BUG: headers with BUG/BUG_ON etc. need linux/bug.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14 #endif
15
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
20 #endif
21
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26 {
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34 }
35 #endif
36
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42 {
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50 }
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55 {
56 BUG();
57 return 0;
58 }
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65 #endif
66
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76 {
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80 }
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88 {
89 pmd_t pmd = *pmdp;
90 pmd_clear(mm, address, pmdp);
91 return pmd;
92 }
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94 #endif
95
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100 {
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104 }
105 #endif
106
107 /*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117 {
118 pte_clear(mm, address, ptep);
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126 #endif
127
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
132 #endif
133
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 struct mm_struct;
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137 {
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140 }
141 #endif
142
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147 {
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150 }
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154 {
155 BUG();
156 }
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #endif
159
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address,
163 pmd_t *pmdp);
164 #endif
165
166 #ifndef __HAVE_ARCH_PTE_SAME
167 static inline int pte_same(pte_t pte_a, pte_t pte_b)
168 {
169 return pte_val(pte_a) == pte_val(pte_b);
170 }
171 #endif
172
173 #ifndef __HAVE_ARCH_PMD_SAME
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
176 {
177 return pmd_val(pmd_a) == pmd_val(pmd_b);
178 }
179 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
180 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
181 {
182 BUG();
183 return 0;
184 }
185 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
186 #endif
187
188 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
189 #define page_test_and_clear_dirty(pfn, mapped) (0)
190 #endif
191
192 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
193 #define pte_maybe_dirty(pte) pte_dirty(pte)
194 #else
195 #define pte_maybe_dirty(pte) (1)
196 #endif
197
198 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
199 #define page_test_and_clear_young(pfn) (0)
200 #endif
201
202 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
203 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
204 #endif
205
206 #ifndef __HAVE_ARCH_MOVE_PTE
207 #define move_pte(pte, prot, old_addr, new_addr) (pte)
208 #endif
209
210 #ifndef flush_tlb_fix_spurious_fault
211 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
212 #endif
213
214 #ifndef pgprot_noncached
215 #define pgprot_noncached(prot) (prot)
216 #endif
217
218 #ifndef pgprot_writecombine
219 #define pgprot_writecombine pgprot_noncached
220 #endif
221
222 /*
223 * When walking page tables, get the address of the next boundary,
224 * or the end address of the range if that comes earlier. Although no
225 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
226 */
227
228 #define pgd_addr_end(addr, end) \
229 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
230 (__boundary - 1 < (end) - 1)? __boundary: (end); \
231 })
232
233 #ifndef pud_addr_end
234 #define pud_addr_end(addr, end) \
235 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
236 (__boundary - 1 < (end) - 1)? __boundary: (end); \
237 })
238 #endif
239
240 #ifndef pmd_addr_end
241 #define pmd_addr_end(addr, end) \
242 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
244 })
245 #endif
246
247 /*
248 * When walking page tables, we usually want to skip any p?d_none entries;
249 * and any p?d_bad entries - reporting the error before resetting to none.
250 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
251 */
252 void pgd_clear_bad(pgd_t *);
253 void pud_clear_bad(pud_t *);
254 void pmd_clear_bad(pmd_t *);
255
256 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
257 {
258 if (pgd_none(*pgd))
259 return 1;
260 if (unlikely(pgd_bad(*pgd))) {
261 pgd_clear_bad(pgd);
262 return 1;
263 }
264 return 0;
265 }
266
267 static inline int pud_none_or_clear_bad(pud_t *pud)
268 {
269 if (pud_none(*pud))
270 return 1;
271 if (unlikely(pud_bad(*pud))) {
272 pud_clear_bad(pud);
273 return 1;
274 }
275 return 0;
276 }
277
278 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
279 {
280 if (pmd_none(*pmd))
281 return 1;
282 if (unlikely(pmd_bad(*pmd))) {
283 pmd_clear_bad(pmd);
284 return 1;
285 }
286 return 0;
287 }
288
289 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
290 unsigned long addr,
291 pte_t *ptep)
292 {
293 /*
294 * Get the current pte state, but zero it out to make it
295 * non-present, preventing the hardware from asynchronously
296 * updating it.
297 */
298 return ptep_get_and_clear(mm, addr, ptep);
299 }
300
301 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
302 unsigned long addr,
303 pte_t *ptep, pte_t pte)
304 {
305 /*
306 * The pte is non-present, so there's no hardware state to
307 * preserve.
308 */
309 set_pte_at(mm, addr, ptep, pte);
310 }
311
312 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
313 /*
314 * Start a pte protection read-modify-write transaction, which
315 * protects against asynchronous hardware modifications to the pte.
316 * The intention is not to prevent the hardware from making pte
317 * updates, but to prevent any updates it may make from being lost.
318 *
319 * This does not protect against other software modifications of the
320 * pte; the appropriate pte lock must be held over the transation.
321 *
322 * Note that this interface is intended to be batchable, meaning that
323 * ptep_modify_prot_commit may not actually update the pte, but merely
324 * queue the update to be done at some later time. The update must be
325 * actually committed before the pte lock is released, however.
326 */
327 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
328 unsigned long addr,
329 pte_t *ptep)
330 {
331 return __ptep_modify_prot_start(mm, addr, ptep);
332 }
333
334 /*
335 * Commit an update to a pte, leaving any hardware-controlled bits in
336 * the PTE unmodified.
337 */
338 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
339 unsigned long addr,
340 pte_t *ptep, pte_t pte)
341 {
342 __ptep_modify_prot_commit(mm, addr, ptep, pte);
343 }
344 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
345 #endif /* CONFIG_MMU */
346
347 /*
348 * A facility to provide lazy MMU batching. This allows PTE updates and
349 * page invalidations to be delayed until a call to leave lazy MMU mode
350 * is issued. Some architectures may benefit from doing this, and it is
351 * beneficial for both shadow and direct mode hypervisors, which may batch
352 * the PTE updates which happen during this window. Note that using this
353 * interface requires that read hazards be removed from the code. A read
354 * hazard could result in the direct mode hypervisor case, since the actual
355 * write to the page tables may not yet have taken place, so reads though
356 * a raw PTE pointer after it has been modified are not guaranteed to be
357 * up to date. This mode can only be entered and left under the protection of
358 * the page table locks for all page tables which may be modified. In the UP
359 * case, this is required so that preemption is disabled, and in the SMP case,
360 * it must synchronize the delayed page table writes properly on other CPUs.
361 */
362 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
363 #define arch_enter_lazy_mmu_mode() do {} while (0)
364 #define arch_leave_lazy_mmu_mode() do {} while (0)
365 #define arch_flush_lazy_mmu_mode() do {} while (0)
366 #endif
367
368 /*
369 * A facility to provide batching of the reload of page tables and
370 * other process state with the actual context switch code for
371 * paravirtualized guests. By convention, only one of the batched
372 * update (lazy) modes (CPU, MMU) should be active at any given time,
373 * entry should never be nested, and entry and exits should always be
374 * paired. This is for sanity of maintaining and reasoning about the
375 * kernel code. In this case, the exit (end of the context switch) is
376 * in architecture-specific code, and so doesn't need a generic
377 * definition.
378 */
379 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
380 #define arch_start_context_switch(prev) do {} while (0)
381 #endif
382
383 #ifndef __HAVE_PFNMAP_TRACKING
384 /*
385 * Interface that can be used by architecture code to keep track of
386 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
387 *
388 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
389 * for physical range indicated by pfn and size.
390 */
391 static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
392 unsigned long pfn, unsigned long size)
393 {
394 return 0;
395 }
396
397 /*
398 * Interface that can be used by architecture code to keep track of
399 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
400 *
401 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
402 * copied through copy_page_range().
403 */
404 static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
405 {
406 return 0;
407 }
408
409 /*
410 * Interface that can be used by architecture code to keep track of
411 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
412 *
413 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
414 * untrack can be called for a specific region indicated by pfn and size or
415 * can be for the entire vma (in which case size can be zero).
416 */
417 static inline void untrack_pfn_vma(struct vm_area_struct *vma,
418 unsigned long pfn, unsigned long size)
419 {
420 }
421 #else
422 extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
423 unsigned long pfn, unsigned long size);
424 extern int track_pfn_vma_copy(struct vm_area_struct *vma);
425 extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
426 unsigned long size);
427 #endif
428
429 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
430 static inline int pmd_trans_huge(pmd_t pmd)
431 {
432 return 0;
433 }
434 static inline int pmd_trans_splitting(pmd_t pmd)
435 {
436 return 0;
437 }
438 #ifndef __HAVE_ARCH_PMD_WRITE
439 static inline int pmd_write(pmd_t pmd)
440 {
441 BUG();
442 return 0;
443 }
444 #endif /* __HAVE_ARCH_PMD_WRITE */
445 #endif
446
447 #endif /* !__ASSEMBLY__ */
448
449 #endif /* _ASM_GENERIC_PGTABLE_H */