Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14 #endif
15
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
20 #endif
21
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26 {
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34 }
35 #endif
36
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42 {
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50 }
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55 {
56 BUG();
57 return 0;
58 }
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65 #endif
66
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76 {
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80 }
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88 {
89 pmd_t pmd = *pmdp;
90 pmd_clear(pmdp);
91 return pmd;
92 }
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94 #endif
95
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100 {
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104 }
105 #endif
106
107 /*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117 {
118 pte_clear(mm, address, ptep);
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126 #endif
127
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
132 #endif
133
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 struct mm_struct;
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137 {
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140 }
141 #endif
142
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147 {
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150 }
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154 {
155 BUG();
156 }
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #endif
159
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
163 #endif
164
165 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167 #endif
168
169 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171 #endif
172
173 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
174 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
175 pmd_t *pmdp);
176 #endif
177
178 #ifndef __HAVE_ARCH_PTE_SAME
179 static inline int pte_same(pte_t pte_a, pte_t pte_b)
180 {
181 return pte_val(pte_a) == pte_val(pte_b);
182 }
183 #endif
184
185 #ifndef __HAVE_ARCH_PMD_SAME
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188 {
189 return pmd_val(pmd_a) == pmd_val(pmd_b);
190 }
191 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
192 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
193 {
194 BUG();
195 return 0;
196 }
197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198 #endif
199
200 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
201 #define page_test_and_clear_dirty(pfn, mapped) (0)
202 #endif
203
204 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
205 #define pte_maybe_dirty(pte) pte_dirty(pte)
206 #else
207 #define pte_maybe_dirty(pte) (1)
208 #endif
209
210 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
211 #define page_test_and_clear_young(pfn) (0)
212 #endif
213
214 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
215 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
216 #endif
217
218 #ifndef __HAVE_ARCH_MOVE_PTE
219 #define move_pte(pte, prot, old_addr, new_addr) (pte)
220 #endif
221
222 #ifndef flush_tlb_fix_spurious_fault
223 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
224 #endif
225
226 #ifndef pgprot_noncached
227 #define pgprot_noncached(prot) (prot)
228 #endif
229
230 #ifndef pgprot_writecombine
231 #define pgprot_writecombine pgprot_noncached
232 #endif
233
234 /*
235 * When walking page tables, get the address of the next boundary,
236 * or the end address of the range if that comes earlier. Although no
237 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
238 */
239
240 #define pgd_addr_end(addr, end) \
241 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
242 (__boundary - 1 < (end) - 1)? __boundary: (end); \
243 })
244
245 #ifndef pud_addr_end
246 #define pud_addr_end(addr, end) \
247 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
248 (__boundary - 1 < (end) - 1)? __boundary: (end); \
249 })
250 #endif
251
252 #ifndef pmd_addr_end
253 #define pmd_addr_end(addr, end) \
254 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
255 (__boundary - 1 < (end) - 1)? __boundary: (end); \
256 })
257 #endif
258
259 /*
260 * When walking page tables, we usually want to skip any p?d_none entries;
261 * and any p?d_bad entries - reporting the error before resetting to none.
262 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
263 */
264 void pgd_clear_bad(pgd_t *);
265 void pud_clear_bad(pud_t *);
266 void pmd_clear_bad(pmd_t *);
267
268 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
269 {
270 if (pgd_none(*pgd))
271 return 1;
272 if (unlikely(pgd_bad(*pgd))) {
273 pgd_clear_bad(pgd);
274 return 1;
275 }
276 return 0;
277 }
278
279 static inline int pud_none_or_clear_bad(pud_t *pud)
280 {
281 if (pud_none(*pud))
282 return 1;
283 if (unlikely(pud_bad(*pud))) {
284 pud_clear_bad(pud);
285 return 1;
286 }
287 return 0;
288 }
289
290 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
291 {
292 if (pmd_none(*pmd))
293 return 1;
294 if (unlikely(pmd_bad(*pmd))) {
295 pmd_clear_bad(pmd);
296 return 1;
297 }
298 return 0;
299 }
300
301 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
302 unsigned long addr,
303 pte_t *ptep)
304 {
305 /*
306 * Get the current pte state, but zero it out to make it
307 * non-present, preventing the hardware from asynchronously
308 * updating it.
309 */
310 return ptep_get_and_clear(mm, addr, ptep);
311 }
312
313 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
314 unsigned long addr,
315 pte_t *ptep, pte_t pte)
316 {
317 /*
318 * The pte is non-present, so there's no hardware state to
319 * preserve.
320 */
321 set_pte_at(mm, addr, ptep, pte);
322 }
323
324 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
325 /*
326 * Start a pte protection read-modify-write transaction, which
327 * protects against asynchronous hardware modifications to the pte.
328 * The intention is not to prevent the hardware from making pte
329 * updates, but to prevent any updates it may make from being lost.
330 *
331 * This does not protect against other software modifications of the
332 * pte; the appropriate pte lock must be held over the transation.
333 *
334 * Note that this interface is intended to be batchable, meaning that
335 * ptep_modify_prot_commit may not actually update the pte, but merely
336 * queue the update to be done at some later time. The update must be
337 * actually committed before the pte lock is released, however.
338 */
339 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
340 unsigned long addr,
341 pte_t *ptep)
342 {
343 return __ptep_modify_prot_start(mm, addr, ptep);
344 }
345
346 /*
347 * Commit an update to a pte, leaving any hardware-controlled bits in
348 * the PTE unmodified.
349 */
350 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
351 unsigned long addr,
352 pte_t *ptep, pte_t pte)
353 {
354 __ptep_modify_prot_commit(mm, addr, ptep, pte);
355 }
356 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
357 #endif /* CONFIG_MMU */
358
359 /*
360 * A facility to provide lazy MMU batching. This allows PTE updates and
361 * page invalidations to be delayed until a call to leave lazy MMU mode
362 * is issued. Some architectures may benefit from doing this, and it is
363 * beneficial for both shadow and direct mode hypervisors, which may batch
364 * the PTE updates which happen during this window. Note that using this
365 * interface requires that read hazards be removed from the code. A read
366 * hazard could result in the direct mode hypervisor case, since the actual
367 * write to the page tables may not yet have taken place, so reads though
368 * a raw PTE pointer after it has been modified are not guaranteed to be
369 * up to date. This mode can only be entered and left under the protection of
370 * the page table locks for all page tables which may be modified. In the UP
371 * case, this is required so that preemption is disabled, and in the SMP case,
372 * it must synchronize the delayed page table writes properly on other CPUs.
373 */
374 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
375 #define arch_enter_lazy_mmu_mode() do {} while (0)
376 #define arch_leave_lazy_mmu_mode() do {} while (0)
377 #define arch_flush_lazy_mmu_mode() do {} while (0)
378 #endif
379
380 /*
381 * A facility to provide batching of the reload of page tables and
382 * other process state with the actual context switch code for
383 * paravirtualized guests. By convention, only one of the batched
384 * update (lazy) modes (CPU, MMU) should be active at any given time,
385 * entry should never be nested, and entry and exits should always be
386 * paired. This is for sanity of maintaining and reasoning about the
387 * kernel code. In this case, the exit (end of the context switch) is
388 * in architecture-specific code, and so doesn't need a generic
389 * definition.
390 */
391 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
392 #define arch_start_context_switch(prev) do {} while (0)
393 #endif
394
395 #ifndef __HAVE_PFNMAP_TRACKING
396 /*
397 * Interfaces that can be used by architecture code to keep track of
398 * memory type of pfn mappings specified by the remap_pfn_range,
399 * vm_insert_pfn.
400 */
401
402 /*
403 * track_pfn_remap is called when a _new_ pfn mapping is being established
404 * by remap_pfn_range() for physical range indicated by pfn and size.
405 */
406 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
407 unsigned long pfn, unsigned long addr,
408 unsigned long size)
409 {
410 return 0;
411 }
412
413 /*
414 * track_pfn_insert is called when a _new_ single pfn is established
415 * by vm_insert_pfn().
416 */
417 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
418 unsigned long pfn)
419 {
420 return 0;
421 }
422
423 /*
424 * track_pfn_copy is called when vma that is covering the pfnmap gets
425 * copied through copy_page_range().
426 */
427 static inline int track_pfn_copy(struct vm_area_struct *vma)
428 {
429 return 0;
430 }
431
432 /*
433 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
434 * untrack can be called for a specific region indicated by pfn and size or
435 * can be for the entire vma (in which case pfn, size are zero).
436 */
437 static inline void untrack_pfn(struct vm_area_struct *vma,
438 unsigned long pfn, unsigned long size)
439 {
440 }
441 #else
442 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
443 unsigned long pfn, unsigned long addr,
444 unsigned long size);
445 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
446 unsigned long pfn);
447 extern int track_pfn_copy(struct vm_area_struct *vma);
448 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
449 unsigned long size);
450 #endif
451
452 #ifdef CONFIG_MMU
453
454 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
455 static inline int pmd_trans_huge(pmd_t pmd)
456 {
457 return 0;
458 }
459 static inline int pmd_trans_splitting(pmd_t pmd)
460 {
461 return 0;
462 }
463 #ifndef __HAVE_ARCH_PMD_WRITE
464 static inline int pmd_write(pmd_t pmd)
465 {
466 BUG();
467 return 0;
468 }
469 #endif /* __HAVE_ARCH_PMD_WRITE */
470 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
471
472 #ifndef pmd_read_atomic
473 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
474 {
475 /*
476 * Depend on compiler for an atomic pmd read. NOTE: this is
477 * only going to work, if the pmdval_t isn't larger than
478 * an unsigned long.
479 */
480 return *pmdp;
481 }
482 #endif
483
484 /*
485 * This function is meant to be used by sites walking pagetables with
486 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
487 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
488 * into a null pmd and the transhuge page fault can convert a null pmd
489 * into an hugepmd or into a regular pmd (if the hugepage allocation
490 * fails). While holding the mmap_sem in read mode the pmd becomes
491 * stable and stops changing under us only if it's not null and not a
492 * transhuge pmd. When those races occurs and this function makes a
493 * difference vs the standard pmd_none_or_clear_bad, the result is
494 * undefined so behaving like if the pmd was none is safe (because it
495 * can return none anyway). The compiler level barrier() is critically
496 * important to compute the two checks atomically on the same pmdval.
497 *
498 * For 32bit kernels with a 64bit large pmd_t this automatically takes
499 * care of reading the pmd atomically to avoid SMP race conditions
500 * against pmd_populate() when the mmap_sem is hold for reading by the
501 * caller (a special atomic read not done by "gcc" as in the generic
502 * version above, is also needed when THP is disabled because the page
503 * fault can populate the pmd from under us).
504 */
505 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
506 {
507 pmd_t pmdval = pmd_read_atomic(pmd);
508 /*
509 * The barrier will stabilize the pmdval in a register or on
510 * the stack so that it will stop changing under the code.
511 *
512 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
513 * pmd_read_atomic is allowed to return a not atomic pmdval
514 * (for example pointing to an hugepage that has never been
515 * mapped in the pmd). The below checks will only care about
516 * the low part of the pmd with 32bit PAE x86 anyway, with the
517 * exception of pmd_none(). So the important thing is that if
518 * the low part of the pmd is found null, the high part will
519 * be also null or the pmd_none() check below would be
520 * confused.
521 */
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 barrier();
524 #endif
525 if (pmd_none(pmdval))
526 return 1;
527 if (unlikely(pmd_bad(pmdval))) {
528 if (!pmd_trans_huge(pmdval))
529 pmd_clear_bad(pmd);
530 return 1;
531 }
532 return 0;
533 }
534
535 /*
536 * This is a noop if Transparent Hugepage Support is not built into
537 * the kernel. Otherwise it is equivalent to
538 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
539 * places that already verified the pmd is not none and they want to
540 * walk ptes while holding the mmap sem in read mode (write mode don't
541 * need this). If THP is not enabled, the pmd can't go away under the
542 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
543 * run a pmd_trans_unstable before walking the ptes after
544 * split_huge_page_pmd returns (because it may have run when the pmd
545 * become null, but then a page fault can map in a THP and not a
546 * regular page).
547 */
548 static inline int pmd_trans_unstable(pmd_t *pmd)
549 {
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 return pmd_none_or_trans_huge_or_clear_bad(pmd);
552 #else
553 return 0;
554 #endif
555 }
556
557 #endif /* CONFIG_MMU */
558
559 #endif /* !__ASSEMBLY__ */
560
561 #endif /* _ASM_GENERIC_PGTABLE_H */