
1618
1619 #define PARAVIRT_ADJUST_EXCEPTION_FRAME \
1620 PARA_SITE(PARA_PATCH(pv_irq_ops, PV_IRQ_adjust_exception_frame), \
1621 CLBR_NONE, \
1622 call PARA_INDIRECT(pv_irq_ops+PV_IRQ_adjust_exception_frame))
1623
1624 #define USERGS_SYSRET64 \
1625 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_usergs_sysret64), \
1626 CLBR_NONE, \
1627 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_usergs_sysret64))
1628
1629 #define ENABLE_INTERRUPTS_SYSEXIT32 \
1630 PARA_SITE(PARA_PATCH(pv_cpu_ops, PV_CPU_irq_enable_sysexit), \
1631 CLBR_NONE, \
1632 jmp PARA_INDIRECT(pv_cpu_ops+PV_CPU_irq_enable_sysexit))
1633 #endif /* CONFIG_X86_32 */
1634
1635 #endif /* __ASSEMBLY__ */
1636 #endif /* CONFIG_PARAVIRT */
1637 #endif /* __ASM_PARAVIRT_H */