Merge branch 'next' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_mount.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46
47
48 #ifdef HAVE_PERCPU_SB
49 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54 #else
55
56 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
58 #endif
59
60 static const struct {
61 short offset;
62 short type; /* 0 = integer
63 * 1 = binary / string (no translation)
64 */
65 } xfs_sb_info[] = {
66 { offsetof(xfs_sb_t, sb_magicnum), 0 },
67 { offsetof(xfs_sb_t, sb_blocksize), 0 },
68 { offsetof(xfs_sb_t, sb_dblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rblocks), 0 },
70 { offsetof(xfs_sb_t, sb_rextents), 0 },
71 { offsetof(xfs_sb_t, sb_uuid), 1 },
72 { offsetof(xfs_sb_t, sb_logstart), 0 },
73 { offsetof(xfs_sb_t, sb_rootino), 0 },
74 { offsetof(xfs_sb_t, sb_rbmino), 0 },
75 { offsetof(xfs_sb_t, sb_rsumino), 0 },
76 { offsetof(xfs_sb_t, sb_rextsize), 0 },
77 { offsetof(xfs_sb_t, sb_agblocks), 0 },
78 { offsetof(xfs_sb_t, sb_agcount), 0 },
79 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
80 { offsetof(xfs_sb_t, sb_logblocks), 0 },
81 { offsetof(xfs_sb_t, sb_versionnum), 0 },
82 { offsetof(xfs_sb_t, sb_sectsize), 0 },
83 { offsetof(xfs_sb_t, sb_inodesize), 0 },
84 { offsetof(xfs_sb_t, sb_inopblock), 0 },
85 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
86 { offsetof(xfs_sb_t, sb_blocklog), 0 },
87 { offsetof(xfs_sb_t, sb_sectlog), 0 },
88 { offsetof(xfs_sb_t, sb_inodelog), 0 },
89 { offsetof(xfs_sb_t, sb_inopblog), 0 },
90 { offsetof(xfs_sb_t, sb_agblklog), 0 },
91 { offsetof(xfs_sb_t, sb_rextslog), 0 },
92 { offsetof(xfs_sb_t, sb_inprogress), 0 },
93 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
94 { offsetof(xfs_sb_t, sb_icount), 0 },
95 { offsetof(xfs_sb_t, sb_ifree), 0 },
96 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
97 { offsetof(xfs_sb_t, sb_frextents), 0 },
98 { offsetof(xfs_sb_t, sb_uquotino), 0 },
99 { offsetof(xfs_sb_t, sb_gquotino), 0 },
100 { offsetof(xfs_sb_t, sb_qflags), 0 },
101 { offsetof(xfs_sb_t, sb_flags), 0 },
102 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
103 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
104 { offsetof(xfs_sb_t, sb_unit), 0 },
105 { offsetof(xfs_sb_t, sb_width), 0 },
106 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
108 { offsetof(xfs_sb_t, sb_logsectsize),0 },
109 { offsetof(xfs_sb_t, sb_logsunit), 0 },
110 { offsetof(xfs_sb_t, sb_features2), 0 },
111 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
112 { sizeof(xfs_sb_t), 0 }
113 };
114
115 static DEFINE_MUTEX(xfs_uuid_table_mutex);
116 static int xfs_uuid_table_size;
117 static uuid_t *xfs_uuid_table;
118
119 /*
120 * See if the UUID is unique among mounted XFS filesystems.
121 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122 */
123 STATIC int
124 xfs_uuid_mount(
125 struct xfs_mount *mp)
126 {
127 uuid_t *uuid = &mp->m_sb.sb_uuid;
128 int hole, i;
129
130 if (mp->m_flags & XFS_MOUNT_NOUUID)
131 return 0;
132
133 if (uuid_is_nil(uuid)) {
134 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
135 return XFS_ERROR(EINVAL);
136 }
137
138 mutex_lock(&xfs_uuid_table_mutex);
139 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
140 if (uuid_is_nil(&xfs_uuid_table[i])) {
141 hole = i;
142 continue;
143 }
144 if (uuid_equal(uuid, &xfs_uuid_table[i]))
145 goto out_duplicate;
146 }
147
148 if (hole < 0) {
149 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
150 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
151 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
152 KM_SLEEP);
153 hole = xfs_uuid_table_size++;
154 }
155 xfs_uuid_table[hole] = *uuid;
156 mutex_unlock(&xfs_uuid_table_mutex);
157
158 return 0;
159
160 out_duplicate:
161 mutex_unlock(&xfs_uuid_table_mutex);
162 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
163 return XFS_ERROR(EINVAL);
164 }
165
166 STATIC void
167 xfs_uuid_unmount(
168 struct xfs_mount *mp)
169 {
170 uuid_t *uuid = &mp->m_sb.sb_uuid;
171 int i;
172
173 if (mp->m_flags & XFS_MOUNT_NOUUID)
174 return;
175
176 mutex_lock(&xfs_uuid_table_mutex);
177 for (i = 0; i < xfs_uuid_table_size; i++) {
178 if (uuid_is_nil(&xfs_uuid_table[i]))
179 continue;
180 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
181 continue;
182 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
183 break;
184 }
185 ASSERT(i < xfs_uuid_table_size);
186 mutex_unlock(&xfs_uuid_table_mutex);
187 }
188
189
190 /*
191 * Reference counting access wrappers to the perag structures.
192 * Because we never free per-ag structures, the only thing we
193 * have to protect against changes is the tree structure itself.
194 */
195 struct xfs_perag *
196 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197 {
198 struct xfs_perag *pag;
199 int ref = 0;
200
201 rcu_read_lock();
202 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
203 if (pag) {
204 ASSERT(atomic_read(&pag->pag_ref) >= 0);
205 ref = atomic_inc_return(&pag->pag_ref);
206 }
207 rcu_read_unlock();
208 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
209 return pag;
210 }
211
212 /*
213 * search from @first to find the next perag with the given tag set.
214 */
215 struct xfs_perag *
216 xfs_perag_get_tag(
217 struct xfs_mount *mp,
218 xfs_agnumber_t first,
219 int tag)
220 {
221 struct xfs_perag *pag;
222 int found;
223 int ref;
224
225 rcu_read_lock();
226 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
227 (void **)&pag, first, 1, tag);
228 if (found <= 0) {
229 rcu_read_unlock();
230 return NULL;
231 }
232 ref = atomic_inc_return(&pag->pag_ref);
233 rcu_read_unlock();
234 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
235 return pag;
236 }
237
238 void
239 xfs_perag_put(struct xfs_perag *pag)
240 {
241 int ref;
242
243 ASSERT(atomic_read(&pag->pag_ref) > 0);
244 ref = atomic_dec_return(&pag->pag_ref);
245 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
246 }
247
248 STATIC void
249 __xfs_free_perag(
250 struct rcu_head *head)
251 {
252 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253
254 ASSERT(atomic_read(&pag->pag_ref) == 0);
255 kmem_free(pag);
256 }
257
258 /*
259 * Free up the per-ag resources associated with the mount structure.
260 */
261 STATIC void
262 xfs_free_perag(
263 xfs_mount_t *mp)
264 {
265 xfs_agnumber_t agno;
266 struct xfs_perag *pag;
267
268 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
269 spin_lock(&mp->m_perag_lock);
270 pag = radix_tree_delete(&mp->m_perag_tree, agno);
271 spin_unlock(&mp->m_perag_lock);
272 ASSERT(pag);
273 ASSERT(atomic_read(&pag->pag_ref) == 0);
274 call_rcu(&pag->rcu_head, __xfs_free_perag);
275 }
276 }
277
278 /*
279 * Check size of device based on the (data/realtime) block count.
280 * Note: this check is used by the growfs code as well as mount.
281 */
282 int
283 xfs_sb_validate_fsb_count(
284 xfs_sb_t *sbp,
285 __uint64_t nblocks)
286 {
287 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
288 ASSERT(sbp->sb_blocklog >= BBSHIFT);
289
290 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
291 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
292 return EFBIG;
293 #else /* Limited by UINT_MAX of sectors */
294 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
295 return EFBIG;
296 #endif
297 return 0;
298 }
299
300 /*
301 * Check the validity of the SB found.
302 */
303 STATIC int
304 xfs_mount_validate_sb(
305 xfs_mount_t *mp,
306 xfs_sb_t *sbp,
307 bool check_inprogress)
308 {
309
310 /*
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 xfs_warn(mp, "bad magic number");
319 return XFS_ERROR(EWRONGFS);
320 }
321
322 if (!xfs_sb_good_version(sbp)) {
323 xfs_warn(mp, "bad version");
324 return XFS_ERROR(EWRONGFS);
325 }
326
327 if (unlikely(
328 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
329 xfs_warn(mp,
330 "filesystem is marked as having an external log; "
331 "specify logdev on the mount command line.");
332 return XFS_ERROR(EINVAL);
333 }
334
335 if (unlikely(
336 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
337 xfs_warn(mp,
338 "filesystem is marked as having an internal log; "
339 "do not specify logdev on the mount command line.");
340 return XFS_ERROR(EINVAL);
341 }
342
343 /*
344 * More sanity checking. Most of these were stolen directly from
345 * xfs_repair.
346 */
347 if (unlikely(
348 sbp->sb_agcount <= 0 ||
349 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
350 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
351 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
352 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
353 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
354 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
355 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
356 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
357 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
358 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
359 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
360 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
361 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
362 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
363 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
364 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
365 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
366 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
367 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
368 sbp->sb_dblocks == 0 ||
369 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
370 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
371 XFS_CORRUPTION_ERROR("SB sanity check failed",
372 XFS_ERRLEVEL_LOW, mp, sbp);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 /*
377 * Until this is fixed only page-sized or smaller data blocks work.
378 */
379 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
380 xfs_warn(mp,
381 "File system with blocksize %d bytes. "
382 "Only pagesize (%ld) or less will currently work.",
383 sbp->sb_blocksize, PAGE_SIZE);
384 return XFS_ERROR(ENOSYS);
385 }
386
387 /*
388 * Currently only very few inode sizes are supported.
389 */
390 switch (sbp->sb_inodesize) {
391 case 256:
392 case 512:
393 case 1024:
394 case 2048:
395 break;
396 default:
397 xfs_warn(mp, "inode size of %d bytes not supported",
398 sbp->sb_inodesize);
399 return XFS_ERROR(ENOSYS);
400 }
401
402 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
403 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
404 xfs_warn(mp,
405 "file system too large to be mounted on this system.");
406 return XFS_ERROR(EFBIG);
407 }
408
409 if (check_inprogress && sbp->sb_inprogress) {
410 xfs_warn(mp, "Offline file system operation in progress!");
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413
414 /*
415 * Version 1 directory format has never worked on Linux.
416 */
417 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
418 xfs_warn(mp, "file system using version 1 directory format");
419 return XFS_ERROR(ENOSYS);
420 }
421
422 return 0;
423 }
424
425 int
426 xfs_initialize_perag(
427 xfs_mount_t *mp,
428 xfs_agnumber_t agcount,
429 xfs_agnumber_t *maxagi)
430 {
431 xfs_agnumber_t index;
432 xfs_agnumber_t first_initialised = 0;
433 xfs_perag_t *pag;
434 xfs_agino_t agino;
435 xfs_ino_t ino;
436 xfs_sb_t *sbp = &mp->m_sb;
437 int error = -ENOMEM;
438
439 /*
440 * Walk the current per-ag tree so we don't try to initialise AGs
441 * that already exist (growfs case). Allocate and insert all the
442 * AGs we don't find ready for initialisation.
443 */
444 for (index = 0; index < agcount; index++) {
445 pag = xfs_perag_get(mp, index);
446 if (pag) {
447 xfs_perag_put(pag);
448 continue;
449 }
450 if (!first_initialised)
451 first_initialised = index;
452
453 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
454 if (!pag)
455 goto out_unwind;
456 pag->pag_agno = index;
457 pag->pag_mount = mp;
458 spin_lock_init(&pag->pag_ici_lock);
459 mutex_init(&pag->pag_ici_reclaim_lock);
460 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
461 spin_lock_init(&pag->pag_buf_lock);
462 pag->pag_buf_tree = RB_ROOT;
463
464 if (radix_tree_preload(GFP_NOFS))
465 goto out_unwind;
466
467 spin_lock(&mp->m_perag_lock);
468 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
469 BUG();
470 spin_unlock(&mp->m_perag_lock);
471 radix_tree_preload_end();
472 error = -EEXIST;
473 goto out_unwind;
474 }
475 spin_unlock(&mp->m_perag_lock);
476 radix_tree_preload_end();
477 }
478
479 /*
480 * If we mount with the inode64 option, or no inode overflows
481 * the legacy 32-bit address space clear the inode32 option.
482 */
483 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
484 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
485
486 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
487 mp->m_flags |= XFS_MOUNT_32BITINODES;
488 else
489 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
490
491 if (mp->m_flags & XFS_MOUNT_32BITINODES)
492 index = xfs_set_inode32(mp);
493 else
494 index = xfs_set_inode64(mp);
495
496 if (maxagi)
497 *maxagi = index;
498 return 0;
499
500 out_unwind:
501 kmem_free(pag);
502 for (; index > first_initialised; index--) {
503 pag = radix_tree_delete(&mp->m_perag_tree, index);
504 kmem_free(pag);
505 }
506 return error;
507 }
508
509 void
510 xfs_sb_from_disk(
511 struct xfs_sb *to,
512 xfs_dsb_t *from)
513 {
514 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
515 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
516 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
517 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
518 to->sb_rextents = be64_to_cpu(from->sb_rextents);
519 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
520 to->sb_logstart = be64_to_cpu(from->sb_logstart);
521 to->sb_rootino = be64_to_cpu(from->sb_rootino);
522 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
523 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
524 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
525 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
526 to->sb_agcount = be32_to_cpu(from->sb_agcount);
527 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
528 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
529 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
530 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
531 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
532 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
533 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
534 to->sb_blocklog = from->sb_blocklog;
535 to->sb_sectlog = from->sb_sectlog;
536 to->sb_inodelog = from->sb_inodelog;
537 to->sb_inopblog = from->sb_inopblog;
538 to->sb_agblklog = from->sb_agblklog;
539 to->sb_rextslog = from->sb_rextslog;
540 to->sb_inprogress = from->sb_inprogress;
541 to->sb_imax_pct = from->sb_imax_pct;
542 to->sb_icount = be64_to_cpu(from->sb_icount);
543 to->sb_ifree = be64_to_cpu(from->sb_ifree);
544 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
545 to->sb_frextents = be64_to_cpu(from->sb_frextents);
546 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
547 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
548 to->sb_qflags = be16_to_cpu(from->sb_qflags);
549 to->sb_flags = from->sb_flags;
550 to->sb_shared_vn = from->sb_shared_vn;
551 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
552 to->sb_unit = be32_to_cpu(from->sb_unit);
553 to->sb_width = be32_to_cpu(from->sb_width);
554 to->sb_dirblklog = from->sb_dirblklog;
555 to->sb_logsectlog = from->sb_logsectlog;
556 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
557 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
558 to->sb_features2 = be32_to_cpu(from->sb_features2);
559 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
560 }
561
562 /*
563 * Copy in core superblock to ondisk one.
564 *
565 * The fields argument is mask of superblock fields to copy.
566 */
567 void
568 xfs_sb_to_disk(
569 xfs_dsb_t *to,
570 xfs_sb_t *from,
571 __int64_t fields)
572 {
573 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
574 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
575 xfs_sb_field_t f;
576 int first;
577 int size;
578
579 ASSERT(fields);
580 if (!fields)
581 return;
582
583 while (fields) {
584 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
585 first = xfs_sb_info[f].offset;
586 size = xfs_sb_info[f + 1].offset - first;
587
588 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
589
590 if (size == 1 || xfs_sb_info[f].type == 1) {
591 memcpy(to_ptr + first, from_ptr + first, size);
592 } else {
593 switch (size) {
594 case 2:
595 *(__be16 *)(to_ptr + first) =
596 cpu_to_be16(*(__u16 *)(from_ptr + first));
597 break;
598 case 4:
599 *(__be32 *)(to_ptr + first) =
600 cpu_to_be32(*(__u32 *)(from_ptr + first));
601 break;
602 case 8:
603 *(__be64 *)(to_ptr + first) =
604 cpu_to_be64(*(__u64 *)(from_ptr + first));
605 break;
606 default:
607 ASSERT(0);
608 }
609 }
610
611 fields &= ~(1LL << f);
612 }
613 }
614
615 static void
616 xfs_sb_verify(
617 struct xfs_buf *bp)
618 {
619 struct xfs_mount *mp = bp->b_target->bt_mount;
620 struct xfs_sb sb;
621 int error;
622
623 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
624
625 /*
626 * Only check the in progress field for the primary superblock as
627 * mkfs.xfs doesn't clear it from secondary superblocks.
628 */
629 error = xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
630 if (error)
631 xfs_buf_ioerror(bp, error);
632 }
633
634 static void
635 xfs_sb_read_verify(
636 struct xfs_buf *bp)
637 {
638 xfs_sb_verify(bp);
639 }
640
641 /*
642 * We may be probed for a filesystem match, so we may not want to emit
643 * messages when the superblock buffer is not actually an XFS superblock.
644 * If we find an XFS superblock, the run a normal, noisy mount because we are
645 * really going to mount it and want to know about errors.
646 */
647 static void
648 xfs_sb_quiet_read_verify(
649 struct xfs_buf *bp)
650 {
651 struct xfs_sb sb;
652
653 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
654
655 if (sb.sb_magicnum == XFS_SB_MAGIC) {
656 /* XFS filesystem, verify noisily! */
657 xfs_sb_read_verify(bp);
658 return;
659 }
660 /* quietly fail */
661 xfs_buf_ioerror(bp, EWRONGFS);
662 }
663
664 static void
665 xfs_sb_write_verify(
666 struct xfs_buf *bp)
667 {
668 xfs_sb_verify(bp);
669 }
670
671 const struct xfs_buf_ops xfs_sb_buf_ops = {
672 .verify_read = xfs_sb_read_verify,
673 .verify_write = xfs_sb_write_verify,
674 };
675
676 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
677 .verify_read = xfs_sb_quiet_read_verify,
678 .verify_write = xfs_sb_write_verify,
679 };
680
681 /*
682 * xfs_readsb
683 *
684 * Does the initial read of the superblock.
685 */
686 int
687 xfs_readsb(xfs_mount_t *mp, int flags)
688 {
689 unsigned int sector_size;
690 xfs_buf_t *bp;
691 int error;
692 int loud = !(flags & XFS_MFSI_QUIET);
693
694 ASSERT(mp->m_sb_bp == NULL);
695 ASSERT(mp->m_ddev_targp != NULL);
696
697 /*
698 * Allocate a (locked) buffer to hold the superblock.
699 * This will be kept around at all times to optimize
700 * access to the superblock.
701 */
702 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
703
704 reread:
705 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
706 BTOBB(sector_size), 0,
707 loud ? &xfs_sb_buf_ops
708 : &xfs_sb_quiet_buf_ops);
709 if (!bp) {
710 if (loud)
711 xfs_warn(mp, "SB buffer read failed");
712 return EIO;
713 }
714 if (bp->b_error) {
715 error = bp->b_error;
716 if (loud)
717 xfs_warn(mp, "SB validate failed");
718 goto release_buf;
719 }
720
721 /*
722 * Initialize the mount structure from the superblock.
723 */
724 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
725
726 /*
727 * We must be able to do sector-sized and sector-aligned IO.
728 */
729 if (sector_size > mp->m_sb.sb_sectsize) {
730 if (loud)
731 xfs_warn(mp, "device supports %u byte sectors (not %u)",
732 sector_size, mp->m_sb.sb_sectsize);
733 error = ENOSYS;
734 goto release_buf;
735 }
736
737 /*
738 * If device sector size is smaller than the superblock size,
739 * re-read the superblock so the buffer is correctly sized.
740 */
741 if (sector_size < mp->m_sb.sb_sectsize) {
742 xfs_buf_relse(bp);
743 sector_size = mp->m_sb.sb_sectsize;
744 goto reread;
745 }
746
747 /* Initialize per-cpu counters */
748 xfs_icsb_reinit_counters(mp);
749
750 mp->m_sb_bp = bp;
751 xfs_buf_unlock(bp);
752 return 0;
753
754 release_buf:
755 xfs_buf_relse(bp);
756 return error;
757 }
758
759
760 /*
761 * xfs_mount_common
762 *
763 * Mount initialization code establishing various mount
764 * fields from the superblock associated with the given
765 * mount structure
766 */
767 STATIC void
768 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
769 {
770 mp->m_agfrotor = mp->m_agirotor = 0;
771 spin_lock_init(&mp->m_agirotor_lock);
772 mp->m_maxagi = mp->m_sb.sb_agcount;
773 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
774 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
775 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
776 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
777 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
778 mp->m_blockmask = sbp->sb_blocksize - 1;
779 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
780 mp->m_blockwmask = mp->m_blockwsize - 1;
781
782 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
783 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
784 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
785 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
786
787 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
788 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
789 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
790 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
791
792 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
793 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
794 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
795 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
796
797 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
798 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
799 sbp->sb_inopblock);
800 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
801 }
802
803 /*
804 * xfs_initialize_perag_data
805 *
806 * Read in each per-ag structure so we can count up the number of
807 * allocated inodes, free inodes and used filesystem blocks as this
808 * information is no longer persistent in the superblock. Once we have
809 * this information, write it into the in-core superblock structure.
810 */
811 STATIC int
812 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
813 {
814 xfs_agnumber_t index;
815 xfs_perag_t *pag;
816 xfs_sb_t *sbp = &mp->m_sb;
817 uint64_t ifree = 0;
818 uint64_t ialloc = 0;
819 uint64_t bfree = 0;
820 uint64_t bfreelst = 0;
821 uint64_t btree = 0;
822 int error;
823
824 for (index = 0; index < agcount; index++) {
825 /*
826 * read the agf, then the agi. This gets us
827 * all the information we need and populates the
828 * per-ag structures for us.
829 */
830 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
831 if (error)
832 return error;
833
834 error = xfs_ialloc_pagi_init(mp, NULL, index);
835 if (error)
836 return error;
837 pag = xfs_perag_get(mp, index);
838 ifree += pag->pagi_freecount;
839 ialloc += pag->pagi_count;
840 bfree += pag->pagf_freeblks;
841 bfreelst += pag->pagf_flcount;
842 btree += pag->pagf_btreeblks;
843 xfs_perag_put(pag);
844 }
845 /*
846 * Overwrite incore superblock counters with just-read data
847 */
848 spin_lock(&mp->m_sb_lock);
849 sbp->sb_ifree = ifree;
850 sbp->sb_icount = ialloc;
851 sbp->sb_fdblocks = bfree + bfreelst + btree;
852 spin_unlock(&mp->m_sb_lock);
853
854 /* Fixup the per-cpu counters as well. */
855 xfs_icsb_reinit_counters(mp);
856
857 return 0;
858 }
859
860 /*
861 * Update alignment values based on mount options and sb values
862 */
863 STATIC int
864 xfs_update_alignment(xfs_mount_t *mp)
865 {
866 xfs_sb_t *sbp = &(mp->m_sb);
867
868 if (mp->m_dalign) {
869 /*
870 * If stripe unit and stripe width are not multiples
871 * of the fs blocksize turn off alignment.
872 */
873 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
874 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
875 if (mp->m_flags & XFS_MOUNT_RETERR) {
876 xfs_warn(mp, "alignment check failed: "
877 "(sunit/swidth vs. blocksize)");
878 return XFS_ERROR(EINVAL);
879 }
880 mp->m_dalign = mp->m_swidth = 0;
881 } else {
882 /*
883 * Convert the stripe unit and width to FSBs.
884 */
885 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
886 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
887 if (mp->m_flags & XFS_MOUNT_RETERR) {
888 xfs_warn(mp, "alignment check failed: "
889 "(sunit/swidth vs. ag size)");
890 return XFS_ERROR(EINVAL);
891 }
892 xfs_warn(mp,
893 "stripe alignment turned off: sunit(%d)/swidth(%d) "
894 "incompatible with agsize(%d)",
895 mp->m_dalign, mp->m_swidth,
896 sbp->sb_agblocks);
897
898 mp->m_dalign = 0;
899 mp->m_swidth = 0;
900 } else if (mp->m_dalign) {
901 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
902 } else {
903 if (mp->m_flags & XFS_MOUNT_RETERR) {
904 xfs_warn(mp, "alignment check failed: "
905 "sunit(%d) less than bsize(%d)",
906 mp->m_dalign,
907 mp->m_blockmask +1);
908 return XFS_ERROR(EINVAL);
909 }
910 mp->m_swidth = 0;
911 }
912 }
913
914 /*
915 * Update superblock with new values
916 * and log changes
917 */
918 if (xfs_sb_version_hasdalign(sbp)) {
919 if (sbp->sb_unit != mp->m_dalign) {
920 sbp->sb_unit = mp->m_dalign;
921 mp->m_update_flags |= XFS_SB_UNIT;
922 }
923 if (sbp->sb_width != mp->m_swidth) {
924 sbp->sb_width = mp->m_swidth;
925 mp->m_update_flags |= XFS_SB_WIDTH;
926 }
927 }
928 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
929 xfs_sb_version_hasdalign(&mp->m_sb)) {
930 mp->m_dalign = sbp->sb_unit;
931 mp->m_swidth = sbp->sb_width;
932 }
933
934 return 0;
935 }
936
937 /*
938 * Set the maximum inode count for this filesystem
939 */
940 STATIC void
941 xfs_set_maxicount(xfs_mount_t *mp)
942 {
943 xfs_sb_t *sbp = &(mp->m_sb);
944 __uint64_t icount;
945
946 if (sbp->sb_imax_pct) {
947 /*
948 * Make sure the maximum inode count is a multiple
949 * of the units we allocate inodes in.
950 */
951 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
952 do_div(icount, 100);
953 do_div(icount, mp->m_ialloc_blks);
954 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
955 sbp->sb_inopblog;
956 } else {
957 mp->m_maxicount = 0;
958 }
959 }
960
961 /*
962 * Set the default minimum read and write sizes unless
963 * already specified in a mount option.
964 * We use smaller I/O sizes when the file system
965 * is being used for NFS service (wsync mount option).
966 */
967 STATIC void
968 xfs_set_rw_sizes(xfs_mount_t *mp)
969 {
970 xfs_sb_t *sbp = &(mp->m_sb);
971 int readio_log, writeio_log;
972
973 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
974 if (mp->m_flags & XFS_MOUNT_WSYNC) {
975 readio_log = XFS_WSYNC_READIO_LOG;
976 writeio_log = XFS_WSYNC_WRITEIO_LOG;
977 } else {
978 readio_log = XFS_READIO_LOG_LARGE;
979 writeio_log = XFS_WRITEIO_LOG_LARGE;
980 }
981 } else {
982 readio_log = mp->m_readio_log;
983 writeio_log = mp->m_writeio_log;
984 }
985
986 if (sbp->sb_blocklog > readio_log) {
987 mp->m_readio_log = sbp->sb_blocklog;
988 } else {
989 mp->m_readio_log = readio_log;
990 }
991 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
992 if (sbp->sb_blocklog > writeio_log) {
993 mp->m_writeio_log = sbp->sb_blocklog;
994 } else {
995 mp->m_writeio_log = writeio_log;
996 }
997 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
998 }
999
1000 /*
1001 * precalculate the low space thresholds for dynamic speculative preallocation.
1002 */
1003 void
1004 xfs_set_low_space_thresholds(
1005 struct xfs_mount *mp)
1006 {
1007 int i;
1008
1009 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1010 __uint64_t space = mp->m_sb.sb_dblocks;
1011
1012 do_div(space, 100);
1013 mp->m_low_space[i] = space * (i + 1);
1014 }
1015 }
1016
1017
1018 /*
1019 * Set whether we're using inode alignment.
1020 */
1021 STATIC void
1022 xfs_set_inoalignment(xfs_mount_t *mp)
1023 {
1024 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1025 mp->m_sb.sb_inoalignmt >=
1026 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1027 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1028 else
1029 mp->m_inoalign_mask = 0;
1030 /*
1031 * If we are using stripe alignment, check whether
1032 * the stripe unit is a multiple of the inode alignment
1033 */
1034 if (mp->m_dalign && mp->m_inoalign_mask &&
1035 !(mp->m_dalign & mp->m_inoalign_mask))
1036 mp->m_sinoalign = mp->m_dalign;
1037 else
1038 mp->m_sinoalign = 0;
1039 }
1040
1041 /*
1042 * Check that the data (and log if separate) are an ok size.
1043 */
1044 STATIC int
1045 xfs_check_sizes(xfs_mount_t *mp)
1046 {
1047 xfs_buf_t *bp;
1048 xfs_daddr_t d;
1049
1050 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1051 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1052 xfs_warn(mp, "filesystem size mismatch detected");
1053 return XFS_ERROR(EFBIG);
1054 }
1055 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1056 d - XFS_FSS_TO_BB(mp, 1),
1057 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1058 if (!bp) {
1059 xfs_warn(mp, "last sector read failed");
1060 return EIO;
1061 }
1062 xfs_buf_relse(bp);
1063
1064 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1065 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1066 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1067 xfs_warn(mp, "log size mismatch detected");
1068 return XFS_ERROR(EFBIG);
1069 }
1070 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1071 d - XFS_FSB_TO_BB(mp, 1),
1072 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1073 if (!bp) {
1074 xfs_warn(mp, "log device read failed");
1075 return EIO;
1076 }
1077 xfs_buf_relse(bp);
1078 }
1079 return 0;
1080 }
1081
1082 /*
1083 * Clear the quotaflags in memory and in the superblock.
1084 */
1085 int
1086 xfs_mount_reset_sbqflags(
1087 struct xfs_mount *mp)
1088 {
1089 int error;
1090 struct xfs_trans *tp;
1091
1092 mp->m_qflags = 0;
1093
1094 /*
1095 * It is OK to look at sb_qflags here in mount path,
1096 * without m_sb_lock.
1097 */
1098 if (mp->m_sb.sb_qflags == 0)
1099 return 0;
1100 spin_lock(&mp->m_sb_lock);
1101 mp->m_sb.sb_qflags = 0;
1102 spin_unlock(&mp->m_sb_lock);
1103
1104 /*
1105 * If the fs is readonly, let the incore superblock run
1106 * with quotas off but don't flush the update out to disk
1107 */
1108 if (mp->m_flags & XFS_MOUNT_RDONLY)
1109 return 0;
1110
1111 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1112 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1113 0, 0, XFS_DEFAULT_LOG_COUNT);
1114 if (error) {
1115 xfs_trans_cancel(tp, 0);
1116 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1117 return error;
1118 }
1119
1120 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1121 return xfs_trans_commit(tp, 0);
1122 }
1123
1124 __uint64_t
1125 xfs_default_resblks(xfs_mount_t *mp)
1126 {
1127 __uint64_t resblks;
1128
1129 /*
1130 * We default to 5% or 8192 fsbs of space reserved, whichever is
1131 * smaller. This is intended to cover concurrent allocation
1132 * transactions when we initially hit enospc. These each require a 4
1133 * block reservation. Hence by default we cover roughly 2000 concurrent
1134 * allocation reservations.
1135 */
1136 resblks = mp->m_sb.sb_dblocks;
1137 do_div(resblks, 20);
1138 resblks = min_t(__uint64_t, resblks, 8192);
1139 return resblks;
1140 }
1141
1142 /*
1143 * This function does the following on an initial mount of a file system:
1144 * - reads the superblock from disk and init the mount struct
1145 * - if we're a 32-bit kernel, do a size check on the superblock
1146 * so we don't mount terabyte filesystems
1147 * - init mount struct realtime fields
1148 * - allocate inode hash table for fs
1149 * - init directory manager
1150 * - perform recovery and init the log manager
1151 */
1152 int
1153 xfs_mountfs(
1154 xfs_mount_t *mp)
1155 {
1156 xfs_sb_t *sbp = &(mp->m_sb);
1157 xfs_inode_t *rip;
1158 __uint64_t resblks;
1159 uint quotamount = 0;
1160 uint quotaflags = 0;
1161 int error = 0;
1162
1163 xfs_mount_common(mp, sbp);
1164
1165 /*
1166 * Check for a mismatched features2 values. Older kernels
1167 * read & wrote into the wrong sb offset for sb_features2
1168 * on some platforms due to xfs_sb_t not being 64bit size aligned
1169 * when sb_features2 was added, which made older superblock
1170 * reading/writing routines swap it as a 64-bit value.
1171 *
1172 * For backwards compatibility, we make both slots equal.
1173 *
1174 * If we detect a mismatched field, we OR the set bits into the
1175 * existing features2 field in case it has already been modified; we
1176 * don't want to lose any features. We then update the bad location
1177 * with the ORed value so that older kernels will see any features2
1178 * flags, and mark the two fields as needing updates once the
1179 * transaction subsystem is online.
1180 */
1181 if (xfs_sb_has_mismatched_features2(sbp)) {
1182 xfs_warn(mp, "correcting sb_features alignment problem");
1183 sbp->sb_features2 |= sbp->sb_bad_features2;
1184 sbp->sb_bad_features2 = sbp->sb_features2;
1185 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1186
1187 /*
1188 * Re-check for ATTR2 in case it was found in bad_features2
1189 * slot.
1190 */
1191 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1192 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1193 mp->m_flags |= XFS_MOUNT_ATTR2;
1194 }
1195
1196 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1197 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1198 xfs_sb_version_removeattr2(&mp->m_sb);
1199 mp->m_update_flags |= XFS_SB_FEATURES2;
1200
1201 /* update sb_versionnum for the clearing of the morebits */
1202 if (!sbp->sb_features2)
1203 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1204 }
1205
1206 /*
1207 * Check if sb_agblocks is aligned at stripe boundary
1208 * If sb_agblocks is NOT aligned turn off m_dalign since
1209 * allocator alignment is within an ag, therefore ag has
1210 * to be aligned at stripe boundary.
1211 */
1212 error = xfs_update_alignment(mp);
1213 if (error)
1214 goto out;
1215
1216 xfs_alloc_compute_maxlevels(mp);
1217 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1218 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1219 xfs_ialloc_compute_maxlevels(mp);
1220
1221 xfs_set_maxicount(mp);
1222
1223 error = xfs_uuid_mount(mp);
1224 if (error)
1225 goto out;
1226
1227 /*
1228 * Set the minimum read and write sizes
1229 */
1230 xfs_set_rw_sizes(mp);
1231
1232 /* set the low space thresholds for dynamic preallocation */
1233 xfs_set_low_space_thresholds(mp);
1234
1235 /*
1236 * Set the inode cluster size.
1237 * This may still be overridden by the file system
1238 * block size if it is larger than the chosen cluster size.
1239 */
1240 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1241
1242 /*
1243 * Set inode alignment fields
1244 */
1245 xfs_set_inoalignment(mp);
1246
1247 /*
1248 * Check that the data (and log if separate) are an ok size.
1249 */
1250 error = xfs_check_sizes(mp);
1251 if (error)
1252 goto out_remove_uuid;
1253
1254 /*
1255 * Initialize realtime fields in the mount structure
1256 */
1257 error = xfs_rtmount_init(mp);
1258 if (error) {
1259 xfs_warn(mp, "RT mount failed");
1260 goto out_remove_uuid;
1261 }
1262
1263 /*
1264 * Copies the low order bits of the timestamp and the randomly
1265 * set "sequence" number out of a UUID.
1266 */
1267 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1268
1269 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1270
1271 xfs_dir_mount(mp);
1272
1273 /*
1274 * Initialize the attribute manager's entries.
1275 */
1276 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1277
1278 /*
1279 * Initialize the precomputed transaction reservations values.
1280 */
1281 xfs_trans_init(mp);
1282
1283 /*
1284 * Allocate and initialize the per-ag data.
1285 */
1286 spin_lock_init(&mp->m_perag_lock);
1287 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1288 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1289 if (error) {
1290 xfs_warn(mp, "Failed per-ag init: %d", error);
1291 goto out_remove_uuid;
1292 }
1293
1294 if (!sbp->sb_logblocks) {
1295 xfs_warn(mp, "no log defined");
1296 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1297 error = XFS_ERROR(EFSCORRUPTED);
1298 goto out_free_perag;
1299 }
1300
1301 /*
1302 * log's mount-time initialization. Perform 1st part recovery if needed
1303 */
1304 error = xfs_log_mount(mp, mp->m_logdev_targp,
1305 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1306 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1307 if (error) {
1308 xfs_warn(mp, "log mount failed");
1309 goto out_fail_wait;
1310 }
1311
1312 /*
1313 * Now the log is mounted, we know if it was an unclean shutdown or
1314 * not. If it was, with the first phase of recovery has completed, we
1315 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1316 * but they are recovered transactionally in the second recovery phase
1317 * later.
1318 *
1319 * Hence we can safely re-initialise incore superblock counters from
1320 * the per-ag data. These may not be correct if the filesystem was not
1321 * cleanly unmounted, so we need to wait for recovery to finish before
1322 * doing this.
1323 *
1324 * If the filesystem was cleanly unmounted, then we can trust the
1325 * values in the superblock to be correct and we don't need to do
1326 * anything here.
1327 *
1328 * If we are currently making the filesystem, the initialisation will
1329 * fail as the perag data is in an undefined state.
1330 */
1331 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1332 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1333 !mp->m_sb.sb_inprogress) {
1334 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1335 if (error)
1336 goto out_fail_wait;
1337 }
1338
1339 /*
1340 * Get and sanity-check the root inode.
1341 * Save the pointer to it in the mount structure.
1342 */
1343 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1344 if (error) {
1345 xfs_warn(mp, "failed to read root inode");
1346 goto out_log_dealloc;
1347 }
1348
1349 ASSERT(rip != NULL);
1350
1351 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1352 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1353 (unsigned long long)rip->i_ino);
1354 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1355 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1356 mp);
1357 error = XFS_ERROR(EFSCORRUPTED);
1358 goto out_rele_rip;
1359 }
1360 mp->m_rootip = rip; /* save it */
1361
1362 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1363
1364 /*
1365 * Initialize realtime inode pointers in the mount structure
1366 */
1367 error = xfs_rtmount_inodes(mp);
1368 if (error) {
1369 /*
1370 * Free up the root inode.
1371 */
1372 xfs_warn(mp, "failed to read RT inodes");
1373 goto out_rele_rip;
1374 }
1375
1376 /*
1377 * If this is a read-only mount defer the superblock updates until
1378 * the next remount into writeable mode. Otherwise we would never
1379 * perform the update e.g. for the root filesystem.
1380 */
1381 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1382 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1383 if (error) {
1384 xfs_warn(mp, "failed to write sb changes");
1385 goto out_rtunmount;
1386 }
1387 }
1388
1389 /*
1390 * Initialise the XFS quota management subsystem for this mount
1391 */
1392 if (XFS_IS_QUOTA_RUNNING(mp)) {
1393 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1394 if (error)
1395 goto out_rtunmount;
1396 } else {
1397 ASSERT(!XFS_IS_QUOTA_ON(mp));
1398
1399 /*
1400 * If a file system had quotas running earlier, but decided to
1401 * mount without -o uquota/pquota/gquota options, revoke the
1402 * quotachecked license.
1403 */
1404 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1405 xfs_notice(mp, "resetting quota flags");
1406 error = xfs_mount_reset_sbqflags(mp);
1407 if (error)
1408 return error;
1409 }
1410 }
1411
1412 /*
1413 * Finish recovering the file system. This part needed to be
1414 * delayed until after the root and real-time bitmap inodes
1415 * were consistently read in.
1416 */
1417 error = xfs_log_mount_finish(mp);
1418 if (error) {
1419 xfs_warn(mp, "log mount finish failed");
1420 goto out_rtunmount;
1421 }
1422
1423 /*
1424 * Complete the quota initialisation, post-log-replay component.
1425 */
1426 if (quotamount) {
1427 ASSERT(mp->m_qflags == 0);
1428 mp->m_qflags = quotaflags;
1429
1430 xfs_qm_mount_quotas(mp);
1431 }
1432
1433 /*
1434 * Now we are mounted, reserve a small amount of unused space for
1435 * privileged transactions. This is needed so that transaction
1436 * space required for critical operations can dip into this pool
1437 * when at ENOSPC. This is needed for operations like create with
1438 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1439 * are not allowed to use this reserved space.
1440 *
1441 * This may drive us straight to ENOSPC on mount, but that implies
1442 * we were already there on the last unmount. Warn if this occurs.
1443 */
1444 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1445 resblks = xfs_default_resblks(mp);
1446 error = xfs_reserve_blocks(mp, &resblks, NULL);
1447 if (error)
1448 xfs_warn(mp,
1449 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1450 }
1451
1452 return 0;
1453
1454 out_rtunmount:
1455 xfs_rtunmount_inodes(mp);
1456 out_rele_rip:
1457 IRELE(rip);
1458 out_log_dealloc:
1459 xfs_log_unmount(mp);
1460 out_fail_wait:
1461 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1462 xfs_wait_buftarg(mp->m_logdev_targp);
1463 xfs_wait_buftarg(mp->m_ddev_targp);
1464 out_free_perag:
1465 xfs_free_perag(mp);
1466 out_remove_uuid:
1467 xfs_uuid_unmount(mp);
1468 out:
1469 return error;
1470 }
1471
1472 /*
1473 * This flushes out the inodes,dquots and the superblock, unmounts the
1474 * log and makes sure that incore structures are freed.
1475 */
1476 void
1477 xfs_unmountfs(
1478 struct xfs_mount *mp)
1479 {
1480 __uint64_t resblks;
1481 int error;
1482
1483 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1484
1485 xfs_qm_unmount_quotas(mp);
1486 xfs_rtunmount_inodes(mp);
1487 IRELE(mp->m_rootip);
1488
1489 /*
1490 * We can potentially deadlock here if we have an inode cluster
1491 * that has been freed has its buffer still pinned in memory because
1492 * the transaction is still sitting in a iclog. The stale inodes
1493 * on that buffer will have their flush locks held until the
1494 * transaction hits the disk and the callbacks run. the inode
1495 * flush takes the flush lock unconditionally and with nothing to
1496 * push out the iclog we will never get that unlocked. hence we
1497 * need to force the log first.
1498 */
1499 xfs_log_force(mp, XFS_LOG_SYNC);
1500
1501 /*
1502 * Flush all pending changes from the AIL.
1503 */
1504 xfs_ail_push_all_sync(mp->m_ail);
1505
1506 /*
1507 * And reclaim all inodes. At this point there should be no dirty
1508 * inodes and none should be pinned or locked, but use synchronous
1509 * reclaim just to be sure. We can stop background inode reclaim
1510 * here as well if it is still running.
1511 */
1512 cancel_delayed_work_sync(&mp->m_reclaim_work);
1513 xfs_reclaim_inodes(mp, SYNC_WAIT);
1514
1515 xfs_qm_unmount(mp);
1516
1517 /*
1518 * Unreserve any blocks we have so that when we unmount we don't account
1519 * the reserved free space as used. This is really only necessary for
1520 * lazy superblock counting because it trusts the incore superblock
1521 * counters to be absolutely correct on clean unmount.
1522 *
1523 * We don't bother correcting this elsewhere for lazy superblock
1524 * counting because on mount of an unclean filesystem we reconstruct the
1525 * correct counter value and this is irrelevant.
1526 *
1527 * For non-lazy counter filesystems, this doesn't matter at all because
1528 * we only every apply deltas to the superblock and hence the incore
1529 * value does not matter....
1530 */
1531 resblks = 0;
1532 error = xfs_reserve_blocks(mp, &resblks, NULL);
1533 if (error)
1534 xfs_warn(mp, "Unable to free reserved block pool. "
1535 "Freespace may not be correct on next mount.");
1536
1537 error = xfs_log_sbcount(mp);
1538 if (error)
1539 xfs_warn(mp, "Unable to update superblock counters. "
1540 "Freespace may not be correct on next mount.");
1541
1542 xfs_log_unmount(mp);
1543 xfs_uuid_unmount(mp);
1544
1545 #if defined(DEBUG)
1546 xfs_errortag_clearall(mp, 0);
1547 #endif
1548 xfs_free_perag(mp);
1549 }
1550
1551 int
1552 xfs_fs_writable(xfs_mount_t *mp)
1553 {
1554 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1555 (mp->m_flags & XFS_MOUNT_RDONLY));
1556 }
1557
1558 /*
1559 * xfs_log_sbcount
1560 *
1561 * Sync the superblock counters to disk.
1562 *
1563 * Note this code can be called during the process of freezing, so
1564 * we may need to use the transaction allocator which does not
1565 * block when the transaction subsystem is in its frozen state.
1566 */
1567 int
1568 xfs_log_sbcount(xfs_mount_t *mp)
1569 {
1570 xfs_trans_t *tp;
1571 int error;
1572
1573 if (!xfs_fs_writable(mp))
1574 return 0;
1575
1576 xfs_icsb_sync_counters(mp, 0);
1577
1578 /*
1579 * we don't need to do this if we are updating the superblock
1580 * counters on every modification.
1581 */
1582 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1583 return 0;
1584
1585 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1586 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1587 XFS_DEFAULT_LOG_COUNT);
1588 if (error) {
1589 xfs_trans_cancel(tp, 0);
1590 return error;
1591 }
1592
1593 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1594 xfs_trans_set_sync(tp);
1595 error = xfs_trans_commit(tp, 0);
1596 return error;
1597 }
1598
1599 /*
1600 * xfs_mod_sb() can be used to copy arbitrary changes to the
1601 * in-core superblock into the superblock buffer to be logged.
1602 * It does not provide the higher level of locking that is
1603 * needed to protect the in-core superblock from concurrent
1604 * access.
1605 */
1606 void
1607 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1608 {
1609 xfs_buf_t *bp;
1610 int first;
1611 int last;
1612 xfs_mount_t *mp;
1613 xfs_sb_field_t f;
1614
1615 ASSERT(fields);
1616 if (!fields)
1617 return;
1618 mp = tp->t_mountp;
1619 bp = xfs_trans_getsb(tp, mp, 0);
1620 first = sizeof(xfs_sb_t);
1621 last = 0;
1622
1623 /* translate/copy */
1624
1625 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1626
1627 /* find modified range */
1628 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1629 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1630 last = xfs_sb_info[f + 1].offset - 1;
1631
1632 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1633 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1634 first = xfs_sb_info[f].offset;
1635
1636 xfs_trans_log_buf(tp, bp, first, last);
1637 }
1638
1639
1640 /*
1641 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1642 * a delta to a specified field in the in-core superblock. Simply
1643 * switch on the field indicated and apply the delta to that field.
1644 * Fields are not allowed to dip below zero, so if the delta would
1645 * do this do not apply it and return EINVAL.
1646 *
1647 * The m_sb_lock must be held when this routine is called.
1648 */
1649 STATIC int
1650 xfs_mod_incore_sb_unlocked(
1651 xfs_mount_t *mp,
1652 xfs_sb_field_t field,
1653 int64_t delta,
1654 int rsvd)
1655 {
1656 int scounter; /* short counter for 32 bit fields */
1657 long long lcounter; /* long counter for 64 bit fields */
1658 long long res_used, rem;
1659
1660 /*
1661 * With the in-core superblock spin lock held, switch
1662 * on the indicated field. Apply the delta to the
1663 * proper field. If the fields value would dip below
1664 * 0, then do not apply the delta and return EINVAL.
1665 */
1666 switch (field) {
1667 case XFS_SBS_ICOUNT:
1668 lcounter = (long long)mp->m_sb.sb_icount;
1669 lcounter += delta;
1670 if (lcounter < 0) {
1671 ASSERT(0);
1672 return XFS_ERROR(EINVAL);
1673 }
1674 mp->m_sb.sb_icount = lcounter;
1675 return 0;
1676 case XFS_SBS_IFREE:
1677 lcounter = (long long)mp->m_sb.sb_ifree;
1678 lcounter += delta;
1679 if (lcounter < 0) {
1680 ASSERT(0);
1681 return XFS_ERROR(EINVAL);
1682 }
1683 mp->m_sb.sb_ifree = lcounter;
1684 return 0;
1685 case XFS_SBS_FDBLOCKS:
1686 lcounter = (long long)
1687 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1688 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1689
1690 if (delta > 0) { /* Putting blocks back */
1691 if (res_used > delta) {
1692 mp->m_resblks_avail += delta;
1693 } else {
1694 rem = delta - res_used;
1695 mp->m_resblks_avail = mp->m_resblks;
1696 lcounter += rem;
1697 }
1698 } else { /* Taking blocks away */
1699 lcounter += delta;
1700 if (lcounter >= 0) {
1701 mp->m_sb.sb_fdblocks = lcounter +
1702 XFS_ALLOC_SET_ASIDE(mp);
1703 return 0;
1704 }
1705
1706 /*
1707 * We are out of blocks, use any available reserved
1708 * blocks if were allowed to.
1709 */
1710 if (!rsvd)
1711 return XFS_ERROR(ENOSPC);
1712
1713 lcounter = (long long)mp->m_resblks_avail + delta;
1714 if (lcounter >= 0) {
1715 mp->m_resblks_avail = lcounter;
1716 return 0;
1717 }
1718 printk_once(KERN_WARNING
1719 "Filesystem \"%s\": reserve blocks depleted! "
1720 "Consider increasing reserve pool size.",
1721 mp->m_fsname);
1722 return XFS_ERROR(ENOSPC);
1723 }
1724
1725 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1726 return 0;
1727 case XFS_SBS_FREXTENTS:
1728 lcounter = (long long)mp->m_sb.sb_frextents;
1729 lcounter += delta;
1730 if (lcounter < 0) {
1731 return XFS_ERROR(ENOSPC);
1732 }
1733 mp->m_sb.sb_frextents = lcounter;
1734 return 0;
1735 case XFS_SBS_DBLOCKS:
1736 lcounter = (long long)mp->m_sb.sb_dblocks;
1737 lcounter += delta;
1738 if (lcounter < 0) {
1739 ASSERT(0);
1740 return XFS_ERROR(EINVAL);
1741 }
1742 mp->m_sb.sb_dblocks = lcounter;
1743 return 0;
1744 case XFS_SBS_AGCOUNT:
1745 scounter = mp->m_sb.sb_agcount;
1746 scounter += delta;
1747 if (scounter < 0) {
1748 ASSERT(0);
1749 return XFS_ERROR(EINVAL);
1750 }
1751 mp->m_sb.sb_agcount = scounter;
1752 return 0;
1753 case XFS_SBS_IMAX_PCT:
1754 scounter = mp->m_sb.sb_imax_pct;
1755 scounter += delta;
1756 if (scounter < 0) {
1757 ASSERT(0);
1758 return XFS_ERROR(EINVAL);
1759 }
1760 mp->m_sb.sb_imax_pct = scounter;
1761 return 0;
1762 case XFS_SBS_REXTSIZE:
1763 scounter = mp->m_sb.sb_rextsize;
1764 scounter += delta;
1765 if (scounter < 0) {
1766 ASSERT(0);
1767 return XFS_ERROR(EINVAL);
1768 }
1769 mp->m_sb.sb_rextsize = scounter;
1770 return 0;
1771 case XFS_SBS_RBMBLOCKS:
1772 scounter = mp->m_sb.sb_rbmblocks;
1773 scounter += delta;
1774 if (scounter < 0) {
1775 ASSERT(0);
1776 return XFS_ERROR(EINVAL);
1777 }
1778 mp->m_sb.sb_rbmblocks = scounter;
1779 return 0;
1780 case XFS_SBS_RBLOCKS:
1781 lcounter = (long long)mp->m_sb.sb_rblocks;
1782 lcounter += delta;
1783 if (lcounter < 0) {
1784 ASSERT(0);
1785 return XFS_ERROR(EINVAL);
1786 }
1787 mp->m_sb.sb_rblocks = lcounter;
1788 return 0;
1789 case XFS_SBS_REXTENTS:
1790 lcounter = (long long)mp->m_sb.sb_rextents;
1791 lcounter += delta;
1792 if (lcounter < 0) {
1793 ASSERT(0);
1794 return XFS_ERROR(EINVAL);
1795 }
1796 mp->m_sb.sb_rextents = lcounter;
1797 return 0;
1798 case XFS_SBS_REXTSLOG:
1799 scounter = mp->m_sb.sb_rextslog;
1800 scounter += delta;
1801 if (scounter < 0) {
1802 ASSERT(0);
1803 return XFS_ERROR(EINVAL);
1804 }
1805 mp->m_sb.sb_rextslog = scounter;
1806 return 0;
1807 default:
1808 ASSERT(0);
1809 return XFS_ERROR(EINVAL);
1810 }
1811 }
1812
1813 /*
1814 * xfs_mod_incore_sb() is used to change a field in the in-core
1815 * superblock structure by the specified delta. This modification
1816 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1817 * routine to do the work.
1818 */
1819 int
1820 xfs_mod_incore_sb(
1821 struct xfs_mount *mp,
1822 xfs_sb_field_t field,
1823 int64_t delta,
1824 int rsvd)
1825 {
1826 int status;
1827
1828 #ifdef HAVE_PERCPU_SB
1829 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1830 #endif
1831 spin_lock(&mp->m_sb_lock);
1832 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1833 spin_unlock(&mp->m_sb_lock);
1834
1835 return status;
1836 }
1837
1838 /*
1839 * Change more than one field in the in-core superblock structure at a time.
1840 *
1841 * The fields and changes to those fields are specified in the array of
1842 * xfs_mod_sb structures passed in. Either all of the specified deltas
1843 * will be applied or none of them will. If any modified field dips below 0,
1844 * then all modifications will be backed out and EINVAL will be returned.
1845 *
1846 * Note that this function may not be used for the superblock values that
1847 * are tracked with the in-memory per-cpu counters - a direct call to
1848 * xfs_icsb_modify_counters is required for these.
1849 */
1850 int
1851 xfs_mod_incore_sb_batch(
1852 struct xfs_mount *mp,
1853 xfs_mod_sb_t *msb,
1854 uint nmsb,
1855 int rsvd)
1856 {
1857 xfs_mod_sb_t *msbp;
1858 int error = 0;
1859
1860 /*
1861 * Loop through the array of mod structures and apply each individually.
1862 * If any fail, then back out all those which have already been applied.
1863 * Do all of this within the scope of the m_sb_lock so that all of the
1864 * changes will be atomic.
1865 */
1866 spin_lock(&mp->m_sb_lock);
1867 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1868 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1869 msbp->msb_field > XFS_SBS_FDBLOCKS);
1870
1871 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1872 msbp->msb_delta, rsvd);
1873 if (error)
1874 goto unwind;
1875 }
1876 spin_unlock(&mp->m_sb_lock);
1877 return 0;
1878
1879 unwind:
1880 while (--msbp >= msb) {
1881 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1882 -msbp->msb_delta, rsvd);
1883 ASSERT(error == 0);
1884 }
1885 spin_unlock(&mp->m_sb_lock);
1886 return error;
1887 }
1888
1889 /*
1890 * xfs_getsb() is called to obtain the buffer for the superblock.
1891 * The buffer is returned locked and read in from disk.
1892 * The buffer should be released with a call to xfs_brelse().
1893 *
1894 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1895 * the superblock buffer if it can be locked without sleeping.
1896 * If it can't then we'll return NULL.
1897 */
1898 struct xfs_buf *
1899 xfs_getsb(
1900 struct xfs_mount *mp,
1901 int flags)
1902 {
1903 struct xfs_buf *bp = mp->m_sb_bp;
1904
1905 if (!xfs_buf_trylock(bp)) {
1906 if (flags & XBF_TRYLOCK)
1907 return NULL;
1908 xfs_buf_lock(bp);
1909 }
1910
1911 xfs_buf_hold(bp);
1912 ASSERT(XFS_BUF_ISDONE(bp));
1913 return bp;
1914 }
1915
1916 /*
1917 * Used to free the superblock along various error paths.
1918 */
1919 void
1920 xfs_freesb(
1921 struct xfs_mount *mp)
1922 {
1923 struct xfs_buf *bp = mp->m_sb_bp;
1924
1925 xfs_buf_lock(bp);
1926 mp->m_sb_bp = NULL;
1927 xfs_buf_relse(bp);
1928 }
1929
1930 /*
1931 * Used to log changes to the superblock unit and width fields which could
1932 * be altered by the mount options, as well as any potential sb_features2
1933 * fixup. Only the first superblock is updated.
1934 */
1935 int
1936 xfs_mount_log_sb(
1937 xfs_mount_t *mp,
1938 __int64_t fields)
1939 {
1940 xfs_trans_t *tp;
1941 int error;
1942
1943 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1944 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1945 XFS_SB_VERSIONNUM));
1946
1947 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1948 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1949 XFS_DEFAULT_LOG_COUNT);
1950 if (error) {
1951 xfs_trans_cancel(tp, 0);
1952 return error;
1953 }
1954 xfs_mod_sb(tp, fields);
1955 error = xfs_trans_commit(tp, 0);
1956 return error;
1957 }
1958
1959 /*
1960 * If the underlying (data/log/rt) device is readonly, there are some
1961 * operations that cannot proceed.
1962 */
1963 int
1964 xfs_dev_is_read_only(
1965 struct xfs_mount *mp,
1966 char *message)
1967 {
1968 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1969 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1970 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1971 xfs_notice(mp, "%s required on read-only device.", message);
1972 xfs_notice(mp, "write access unavailable, cannot proceed.");
1973 return EROFS;
1974 }
1975 return 0;
1976 }
1977
1978 #ifdef HAVE_PERCPU_SB
1979 /*
1980 * Per-cpu incore superblock counters
1981 *
1982 * Simple concept, difficult implementation
1983 *
1984 * Basically, replace the incore superblock counters with a distributed per cpu
1985 * counter for contended fields (e.g. free block count).
1986 *
1987 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1988 * hence needs to be accurately read when we are running low on space. Hence
1989 * there is a method to enable and disable the per-cpu counters based on how
1990 * much "stuff" is available in them.
1991 *
1992 * Basically, a counter is enabled if there is enough free resource to justify
1993 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1994 * ENOSPC), then we disable the counters to synchronise all callers and
1995 * re-distribute the available resources.
1996 *
1997 * If, once we redistributed the available resources, we still get a failure,
1998 * we disable the per-cpu counter and go through the slow path.
1999 *
2000 * The slow path is the current xfs_mod_incore_sb() function. This means that
2001 * when we disable a per-cpu counter, we need to drain its resources back to
2002 * the global superblock. We do this after disabling the counter to prevent
2003 * more threads from queueing up on the counter.
2004 *
2005 * Essentially, this means that we still need a lock in the fast path to enable
2006 * synchronisation between the global counters and the per-cpu counters. This
2007 * is not a problem because the lock will be local to a CPU almost all the time
2008 * and have little contention except when we get to ENOSPC conditions.
2009 *
2010 * Basically, this lock becomes a barrier that enables us to lock out the fast
2011 * path while we do things like enabling and disabling counters and
2012 * synchronising the counters.
2013 *
2014 * Locking rules:
2015 *
2016 * 1. m_sb_lock before picking up per-cpu locks
2017 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2018 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2019 * 4. modifying per-cpu counters requires holding per-cpu lock
2020 * 5. modifying global counters requires holding m_sb_lock
2021 * 6. enabling or disabling a counter requires holding the m_sb_lock
2022 * and _none_ of the per-cpu locks.
2023 *
2024 * Disabled counters are only ever re-enabled by a balance operation
2025 * that results in more free resources per CPU than a given threshold.
2026 * To ensure counters don't remain disabled, they are rebalanced when
2027 * the global resource goes above a higher threshold (i.e. some hysteresis
2028 * is present to prevent thrashing).
2029 */
2030
2031 #ifdef CONFIG_HOTPLUG_CPU
2032 /*
2033 * hot-plug CPU notifier support.
2034 *
2035 * We need a notifier per filesystem as we need to be able to identify
2036 * the filesystem to balance the counters out. This is achieved by
2037 * having a notifier block embedded in the xfs_mount_t and doing pointer
2038 * magic to get the mount pointer from the notifier block address.
2039 */
2040 STATIC int
2041 xfs_icsb_cpu_notify(
2042 struct notifier_block *nfb,
2043 unsigned long action,
2044 void *hcpu)
2045 {
2046 xfs_icsb_cnts_t *cntp;
2047 xfs_mount_t *mp;
2048
2049 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2050 cntp = (xfs_icsb_cnts_t *)
2051 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2052 switch (action) {
2053 case CPU_UP_PREPARE:
2054 case CPU_UP_PREPARE_FROZEN:
2055 /* Easy Case - initialize the area and locks, and
2056 * then rebalance when online does everything else for us. */
2057 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2058 break;
2059 case CPU_ONLINE:
2060 case CPU_ONLINE_FROZEN:
2061 xfs_icsb_lock(mp);
2062 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2063 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2064 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2065 xfs_icsb_unlock(mp);
2066 break;
2067 case CPU_DEAD:
2068 case CPU_DEAD_FROZEN:
2069 /* Disable all the counters, then fold the dead cpu's
2070 * count into the total on the global superblock and
2071 * re-enable the counters. */
2072 xfs_icsb_lock(mp);
2073 spin_lock(&mp->m_sb_lock);
2074 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2075 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2076 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2077
2078 mp->m_sb.sb_icount += cntp->icsb_icount;
2079 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2080 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2081
2082 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2083
2084 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2085 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2086 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2087 spin_unlock(&mp->m_sb_lock);
2088 xfs_icsb_unlock(mp);
2089 break;
2090 }
2091
2092 return NOTIFY_OK;
2093 }
2094 #endif /* CONFIG_HOTPLUG_CPU */
2095
2096 int
2097 xfs_icsb_init_counters(
2098 xfs_mount_t *mp)
2099 {
2100 xfs_icsb_cnts_t *cntp;
2101 int i;
2102
2103 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2104 if (mp->m_sb_cnts == NULL)
2105 return -ENOMEM;
2106
2107 #ifdef CONFIG_HOTPLUG_CPU
2108 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2109 mp->m_icsb_notifier.priority = 0;
2110 register_hotcpu_notifier(&mp->m_icsb_notifier);
2111 #endif /* CONFIG_HOTPLUG_CPU */
2112
2113 for_each_online_cpu(i) {
2114 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2115 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2116 }
2117
2118 mutex_init(&mp->m_icsb_mutex);
2119
2120 /*
2121 * start with all counters disabled so that the
2122 * initial balance kicks us off correctly
2123 */
2124 mp->m_icsb_counters = -1;
2125 return 0;
2126 }
2127
2128 void
2129 xfs_icsb_reinit_counters(
2130 xfs_mount_t *mp)
2131 {
2132 xfs_icsb_lock(mp);
2133 /*
2134 * start with all counters disabled so that the
2135 * initial balance kicks us off correctly
2136 */
2137 mp->m_icsb_counters = -1;
2138 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2139 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2140 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2141 xfs_icsb_unlock(mp);
2142 }
2143
2144 void
2145 xfs_icsb_destroy_counters(
2146 xfs_mount_t *mp)
2147 {
2148 if (mp->m_sb_cnts) {
2149 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2150 free_percpu(mp->m_sb_cnts);
2151 }
2152 mutex_destroy(&mp->m_icsb_mutex);
2153 }
2154
2155 STATIC void
2156 xfs_icsb_lock_cntr(
2157 xfs_icsb_cnts_t *icsbp)
2158 {
2159 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2160 ndelay(1000);
2161 }
2162 }
2163
2164 STATIC void
2165 xfs_icsb_unlock_cntr(
2166 xfs_icsb_cnts_t *icsbp)
2167 {
2168 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2169 }
2170
2171
2172 STATIC void
2173 xfs_icsb_lock_all_counters(
2174 xfs_mount_t *mp)
2175 {
2176 xfs_icsb_cnts_t *cntp;
2177 int i;
2178
2179 for_each_online_cpu(i) {
2180 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2181 xfs_icsb_lock_cntr(cntp);
2182 }
2183 }
2184
2185 STATIC void
2186 xfs_icsb_unlock_all_counters(
2187 xfs_mount_t *mp)
2188 {
2189 xfs_icsb_cnts_t *cntp;
2190 int i;
2191
2192 for_each_online_cpu(i) {
2193 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2194 xfs_icsb_unlock_cntr(cntp);
2195 }
2196 }
2197
2198 STATIC void
2199 xfs_icsb_count(
2200 xfs_mount_t *mp,
2201 xfs_icsb_cnts_t *cnt,
2202 int flags)
2203 {
2204 xfs_icsb_cnts_t *cntp;
2205 int i;
2206
2207 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2208
2209 if (!(flags & XFS_ICSB_LAZY_COUNT))
2210 xfs_icsb_lock_all_counters(mp);
2211
2212 for_each_online_cpu(i) {
2213 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2214 cnt->icsb_icount += cntp->icsb_icount;
2215 cnt->icsb_ifree += cntp->icsb_ifree;
2216 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2217 }
2218
2219 if (!(flags & XFS_ICSB_LAZY_COUNT))
2220 xfs_icsb_unlock_all_counters(mp);
2221 }
2222
2223 STATIC int
2224 xfs_icsb_counter_disabled(
2225 xfs_mount_t *mp,
2226 xfs_sb_field_t field)
2227 {
2228 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2229 return test_bit(field, &mp->m_icsb_counters);
2230 }
2231
2232 STATIC void
2233 xfs_icsb_disable_counter(
2234 xfs_mount_t *mp,
2235 xfs_sb_field_t field)
2236 {
2237 xfs_icsb_cnts_t cnt;
2238
2239 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2240
2241 /*
2242 * If we are already disabled, then there is nothing to do
2243 * here. We check before locking all the counters to avoid
2244 * the expensive lock operation when being called in the
2245 * slow path and the counter is already disabled. This is
2246 * safe because the only time we set or clear this state is under
2247 * the m_icsb_mutex.
2248 */
2249 if (xfs_icsb_counter_disabled(mp, field))
2250 return;
2251
2252 xfs_icsb_lock_all_counters(mp);
2253 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2254 /* drain back to superblock */
2255
2256 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2257 switch(field) {
2258 case XFS_SBS_ICOUNT:
2259 mp->m_sb.sb_icount = cnt.icsb_icount;
2260 break;
2261 case XFS_SBS_IFREE:
2262 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2263 break;
2264 case XFS_SBS_FDBLOCKS:
2265 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2266 break;
2267 default:
2268 BUG();
2269 }
2270 }
2271
2272 xfs_icsb_unlock_all_counters(mp);
2273 }
2274
2275 STATIC void
2276 xfs_icsb_enable_counter(
2277 xfs_mount_t *mp,
2278 xfs_sb_field_t field,
2279 uint64_t count,
2280 uint64_t resid)
2281 {
2282 xfs_icsb_cnts_t *cntp;
2283 int i;
2284
2285 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2286
2287 xfs_icsb_lock_all_counters(mp);
2288 for_each_online_cpu(i) {
2289 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2290 switch (field) {
2291 case XFS_SBS_ICOUNT:
2292 cntp->icsb_icount = count + resid;
2293 break;
2294 case XFS_SBS_IFREE:
2295 cntp->icsb_ifree = count + resid;
2296 break;
2297 case XFS_SBS_FDBLOCKS:
2298 cntp->icsb_fdblocks = count + resid;
2299 break;
2300 default:
2301 BUG();
2302 break;
2303 }
2304 resid = 0;
2305 }
2306 clear_bit(field, &mp->m_icsb_counters);
2307 xfs_icsb_unlock_all_counters(mp);
2308 }
2309
2310 void
2311 xfs_icsb_sync_counters_locked(
2312 xfs_mount_t *mp,
2313 int flags)
2314 {
2315 xfs_icsb_cnts_t cnt;
2316
2317 xfs_icsb_count(mp, &cnt, flags);
2318
2319 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2320 mp->m_sb.sb_icount = cnt.icsb_icount;
2321 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2322 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2323 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2324 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2325 }
2326
2327 /*
2328 * Accurate update of per-cpu counters to incore superblock
2329 */
2330 void
2331 xfs_icsb_sync_counters(
2332 xfs_mount_t *mp,
2333 int flags)
2334 {
2335 spin_lock(&mp->m_sb_lock);
2336 xfs_icsb_sync_counters_locked(mp, flags);
2337 spin_unlock(&mp->m_sb_lock);
2338 }
2339
2340 /*
2341 * Balance and enable/disable counters as necessary.
2342 *
2343 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2344 * chosen to be the same number as single on disk allocation chunk per CPU, and
2345 * free blocks is something far enough zero that we aren't going thrash when we
2346 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2347 * prevent looping endlessly when xfs_alloc_space asks for more than will
2348 * be distributed to a single CPU but each CPU has enough blocks to be
2349 * reenabled.
2350 *
2351 * Note that we can be called when counters are already disabled.
2352 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2353 * prevent locking every per-cpu counter needlessly.
2354 */
2355
2356 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2357 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2358 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2359 STATIC void
2360 xfs_icsb_balance_counter_locked(
2361 xfs_mount_t *mp,
2362 xfs_sb_field_t field,
2363 int min_per_cpu)
2364 {
2365 uint64_t count, resid;
2366 int weight = num_online_cpus();
2367 uint64_t min = (uint64_t)min_per_cpu;
2368
2369 /* disable counter and sync counter */
2370 xfs_icsb_disable_counter(mp, field);
2371
2372 /* update counters - first CPU gets residual*/
2373 switch (field) {
2374 case XFS_SBS_ICOUNT:
2375 count = mp->m_sb.sb_icount;
2376 resid = do_div(count, weight);
2377 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2378 return;
2379 break;
2380 case XFS_SBS_IFREE:
2381 count = mp->m_sb.sb_ifree;
2382 resid = do_div(count, weight);
2383 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2384 return;
2385 break;
2386 case XFS_SBS_FDBLOCKS:
2387 count = mp->m_sb.sb_fdblocks;
2388 resid = do_div(count, weight);
2389 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2390 return;
2391 break;
2392 default:
2393 BUG();
2394 count = resid = 0; /* quiet, gcc */
2395 break;
2396 }
2397
2398 xfs_icsb_enable_counter(mp, field, count, resid);
2399 }
2400
2401 STATIC void
2402 xfs_icsb_balance_counter(
2403 xfs_mount_t *mp,
2404 xfs_sb_field_t fields,
2405 int min_per_cpu)
2406 {
2407 spin_lock(&mp->m_sb_lock);
2408 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2409 spin_unlock(&mp->m_sb_lock);
2410 }
2411
2412 int
2413 xfs_icsb_modify_counters(
2414 xfs_mount_t *mp,
2415 xfs_sb_field_t field,
2416 int64_t delta,
2417 int rsvd)
2418 {
2419 xfs_icsb_cnts_t *icsbp;
2420 long long lcounter; /* long counter for 64 bit fields */
2421 int ret = 0;
2422
2423 might_sleep();
2424 again:
2425 preempt_disable();
2426 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2427
2428 /*
2429 * if the counter is disabled, go to slow path
2430 */
2431 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2432 goto slow_path;
2433 xfs_icsb_lock_cntr(icsbp);
2434 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2435 xfs_icsb_unlock_cntr(icsbp);
2436 goto slow_path;
2437 }
2438
2439 switch (field) {
2440 case XFS_SBS_ICOUNT:
2441 lcounter = icsbp->icsb_icount;
2442 lcounter += delta;
2443 if (unlikely(lcounter < 0))
2444 goto balance_counter;
2445 icsbp->icsb_icount = lcounter;
2446 break;
2447
2448 case XFS_SBS_IFREE:
2449 lcounter = icsbp->icsb_ifree;
2450 lcounter += delta;
2451 if (unlikely(lcounter < 0))
2452 goto balance_counter;
2453 icsbp->icsb_ifree = lcounter;
2454 break;
2455
2456 case XFS_SBS_FDBLOCKS:
2457 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2458
2459 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2460 lcounter += delta;
2461 if (unlikely(lcounter < 0))
2462 goto balance_counter;
2463 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2464 break;
2465 default:
2466 BUG();
2467 break;
2468 }
2469 xfs_icsb_unlock_cntr(icsbp);
2470 preempt_enable();
2471 return 0;
2472
2473 slow_path:
2474 preempt_enable();
2475
2476 /*
2477 * serialise with a mutex so we don't burn lots of cpu on
2478 * the superblock lock. We still need to hold the superblock
2479 * lock, however, when we modify the global structures.
2480 */
2481 xfs_icsb_lock(mp);
2482
2483 /*
2484 * Now running atomically.
2485 *
2486 * If the counter is enabled, someone has beaten us to rebalancing.
2487 * Drop the lock and try again in the fast path....
2488 */
2489 if (!(xfs_icsb_counter_disabled(mp, field))) {
2490 xfs_icsb_unlock(mp);
2491 goto again;
2492 }
2493
2494 /*
2495 * The counter is currently disabled. Because we are
2496 * running atomically here, we know a rebalance cannot
2497 * be in progress. Hence we can go straight to operating
2498 * on the global superblock. We do not call xfs_mod_incore_sb()
2499 * here even though we need to get the m_sb_lock. Doing so
2500 * will cause us to re-enter this function and deadlock.
2501 * Hence we get the m_sb_lock ourselves and then call
2502 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2503 * directly on the global counters.
2504 */
2505 spin_lock(&mp->m_sb_lock);
2506 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2507 spin_unlock(&mp->m_sb_lock);
2508
2509 /*
2510 * Now that we've modified the global superblock, we
2511 * may be able to re-enable the distributed counters
2512 * (e.g. lots of space just got freed). After that
2513 * we are done.
2514 */
2515 if (ret != ENOSPC)
2516 xfs_icsb_balance_counter(mp, field, 0);
2517 xfs_icsb_unlock(mp);
2518 return ret;
2519
2520 balance_counter:
2521 xfs_icsb_unlock_cntr(icsbp);
2522 preempt_enable();
2523
2524 /*
2525 * We may have multiple threads here if multiple per-cpu
2526 * counters run dry at the same time. This will mean we can
2527 * do more balances than strictly necessary but it is not
2528 * the common slowpath case.
2529 */
2530 xfs_icsb_lock(mp);
2531
2532 /*
2533 * running atomically.
2534 *
2535 * This will leave the counter in the correct state for future
2536 * accesses. After the rebalance, we simply try again and our retry
2537 * will either succeed through the fast path or slow path without
2538 * another balance operation being required.
2539 */
2540 xfs_icsb_balance_counter(mp, field, delta);
2541 xfs_icsb_unlock(mp);
2542 goto again;
2543 }
2544
2545 #endif