Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
49
50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void xlog_recover_check_summary(xlog_t *);
56 #else
57 #define xlog_recover_check_summary(log)
58 #endif
59
60
61 /*
62 * Sector aligned buffer routines for buffer create/read/write/access
63 */
64
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
69
70 xfs_buf_t *
71 xlog_get_bp(
72 xlog_t *log,
73 int nbblks)
74 {
75 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
77 XFS_ERROR_REPORT("xlog_get_bp(1)",
78 XFS_ERRLEVEL_HIGH, log->l_mp);
79 return NULL;
80 }
81
82 if (log->l_sectbb_log) {
83 if (nbblks > 1)
84 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
85 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
86 }
87 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
88 }
89
90 void
91 xlog_put_bp(
92 xfs_buf_t *bp)
93 {
94 xfs_buf_free(bp);
95 }
96
97
98 /*
99 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
100 */
101 int
102 xlog_bread(
103 xlog_t *log,
104 xfs_daddr_t blk_no,
105 int nbblks,
106 xfs_buf_t *bp)
107 {
108 int error;
109
110 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
111 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
112 XFS_ERROR_REPORT("xlog_bread(1)",
113 XFS_ERRLEVEL_HIGH, log->l_mp);
114 return EFSCORRUPTED;
115 }
116
117 if (log->l_sectbb_log) {
118 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
119 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
120 }
121
122 ASSERT(nbblks > 0);
123 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
124 ASSERT(bp);
125
126 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
127 XFS_BUF_READ(bp);
128 XFS_BUF_BUSY(bp);
129 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
130 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
131
132 xfsbdstrat(log->l_mp, bp);
133 error = xfs_iowait(bp);
134 if (error)
135 xfs_ioerror_alert("xlog_bread", log->l_mp,
136 bp, XFS_BUF_ADDR(bp));
137 return error;
138 }
139
140 /*
141 * Write out the buffer at the given block for the given number of blocks.
142 * The buffer is kept locked across the write and is returned locked.
143 * This can only be used for synchronous log writes.
144 */
145 STATIC int
146 xlog_bwrite(
147 xlog_t *log,
148 xfs_daddr_t blk_no,
149 int nbblks,
150 xfs_buf_t *bp)
151 {
152 int error;
153
154 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
156 XFS_ERROR_REPORT("xlog_bwrite(1)",
157 XFS_ERRLEVEL_HIGH, log->l_mp);
158 return EFSCORRUPTED;
159 }
160
161 if (log->l_sectbb_log) {
162 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
163 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
164 }
165
166 ASSERT(nbblks > 0);
167 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
168
169 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
170 XFS_BUF_ZEROFLAGS(bp);
171 XFS_BUF_BUSY(bp);
172 XFS_BUF_HOLD(bp);
173 XFS_BUF_PSEMA(bp, PRIBIO);
174 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
175 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
176
177 if ((error = xfs_bwrite(log->l_mp, bp)))
178 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
179 bp, XFS_BUF_ADDR(bp));
180 return error;
181 }
182
183 STATIC xfs_caddr_t
184 xlog_align(
185 xlog_t *log,
186 xfs_daddr_t blk_no,
187 int nbblks,
188 xfs_buf_t *bp)
189 {
190 xfs_caddr_t ptr;
191
192 if (!log->l_sectbb_log)
193 return XFS_BUF_PTR(bp);
194
195 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
196 ASSERT(XFS_BUF_SIZE(bp) >=
197 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
198 return ptr;
199 }
200
201 #ifdef DEBUG
202 /*
203 * dump debug superblock and log record information
204 */
205 STATIC void
206 xlog_header_check_dump(
207 xfs_mount_t *mp,
208 xlog_rec_header_t *head)
209 {
210 int b;
211
212 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
213 for (b = 0; b < 16; b++)
214 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
215 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
216 cmn_err(CE_DEBUG, " log : uuid = ");
217 for (b = 0; b < 16; b++)
218 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
219 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
220 }
221 #else
222 #define xlog_header_check_dump(mp, head)
223 #endif
224
225 /*
226 * check log record header for recovery
227 */
228 STATIC int
229 xlog_header_check_recover(
230 xfs_mount_t *mp,
231 xlog_rec_header_t *head)
232 {
233 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
234
235 /*
236 * IRIX doesn't write the h_fmt field and leaves it zeroed
237 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238 * a dirty log created in IRIX.
239 */
240 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
241 xlog_warn(
242 "XFS: dirty log written in incompatible format - can't recover");
243 xlog_header_check_dump(mp, head);
244 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245 XFS_ERRLEVEL_HIGH, mp);
246 return XFS_ERROR(EFSCORRUPTED);
247 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
248 xlog_warn(
249 "XFS: dirty log entry has mismatched uuid - can't recover");
250 xlog_header_check_dump(mp, head);
251 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252 XFS_ERRLEVEL_HIGH, mp);
253 return XFS_ERROR(EFSCORRUPTED);
254 }
255 return 0;
256 }
257
258 /*
259 * read the head block of the log and check the header
260 */
261 STATIC int
262 xlog_header_check_mount(
263 xfs_mount_t *mp,
264 xlog_rec_header_t *head)
265 {
266 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
267
268 if (uuid_is_nil(&head->h_fs_uuid)) {
269 /*
270 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271 * h_fs_uuid is nil, we assume this log was last mounted
272 * by IRIX and continue.
273 */
274 xlog_warn("XFS: nil uuid in log - IRIX style log");
275 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
276 xlog_warn("XFS: log has mismatched uuid - can't recover");
277 xlog_header_check_dump(mp, head);
278 XFS_ERROR_REPORT("xlog_header_check_mount",
279 XFS_ERRLEVEL_HIGH, mp);
280 return XFS_ERROR(EFSCORRUPTED);
281 }
282 return 0;
283 }
284
285 STATIC void
286 xlog_recover_iodone(
287 struct xfs_buf *bp)
288 {
289 if (XFS_BUF_GETERROR(bp)) {
290 /*
291 * We're not going to bother about retrying
292 * this during recovery. One strike!
293 */
294 xfs_ioerror_alert("xlog_recover_iodone",
295 bp->b_mount, bp, XFS_BUF_ADDR(bp));
296 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
297 }
298 bp->b_mount = NULL;
299 XFS_BUF_CLR_IODONE_FUNC(bp);
300 xfs_biodone(bp);
301 }
302
303 /*
304 * This routine finds (to an approximation) the first block in the physical
305 * log which contains the given cycle. It uses a binary search algorithm.
306 * Note that the algorithm can not be perfect because the disk will not
307 * necessarily be perfect.
308 */
309 STATIC int
310 xlog_find_cycle_start(
311 xlog_t *log,
312 xfs_buf_t *bp,
313 xfs_daddr_t first_blk,
314 xfs_daddr_t *last_blk,
315 uint cycle)
316 {
317 xfs_caddr_t offset;
318 xfs_daddr_t mid_blk;
319 uint mid_cycle;
320 int error;
321
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 while (mid_blk != first_blk && mid_blk != *last_blk) {
324 if ((error = xlog_bread(log, mid_blk, 1, bp)))
325 return error;
326 offset = xlog_align(log, mid_blk, 1, bp);
327 mid_cycle = xlog_get_cycle(offset);
328 if (mid_cycle == cycle) {
329 *last_blk = mid_blk;
330 /* last_half_cycle == mid_cycle */
331 } else {
332 first_blk = mid_blk;
333 /* first_half_cycle == mid_cycle */
334 }
335 mid_blk = BLK_AVG(first_blk, *last_blk);
336 }
337 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
338 (mid_blk == *last_blk && mid_blk-1 == first_blk));
339
340 return 0;
341 }
342
343 /*
344 * Check that the range of blocks does not contain the cycle number
345 * given. The scan needs to occur from front to back and the ptr into the
346 * region must be updated since a later routine will need to perform another
347 * test. If the region is completely good, we end up returning the same
348 * last block number.
349 *
350 * Set blkno to -1 if we encounter no errors. This is an invalid block number
351 * since we don't ever expect logs to get this large.
352 */
353 STATIC int
354 xlog_find_verify_cycle(
355 xlog_t *log,
356 xfs_daddr_t start_blk,
357 int nbblks,
358 uint stop_on_cycle_no,
359 xfs_daddr_t *new_blk)
360 {
361 xfs_daddr_t i, j;
362 uint cycle;
363 xfs_buf_t *bp;
364 xfs_daddr_t bufblks;
365 xfs_caddr_t buf = NULL;
366 int error = 0;
367
368 bufblks = 1 << ffs(nbblks);
369
370 while (!(bp = xlog_get_bp(log, bufblks))) {
371 /* can't get enough memory to do everything in one big buffer */
372 bufblks >>= 1;
373 if (bufblks <= log->l_sectbb_log)
374 return ENOMEM;
375 }
376
377 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
378 int bcount;
379
380 bcount = min(bufblks, (start_blk + nbblks - i));
381
382 if ((error = xlog_bread(log, i, bcount, bp)))
383 goto out;
384
385 buf = xlog_align(log, i, bcount, bp);
386 for (j = 0; j < bcount; j++) {
387 cycle = xlog_get_cycle(buf);
388 if (cycle == stop_on_cycle_no) {
389 *new_blk = i+j;
390 goto out;
391 }
392
393 buf += BBSIZE;
394 }
395 }
396
397 *new_blk = -1;
398
399 out:
400 xlog_put_bp(bp);
401 return error;
402 }
403
404 /*
405 * Potentially backup over partial log record write.
406 *
407 * In the typical case, last_blk is the number of the block directly after
408 * a good log record. Therefore, we subtract one to get the block number
409 * of the last block in the given buffer. extra_bblks contains the number
410 * of blocks we would have read on a previous read. This happens when the
411 * last log record is split over the end of the physical log.
412 *
413 * extra_bblks is the number of blocks potentially verified on a previous
414 * call to this routine.
415 */
416 STATIC int
417 xlog_find_verify_log_record(
418 xlog_t *log,
419 xfs_daddr_t start_blk,
420 xfs_daddr_t *last_blk,
421 int extra_bblks)
422 {
423 xfs_daddr_t i;
424 xfs_buf_t *bp;
425 xfs_caddr_t offset = NULL;
426 xlog_rec_header_t *head = NULL;
427 int error = 0;
428 int smallmem = 0;
429 int num_blks = *last_blk - start_blk;
430 int xhdrs;
431
432 ASSERT(start_blk != 0 || *last_blk != start_blk);
433
434 if (!(bp = xlog_get_bp(log, num_blks))) {
435 if (!(bp = xlog_get_bp(log, 1)))
436 return ENOMEM;
437 smallmem = 1;
438 } else {
439 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
440 goto out;
441 offset = xlog_align(log, start_blk, num_blks, bp);
442 offset += ((num_blks - 1) << BBSHIFT);
443 }
444
445 for (i = (*last_blk) - 1; i >= 0; i--) {
446 if (i < start_blk) {
447 /* valid log record not found */
448 xlog_warn(
449 "XFS: Log inconsistent (didn't find previous header)");
450 ASSERT(0);
451 error = XFS_ERROR(EIO);
452 goto out;
453 }
454
455 if (smallmem) {
456 if ((error = xlog_bread(log, i, 1, bp)))
457 goto out;
458 offset = xlog_align(log, i, 1, bp);
459 }
460
461 head = (xlog_rec_header_t *)offset;
462
463 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
464 break;
465
466 if (!smallmem)
467 offset -= BBSIZE;
468 }
469
470 /*
471 * We hit the beginning of the physical log & still no header. Return
472 * to caller. If caller can handle a return of -1, then this routine
473 * will be called again for the end of the physical log.
474 */
475 if (i == -1) {
476 error = -1;
477 goto out;
478 }
479
480 /*
481 * We have the final block of the good log (the first block
482 * of the log record _before_ the head. So we check the uuid.
483 */
484 if ((error = xlog_header_check_mount(log->l_mp, head)))
485 goto out;
486
487 /*
488 * We may have found a log record header before we expected one.
489 * last_blk will be the 1st block # with a given cycle #. We may end
490 * up reading an entire log record. In this case, we don't want to
491 * reset last_blk. Only when last_blk points in the middle of a log
492 * record do we update last_blk.
493 */
494 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
495 uint h_size = be32_to_cpu(head->h_size);
496
497 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
498 if (h_size % XLOG_HEADER_CYCLE_SIZE)
499 xhdrs++;
500 } else {
501 xhdrs = 1;
502 }
503
504 if (*last_blk - i + extra_bblks !=
505 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
506 *last_blk = i;
507
508 out:
509 xlog_put_bp(bp);
510 return error;
511 }
512
513 /*
514 * Head is defined to be the point of the log where the next log write
515 * write could go. This means that incomplete LR writes at the end are
516 * eliminated when calculating the head. We aren't guaranteed that previous
517 * LR have complete transactions. We only know that a cycle number of
518 * current cycle number -1 won't be present in the log if we start writing
519 * from our current block number.
520 *
521 * last_blk contains the block number of the first block with a given
522 * cycle number.
523 *
524 * Return: zero if normal, non-zero if error.
525 */
526 STATIC int
527 xlog_find_head(
528 xlog_t *log,
529 xfs_daddr_t *return_head_blk)
530 {
531 xfs_buf_t *bp;
532 xfs_caddr_t offset;
533 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
534 int num_scan_bblks;
535 uint first_half_cycle, last_half_cycle;
536 uint stop_on_cycle;
537 int error, log_bbnum = log->l_logBBsize;
538
539 /* Is the end of the log device zeroed? */
540 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
541 *return_head_blk = first_blk;
542
543 /* Is the whole lot zeroed? */
544 if (!first_blk) {
545 /* Linux XFS shouldn't generate totally zeroed logs -
546 * mkfs etc write a dummy unmount record to a fresh
547 * log so we can store the uuid in there
548 */
549 xlog_warn("XFS: totally zeroed log");
550 }
551
552 return 0;
553 } else if (error) {
554 xlog_warn("XFS: empty log check failed");
555 return error;
556 }
557
558 first_blk = 0; /* get cycle # of 1st block */
559 bp = xlog_get_bp(log, 1);
560 if (!bp)
561 return ENOMEM;
562 if ((error = xlog_bread(log, 0, 1, bp)))
563 goto bp_err;
564 offset = xlog_align(log, 0, 1, bp);
565 first_half_cycle = xlog_get_cycle(offset);
566
567 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
568 if ((error = xlog_bread(log, last_blk, 1, bp)))
569 goto bp_err;
570 offset = xlog_align(log, last_blk, 1, bp);
571 last_half_cycle = xlog_get_cycle(offset);
572 ASSERT(last_half_cycle != 0);
573
574 /*
575 * If the 1st half cycle number is equal to the last half cycle number,
576 * then the entire log is stamped with the same cycle number. In this
577 * case, head_blk can't be set to zero (which makes sense). The below
578 * math doesn't work out properly with head_blk equal to zero. Instead,
579 * we set it to log_bbnum which is an invalid block number, but this
580 * value makes the math correct. If head_blk doesn't changed through
581 * all the tests below, *head_blk is set to zero at the very end rather
582 * than log_bbnum. In a sense, log_bbnum and zero are the same block
583 * in a circular file.
584 */
585 if (first_half_cycle == last_half_cycle) {
586 /*
587 * In this case we believe that the entire log should have
588 * cycle number last_half_cycle. We need to scan backwards
589 * from the end verifying that there are no holes still
590 * containing last_half_cycle - 1. If we find such a hole,
591 * then the start of that hole will be the new head. The
592 * simple case looks like
593 * x | x ... | x - 1 | x
594 * Another case that fits this picture would be
595 * x | x + 1 | x ... | x
596 * In this case the head really is somewhere at the end of the
597 * log, as one of the latest writes at the beginning was
598 * incomplete.
599 * One more case is
600 * x | x + 1 | x ... | x - 1 | x
601 * This is really the combination of the above two cases, and
602 * the head has to end up at the start of the x-1 hole at the
603 * end of the log.
604 *
605 * In the 256k log case, we will read from the beginning to the
606 * end of the log and search for cycle numbers equal to x-1.
607 * We don't worry about the x+1 blocks that we encounter,
608 * because we know that they cannot be the head since the log
609 * started with x.
610 */
611 head_blk = log_bbnum;
612 stop_on_cycle = last_half_cycle - 1;
613 } else {
614 /*
615 * In this case we want to find the first block with cycle
616 * number matching last_half_cycle. We expect the log to be
617 * some variation on
618 * x + 1 ... | x ...
619 * The first block with cycle number x (last_half_cycle) will
620 * be where the new head belongs. First we do a binary search
621 * for the first occurrence of last_half_cycle. The binary
622 * search may not be totally accurate, so then we scan back
623 * from there looking for occurrences of last_half_cycle before
624 * us. If that backwards scan wraps around the beginning of
625 * the log, then we look for occurrences of last_half_cycle - 1
626 * at the end of the log. The cases we're looking for look
627 * like
628 * x + 1 ... | x | x + 1 | x ...
629 * ^ binary search stopped here
630 * or
631 * x + 1 ... | x ... | x - 1 | x
632 * <---------> less than scan distance
633 */
634 stop_on_cycle = last_half_cycle;
635 if ((error = xlog_find_cycle_start(log, bp, first_blk,
636 &head_blk, last_half_cycle)))
637 goto bp_err;
638 }
639
640 /*
641 * Now validate the answer. Scan back some number of maximum possible
642 * blocks and make sure each one has the expected cycle number. The
643 * maximum is determined by the total possible amount of buffering
644 * in the in-core log. The following number can be made tighter if
645 * we actually look at the block size of the filesystem.
646 */
647 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
648 if (head_blk >= num_scan_bblks) {
649 /*
650 * We are guaranteed that the entire check can be performed
651 * in one buffer.
652 */
653 start_blk = head_blk - num_scan_bblks;
654 if ((error = xlog_find_verify_cycle(log,
655 start_blk, num_scan_bblks,
656 stop_on_cycle, &new_blk)))
657 goto bp_err;
658 if (new_blk != -1)
659 head_blk = new_blk;
660 } else { /* need to read 2 parts of log */
661 /*
662 * We are going to scan backwards in the log in two parts.
663 * First we scan the physical end of the log. In this part
664 * of the log, we are looking for blocks with cycle number
665 * last_half_cycle - 1.
666 * If we find one, then we know that the log starts there, as
667 * we've found a hole that didn't get written in going around
668 * the end of the physical log. The simple case for this is
669 * x + 1 ... | x ... | x - 1 | x
670 * <---------> less than scan distance
671 * If all of the blocks at the end of the log have cycle number
672 * last_half_cycle, then we check the blocks at the start of
673 * the log looking for occurrences of last_half_cycle. If we
674 * find one, then our current estimate for the location of the
675 * first occurrence of last_half_cycle is wrong and we move
676 * back to the hole we've found. This case looks like
677 * x + 1 ... | x | x + 1 | x ...
678 * ^ binary search stopped here
679 * Another case we need to handle that only occurs in 256k
680 * logs is
681 * x + 1 ... | x ... | x+1 | x ...
682 * ^ binary search stops here
683 * In a 256k log, the scan at the end of the log will see the
684 * x + 1 blocks. We need to skip past those since that is
685 * certainly not the head of the log. By searching for
686 * last_half_cycle-1 we accomplish that.
687 */
688 start_blk = log_bbnum - num_scan_bblks + head_blk;
689 ASSERT(head_blk <= INT_MAX &&
690 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
691 if ((error = xlog_find_verify_cycle(log, start_blk,
692 num_scan_bblks - (int)head_blk,
693 (stop_on_cycle - 1), &new_blk)))
694 goto bp_err;
695 if (new_blk != -1) {
696 head_blk = new_blk;
697 goto bad_blk;
698 }
699
700 /*
701 * Scan beginning of log now. The last part of the physical
702 * log is good. This scan needs to verify that it doesn't find
703 * the last_half_cycle.
704 */
705 start_blk = 0;
706 ASSERT(head_blk <= INT_MAX);
707 if ((error = xlog_find_verify_cycle(log,
708 start_blk, (int)head_blk,
709 stop_on_cycle, &new_blk)))
710 goto bp_err;
711 if (new_blk != -1)
712 head_blk = new_blk;
713 }
714
715 bad_blk:
716 /*
717 * Now we need to make sure head_blk is not pointing to a block in
718 * the middle of a log record.
719 */
720 num_scan_bblks = XLOG_REC_SHIFT(log);
721 if (head_blk >= num_scan_bblks) {
722 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
723
724 /* start ptr at last block ptr before head_blk */
725 if ((error = xlog_find_verify_log_record(log, start_blk,
726 &head_blk, 0)) == -1) {
727 error = XFS_ERROR(EIO);
728 goto bp_err;
729 } else if (error)
730 goto bp_err;
731 } else {
732 start_blk = 0;
733 ASSERT(head_blk <= INT_MAX);
734 if ((error = xlog_find_verify_log_record(log, start_blk,
735 &head_blk, 0)) == -1) {
736 /* We hit the beginning of the log during our search */
737 start_blk = log_bbnum - num_scan_bblks + head_blk;
738 new_blk = log_bbnum;
739 ASSERT(start_blk <= INT_MAX &&
740 (xfs_daddr_t) log_bbnum-start_blk >= 0);
741 ASSERT(head_blk <= INT_MAX);
742 if ((error = xlog_find_verify_log_record(log,
743 start_blk, &new_blk,
744 (int)head_blk)) == -1) {
745 error = XFS_ERROR(EIO);
746 goto bp_err;
747 } else if (error)
748 goto bp_err;
749 if (new_blk != log_bbnum)
750 head_blk = new_blk;
751 } else if (error)
752 goto bp_err;
753 }
754
755 xlog_put_bp(bp);
756 if (head_blk == log_bbnum)
757 *return_head_blk = 0;
758 else
759 *return_head_blk = head_blk;
760 /*
761 * When returning here, we have a good block number. Bad block
762 * means that during a previous crash, we didn't have a clean break
763 * from cycle number N to cycle number N-1. In this case, we need
764 * to find the first block with cycle number N-1.
765 */
766 return 0;
767
768 bp_err:
769 xlog_put_bp(bp);
770
771 if (error)
772 xlog_warn("XFS: failed to find log head");
773 return error;
774 }
775
776 /*
777 * Find the sync block number or the tail of the log.
778 *
779 * This will be the block number of the last record to have its
780 * associated buffers synced to disk. Every log record header has
781 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
782 * to get a sync block number. The only concern is to figure out which
783 * log record header to believe.
784 *
785 * The following algorithm uses the log record header with the largest
786 * lsn. The entire log record does not need to be valid. We only care
787 * that the header is valid.
788 *
789 * We could speed up search by using current head_blk buffer, but it is not
790 * available.
791 */
792 int
793 xlog_find_tail(
794 xlog_t *log,
795 xfs_daddr_t *head_blk,
796 xfs_daddr_t *tail_blk)
797 {
798 xlog_rec_header_t *rhead;
799 xlog_op_header_t *op_head;
800 xfs_caddr_t offset = NULL;
801 xfs_buf_t *bp;
802 int error, i, found;
803 xfs_daddr_t umount_data_blk;
804 xfs_daddr_t after_umount_blk;
805 xfs_lsn_t tail_lsn;
806 int hblks;
807
808 found = 0;
809
810 /*
811 * Find previous log record
812 */
813 if ((error = xlog_find_head(log, head_blk)))
814 return error;
815
816 bp = xlog_get_bp(log, 1);
817 if (!bp)
818 return ENOMEM;
819 if (*head_blk == 0) { /* special case */
820 if ((error = xlog_bread(log, 0, 1, bp)))
821 goto bread_err;
822 offset = xlog_align(log, 0, 1, bp);
823 if (xlog_get_cycle(offset) == 0) {
824 *tail_blk = 0;
825 /* leave all other log inited values alone */
826 goto exit;
827 }
828 }
829
830 /*
831 * Search backwards looking for log record header block
832 */
833 ASSERT(*head_blk < INT_MAX);
834 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
835 if ((error = xlog_bread(log, i, 1, bp)))
836 goto bread_err;
837 offset = xlog_align(log, i, 1, bp);
838 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
839 found = 1;
840 break;
841 }
842 }
843 /*
844 * If we haven't found the log record header block, start looking
845 * again from the end of the physical log. XXXmiken: There should be
846 * a check here to make sure we didn't search more than N blocks in
847 * the previous code.
848 */
849 if (!found) {
850 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
851 if ((error = xlog_bread(log, i, 1, bp)))
852 goto bread_err;
853 offset = xlog_align(log, i, 1, bp);
854 if (XLOG_HEADER_MAGIC_NUM ==
855 be32_to_cpu(*(__be32 *)offset)) {
856 found = 2;
857 break;
858 }
859 }
860 }
861 if (!found) {
862 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
863 ASSERT(0);
864 return XFS_ERROR(EIO);
865 }
866
867 /* find blk_no of tail of log */
868 rhead = (xlog_rec_header_t *)offset;
869 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
870
871 /*
872 * Reset log values according to the state of the log when we
873 * crashed. In the case where head_blk == 0, we bump curr_cycle
874 * one because the next write starts a new cycle rather than
875 * continuing the cycle of the last good log record. At this
876 * point we have guaranteed that all partial log records have been
877 * accounted for. Therefore, we know that the last good log record
878 * written was complete and ended exactly on the end boundary
879 * of the physical log.
880 */
881 log->l_prev_block = i;
882 log->l_curr_block = (int)*head_blk;
883 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
884 if (found == 2)
885 log->l_curr_cycle++;
886 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
887 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
888 log->l_grant_reserve_cycle = log->l_curr_cycle;
889 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
890 log->l_grant_write_cycle = log->l_curr_cycle;
891 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
892
893 /*
894 * Look for unmount record. If we find it, then we know there
895 * was a clean unmount. Since 'i' could be the last block in
896 * the physical log, we convert to a log block before comparing
897 * to the head_blk.
898 *
899 * Save the current tail lsn to use to pass to
900 * xlog_clear_stale_blocks() below. We won't want to clear the
901 * unmount record if there is one, so we pass the lsn of the
902 * unmount record rather than the block after it.
903 */
904 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
905 int h_size = be32_to_cpu(rhead->h_size);
906 int h_version = be32_to_cpu(rhead->h_version);
907
908 if ((h_version & XLOG_VERSION_2) &&
909 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
910 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
911 if (h_size % XLOG_HEADER_CYCLE_SIZE)
912 hblks++;
913 } else {
914 hblks = 1;
915 }
916 } else {
917 hblks = 1;
918 }
919 after_umount_blk = (i + hblks + (int)
920 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
921 tail_lsn = log->l_tail_lsn;
922 if (*head_blk == after_umount_blk &&
923 be32_to_cpu(rhead->h_num_logops) == 1) {
924 umount_data_blk = (i + hblks) % log->l_logBBsize;
925 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
926 goto bread_err;
927 }
928 offset = xlog_align(log, umount_data_blk, 1, bp);
929 op_head = (xlog_op_header_t *)offset;
930 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
931 /*
932 * Set tail and last sync so that newly written
933 * log records will point recovery to after the
934 * current unmount record.
935 */
936 log->l_tail_lsn =
937 xlog_assign_lsn(log->l_curr_cycle,
938 after_umount_blk);
939 log->l_last_sync_lsn =
940 xlog_assign_lsn(log->l_curr_cycle,
941 after_umount_blk);
942 *tail_blk = after_umount_blk;
943
944 /*
945 * Note that the unmount was clean. If the unmount
946 * was not clean, we need to know this to rebuild the
947 * superblock counters from the perag headers if we
948 * have a filesystem using non-persistent counters.
949 */
950 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
951 }
952 }
953
954 /*
955 * Make sure that there are no blocks in front of the head
956 * with the same cycle number as the head. This can happen
957 * because we allow multiple outstanding log writes concurrently,
958 * and the later writes might make it out before earlier ones.
959 *
960 * We use the lsn from before modifying it so that we'll never
961 * overwrite the unmount record after a clean unmount.
962 *
963 * Do this only if we are going to recover the filesystem
964 *
965 * NOTE: This used to say "if (!readonly)"
966 * However on Linux, we can & do recover a read-only filesystem.
967 * We only skip recovery if NORECOVERY is specified on mount,
968 * in which case we would not be here.
969 *
970 * But... if the -device- itself is readonly, just skip this.
971 * We can't recover this device anyway, so it won't matter.
972 */
973 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
974 error = xlog_clear_stale_blocks(log, tail_lsn);
975 }
976
977 bread_err:
978 exit:
979 xlog_put_bp(bp);
980
981 if (error)
982 xlog_warn("XFS: failed to locate log tail");
983 return error;
984 }
985
986 /*
987 * Is the log zeroed at all?
988 *
989 * The last binary search should be changed to perform an X block read
990 * once X becomes small enough. You can then search linearly through
991 * the X blocks. This will cut down on the number of reads we need to do.
992 *
993 * If the log is partially zeroed, this routine will pass back the blkno
994 * of the first block with cycle number 0. It won't have a complete LR
995 * preceding it.
996 *
997 * Return:
998 * 0 => the log is completely written to
999 * -1 => use *blk_no as the first block of the log
1000 * >0 => error has occurred
1001 */
1002 STATIC int
1003 xlog_find_zeroed(
1004 xlog_t *log,
1005 xfs_daddr_t *blk_no)
1006 {
1007 xfs_buf_t *bp;
1008 xfs_caddr_t offset;
1009 uint first_cycle, last_cycle;
1010 xfs_daddr_t new_blk, last_blk, start_blk;
1011 xfs_daddr_t num_scan_bblks;
1012 int error, log_bbnum = log->l_logBBsize;
1013
1014 *blk_no = 0;
1015
1016 /* check totally zeroed log */
1017 bp = xlog_get_bp(log, 1);
1018 if (!bp)
1019 return ENOMEM;
1020 if ((error = xlog_bread(log, 0, 1, bp)))
1021 goto bp_err;
1022 offset = xlog_align(log, 0, 1, bp);
1023 first_cycle = xlog_get_cycle(offset);
1024 if (first_cycle == 0) { /* completely zeroed log */
1025 *blk_no = 0;
1026 xlog_put_bp(bp);
1027 return -1;
1028 }
1029
1030 /* check partially zeroed log */
1031 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1032 goto bp_err;
1033 offset = xlog_align(log, log_bbnum-1, 1, bp);
1034 last_cycle = xlog_get_cycle(offset);
1035 if (last_cycle != 0) { /* log completely written to */
1036 xlog_put_bp(bp);
1037 return 0;
1038 } else if (first_cycle != 1) {
1039 /*
1040 * If the cycle of the last block is zero, the cycle of
1041 * the first block must be 1. If it's not, maybe we're
1042 * not looking at a log... Bail out.
1043 */
1044 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1045 return XFS_ERROR(EINVAL);
1046 }
1047
1048 /* we have a partially zeroed log */
1049 last_blk = log_bbnum-1;
1050 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1051 goto bp_err;
1052
1053 /*
1054 * Validate the answer. Because there is no way to guarantee that
1055 * the entire log is made up of log records which are the same size,
1056 * we scan over the defined maximum blocks. At this point, the maximum
1057 * is not chosen to mean anything special. XXXmiken
1058 */
1059 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1060 ASSERT(num_scan_bblks <= INT_MAX);
1061
1062 if (last_blk < num_scan_bblks)
1063 num_scan_bblks = last_blk;
1064 start_blk = last_blk - num_scan_bblks;
1065
1066 /*
1067 * We search for any instances of cycle number 0 that occur before
1068 * our current estimate of the head. What we're trying to detect is
1069 * 1 ... | 0 | 1 | 0...
1070 * ^ binary search ends here
1071 */
1072 if ((error = xlog_find_verify_cycle(log, start_blk,
1073 (int)num_scan_bblks, 0, &new_blk)))
1074 goto bp_err;
1075 if (new_blk != -1)
1076 last_blk = new_blk;
1077
1078 /*
1079 * Potentially backup over partial log record write. We don't need
1080 * to search the end of the log because we know it is zero.
1081 */
1082 if ((error = xlog_find_verify_log_record(log, start_blk,
1083 &last_blk, 0)) == -1) {
1084 error = XFS_ERROR(EIO);
1085 goto bp_err;
1086 } else if (error)
1087 goto bp_err;
1088
1089 *blk_no = last_blk;
1090 bp_err:
1091 xlog_put_bp(bp);
1092 if (error)
1093 return error;
1094 return -1;
1095 }
1096
1097 /*
1098 * These are simple subroutines used by xlog_clear_stale_blocks() below
1099 * to initialize a buffer full of empty log record headers and write
1100 * them into the log.
1101 */
1102 STATIC void
1103 xlog_add_record(
1104 xlog_t *log,
1105 xfs_caddr_t buf,
1106 int cycle,
1107 int block,
1108 int tail_cycle,
1109 int tail_block)
1110 {
1111 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1112
1113 memset(buf, 0, BBSIZE);
1114 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1115 recp->h_cycle = cpu_to_be32(cycle);
1116 recp->h_version = cpu_to_be32(
1117 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1118 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1119 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1120 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1121 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1122 }
1123
1124 STATIC int
1125 xlog_write_log_records(
1126 xlog_t *log,
1127 int cycle,
1128 int start_block,
1129 int blocks,
1130 int tail_cycle,
1131 int tail_block)
1132 {
1133 xfs_caddr_t offset;
1134 xfs_buf_t *bp;
1135 int balign, ealign;
1136 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1137 int end_block = start_block + blocks;
1138 int bufblks;
1139 int error = 0;
1140 int i, j = 0;
1141
1142 bufblks = 1 << ffs(blocks);
1143 while (!(bp = xlog_get_bp(log, bufblks))) {
1144 bufblks >>= 1;
1145 if (bufblks <= log->l_sectbb_log)
1146 return ENOMEM;
1147 }
1148
1149 /* We may need to do a read at the start to fill in part of
1150 * the buffer in the starting sector not covered by the first
1151 * write below.
1152 */
1153 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1154 if (balign != start_block) {
1155 if ((error = xlog_bread(log, start_block, 1, bp))) {
1156 xlog_put_bp(bp);
1157 return error;
1158 }
1159 j = start_block - balign;
1160 }
1161
1162 for (i = start_block; i < end_block; i += bufblks) {
1163 int bcount, endcount;
1164
1165 bcount = min(bufblks, end_block - start_block);
1166 endcount = bcount - j;
1167
1168 /* We may need to do a read at the end to fill in part of
1169 * the buffer in the final sector not covered by the write.
1170 * If this is the same sector as the above read, skip it.
1171 */
1172 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1173 if (j == 0 && (start_block + endcount > ealign)) {
1174 offset = XFS_BUF_PTR(bp);
1175 balign = BBTOB(ealign - start_block);
1176 error = XFS_BUF_SET_PTR(bp, offset + balign,
1177 BBTOB(sectbb));
1178 if (!error)
1179 error = xlog_bread(log, ealign, sectbb, bp);
1180 if (!error)
1181 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1182 if (error)
1183 break;
1184 }
1185
1186 offset = xlog_align(log, start_block, endcount, bp);
1187 for (; j < endcount; j++) {
1188 xlog_add_record(log, offset, cycle, i+j,
1189 tail_cycle, tail_block);
1190 offset += BBSIZE;
1191 }
1192 error = xlog_bwrite(log, start_block, endcount, bp);
1193 if (error)
1194 break;
1195 start_block += endcount;
1196 j = 0;
1197 }
1198 xlog_put_bp(bp);
1199 return error;
1200 }
1201
1202 /*
1203 * This routine is called to blow away any incomplete log writes out
1204 * in front of the log head. We do this so that we won't become confused
1205 * if we come up, write only a little bit more, and then crash again.
1206 * If we leave the partial log records out there, this situation could
1207 * cause us to think those partial writes are valid blocks since they
1208 * have the current cycle number. We get rid of them by overwriting them
1209 * with empty log records with the old cycle number rather than the
1210 * current one.
1211 *
1212 * The tail lsn is passed in rather than taken from
1213 * the log so that we will not write over the unmount record after a
1214 * clean unmount in a 512 block log. Doing so would leave the log without
1215 * any valid log records in it until a new one was written. If we crashed
1216 * during that time we would not be able to recover.
1217 */
1218 STATIC int
1219 xlog_clear_stale_blocks(
1220 xlog_t *log,
1221 xfs_lsn_t tail_lsn)
1222 {
1223 int tail_cycle, head_cycle;
1224 int tail_block, head_block;
1225 int tail_distance, max_distance;
1226 int distance;
1227 int error;
1228
1229 tail_cycle = CYCLE_LSN(tail_lsn);
1230 tail_block = BLOCK_LSN(tail_lsn);
1231 head_cycle = log->l_curr_cycle;
1232 head_block = log->l_curr_block;
1233
1234 /*
1235 * Figure out the distance between the new head of the log
1236 * and the tail. We want to write over any blocks beyond the
1237 * head that we may have written just before the crash, but
1238 * we don't want to overwrite the tail of the log.
1239 */
1240 if (head_cycle == tail_cycle) {
1241 /*
1242 * The tail is behind the head in the physical log,
1243 * so the distance from the head to the tail is the
1244 * distance from the head to the end of the log plus
1245 * the distance from the beginning of the log to the
1246 * tail.
1247 */
1248 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1249 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1250 XFS_ERRLEVEL_LOW, log->l_mp);
1251 return XFS_ERROR(EFSCORRUPTED);
1252 }
1253 tail_distance = tail_block + (log->l_logBBsize - head_block);
1254 } else {
1255 /*
1256 * The head is behind the tail in the physical log,
1257 * so the distance from the head to the tail is just
1258 * the tail block minus the head block.
1259 */
1260 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1261 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1262 XFS_ERRLEVEL_LOW, log->l_mp);
1263 return XFS_ERROR(EFSCORRUPTED);
1264 }
1265 tail_distance = tail_block - head_block;
1266 }
1267
1268 /*
1269 * If the head is right up against the tail, we can't clear
1270 * anything.
1271 */
1272 if (tail_distance <= 0) {
1273 ASSERT(tail_distance == 0);
1274 return 0;
1275 }
1276
1277 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1278 /*
1279 * Take the smaller of the maximum amount of outstanding I/O
1280 * we could have and the distance to the tail to clear out.
1281 * We take the smaller so that we don't overwrite the tail and
1282 * we don't waste all day writing from the head to the tail
1283 * for no reason.
1284 */
1285 max_distance = MIN(max_distance, tail_distance);
1286
1287 if ((head_block + max_distance) <= log->l_logBBsize) {
1288 /*
1289 * We can stomp all the blocks we need to without
1290 * wrapping around the end of the log. Just do it
1291 * in a single write. Use the cycle number of the
1292 * current cycle minus one so that the log will look like:
1293 * n ... | n - 1 ...
1294 */
1295 error = xlog_write_log_records(log, (head_cycle - 1),
1296 head_block, max_distance, tail_cycle,
1297 tail_block);
1298 if (error)
1299 return error;
1300 } else {
1301 /*
1302 * We need to wrap around the end of the physical log in
1303 * order to clear all the blocks. Do it in two separate
1304 * I/Os. The first write should be from the head to the
1305 * end of the physical log, and it should use the current
1306 * cycle number minus one just like above.
1307 */
1308 distance = log->l_logBBsize - head_block;
1309 error = xlog_write_log_records(log, (head_cycle - 1),
1310 head_block, distance, tail_cycle,
1311 tail_block);
1312
1313 if (error)
1314 return error;
1315
1316 /*
1317 * Now write the blocks at the start of the physical log.
1318 * This writes the remainder of the blocks we want to clear.
1319 * It uses the current cycle number since we're now on the
1320 * same cycle as the head so that we get:
1321 * n ... n ... | n - 1 ...
1322 * ^^^^^ blocks we're writing
1323 */
1324 distance = max_distance - (log->l_logBBsize - head_block);
1325 error = xlog_write_log_records(log, head_cycle, 0, distance,
1326 tail_cycle, tail_block);
1327 if (error)
1328 return error;
1329 }
1330
1331 return 0;
1332 }
1333
1334 /******************************************************************************
1335 *
1336 * Log recover routines
1337 *
1338 ******************************************************************************
1339 */
1340
1341 STATIC xlog_recover_t *
1342 xlog_recover_find_tid(
1343 xlog_recover_t *q,
1344 xlog_tid_t tid)
1345 {
1346 xlog_recover_t *p = q;
1347
1348 while (p != NULL) {
1349 if (p->r_log_tid == tid)
1350 break;
1351 p = p->r_next;
1352 }
1353 return p;
1354 }
1355
1356 STATIC void
1357 xlog_recover_put_hashq(
1358 xlog_recover_t **q,
1359 xlog_recover_t *trans)
1360 {
1361 trans->r_next = *q;
1362 *q = trans;
1363 }
1364
1365 STATIC void
1366 xlog_recover_add_item(
1367 xlog_recover_item_t **itemq)
1368 {
1369 xlog_recover_item_t *item;
1370
1371 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1372 xlog_recover_insert_item_backq(itemq, item);
1373 }
1374
1375 STATIC int
1376 xlog_recover_add_to_cont_trans(
1377 xlog_recover_t *trans,
1378 xfs_caddr_t dp,
1379 int len)
1380 {
1381 xlog_recover_item_t *item;
1382 xfs_caddr_t ptr, old_ptr;
1383 int old_len;
1384
1385 item = trans->r_itemq;
1386 if (item == NULL) {
1387 /* finish copying rest of trans header */
1388 xlog_recover_add_item(&trans->r_itemq);
1389 ptr = (xfs_caddr_t) &trans->r_theader +
1390 sizeof(xfs_trans_header_t) - len;
1391 memcpy(ptr, dp, len); /* d, s, l */
1392 return 0;
1393 }
1394 item = item->ri_prev;
1395
1396 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1397 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1398
1399 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1400 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1401 item->ri_buf[item->ri_cnt-1].i_len += len;
1402 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1403 return 0;
1404 }
1405
1406 /*
1407 * The next region to add is the start of a new region. It could be
1408 * a whole region or it could be the first part of a new region. Because
1409 * of this, the assumption here is that the type and size fields of all
1410 * format structures fit into the first 32 bits of the structure.
1411 *
1412 * This works because all regions must be 32 bit aligned. Therefore, we
1413 * either have both fields or we have neither field. In the case we have
1414 * neither field, the data part of the region is zero length. We only have
1415 * a log_op_header and can throw away the header since a new one will appear
1416 * later. If we have at least 4 bytes, then we can determine how many regions
1417 * will appear in the current log item.
1418 */
1419 STATIC int
1420 xlog_recover_add_to_trans(
1421 xlog_recover_t *trans,
1422 xfs_caddr_t dp,
1423 int len)
1424 {
1425 xfs_inode_log_format_t *in_f; /* any will do */
1426 xlog_recover_item_t *item;
1427 xfs_caddr_t ptr;
1428
1429 if (!len)
1430 return 0;
1431 item = trans->r_itemq;
1432 if (item == NULL) {
1433 /* we need to catch log corruptions here */
1434 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1435 xlog_warn("XFS: xlog_recover_add_to_trans: "
1436 "bad header magic number");
1437 ASSERT(0);
1438 return XFS_ERROR(EIO);
1439 }
1440 if (len == sizeof(xfs_trans_header_t))
1441 xlog_recover_add_item(&trans->r_itemq);
1442 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1443 return 0;
1444 }
1445
1446 ptr = kmem_alloc(len, KM_SLEEP);
1447 memcpy(ptr, dp, len);
1448 in_f = (xfs_inode_log_format_t *)ptr;
1449
1450 if (item->ri_prev->ri_total != 0 &&
1451 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1452 xlog_recover_add_item(&trans->r_itemq);
1453 }
1454 item = trans->r_itemq;
1455 item = item->ri_prev;
1456
1457 if (item->ri_total == 0) { /* first region to be added */
1458 item->ri_total = in_f->ilf_size;
1459 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1460 item->ri_buf = kmem_zalloc((item->ri_total *
1461 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1462 }
1463 ASSERT(item->ri_total > item->ri_cnt);
1464 /* Description region is ri_buf[0] */
1465 item->ri_buf[item->ri_cnt].i_addr = ptr;
1466 item->ri_buf[item->ri_cnt].i_len = len;
1467 item->ri_cnt++;
1468 return 0;
1469 }
1470
1471 STATIC void
1472 xlog_recover_new_tid(
1473 xlog_recover_t **q,
1474 xlog_tid_t tid,
1475 xfs_lsn_t lsn)
1476 {
1477 xlog_recover_t *trans;
1478
1479 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1480 trans->r_log_tid = tid;
1481 trans->r_lsn = lsn;
1482 xlog_recover_put_hashq(q, trans);
1483 }
1484
1485 STATIC int
1486 xlog_recover_unlink_tid(
1487 xlog_recover_t **q,
1488 xlog_recover_t *trans)
1489 {
1490 xlog_recover_t *tp;
1491 int found = 0;
1492
1493 ASSERT(trans != NULL);
1494 if (trans == *q) {
1495 *q = (*q)->r_next;
1496 } else {
1497 tp = *q;
1498 while (tp) {
1499 if (tp->r_next == trans) {
1500 found = 1;
1501 break;
1502 }
1503 tp = tp->r_next;
1504 }
1505 if (!found) {
1506 xlog_warn(
1507 "XFS: xlog_recover_unlink_tid: trans not found");
1508 ASSERT(0);
1509 return XFS_ERROR(EIO);
1510 }
1511 tp->r_next = tp->r_next->r_next;
1512 }
1513 return 0;
1514 }
1515
1516 STATIC void
1517 xlog_recover_insert_item_backq(
1518 xlog_recover_item_t **q,
1519 xlog_recover_item_t *item)
1520 {
1521 if (*q == NULL) {
1522 item->ri_prev = item->ri_next = item;
1523 *q = item;
1524 } else {
1525 item->ri_next = *q;
1526 item->ri_prev = (*q)->ri_prev;
1527 (*q)->ri_prev = item;
1528 item->ri_prev->ri_next = item;
1529 }
1530 }
1531
1532 STATIC void
1533 xlog_recover_insert_item_frontq(
1534 xlog_recover_item_t **q,
1535 xlog_recover_item_t *item)
1536 {
1537 xlog_recover_insert_item_backq(q, item);
1538 *q = item;
1539 }
1540
1541 STATIC int
1542 xlog_recover_reorder_trans(
1543 xlog_recover_t *trans)
1544 {
1545 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1546 xfs_buf_log_format_t *buf_f;
1547 ushort flags = 0;
1548
1549 first_item = itemq = trans->r_itemq;
1550 trans->r_itemq = NULL;
1551 do {
1552 itemq_next = itemq->ri_next;
1553 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1554
1555 switch (ITEM_TYPE(itemq)) {
1556 case XFS_LI_BUF:
1557 flags = buf_f->blf_flags;
1558 if (!(flags & XFS_BLI_CANCEL)) {
1559 xlog_recover_insert_item_frontq(&trans->r_itemq,
1560 itemq);
1561 break;
1562 }
1563 case XFS_LI_INODE:
1564 case XFS_LI_DQUOT:
1565 case XFS_LI_QUOTAOFF:
1566 case XFS_LI_EFD:
1567 case XFS_LI_EFI:
1568 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1569 break;
1570 default:
1571 xlog_warn(
1572 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1573 ASSERT(0);
1574 return XFS_ERROR(EIO);
1575 }
1576 itemq = itemq_next;
1577 } while (first_item != itemq);
1578 return 0;
1579 }
1580
1581 /*
1582 * Build up the table of buf cancel records so that we don't replay
1583 * cancelled data in the second pass. For buffer records that are
1584 * not cancel records, there is nothing to do here so we just return.
1585 *
1586 * If we get a cancel record which is already in the table, this indicates
1587 * that the buffer was cancelled multiple times. In order to ensure
1588 * that during pass 2 we keep the record in the table until we reach its
1589 * last occurrence in the log, we keep a reference count in the cancel
1590 * record in the table to tell us how many times we expect to see this
1591 * record during the second pass.
1592 */
1593 STATIC void
1594 xlog_recover_do_buffer_pass1(
1595 xlog_t *log,
1596 xfs_buf_log_format_t *buf_f)
1597 {
1598 xfs_buf_cancel_t *bcp;
1599 xfs_buf_cancel_t *nextp;
1600 xfs_buf_cancel_t *prevp;
1601 xfs_buf_cancel_t **bucket;
1602 xfs_daddr_t blkno = 0;
1603 uint len = 0;
1604 ushort flags = 0;
1605
1606 switch (buf_f->blf_type) {
1607 case XFS_LI_BUF:
1608 blkno = buf_f->blf_blkno;
1609 len = buf_f->blf_len;
1610 flags = buf_f->blf_flags;
1611 break;
1612 }
1613
1614 /*
1615 * If this isn't a cancel buffer item, then just return.
1616 */
1617 if (!(flags & XFS_BLI_CANCEL))
1618 return;
1619
1620 /*
1621 * Insert an xfs_buf_cancel record into the hash table of
1622 * them. If there is already an identical record, bump
1623 * its reference count.
1624 */
1625 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1626 XLOG_BC_TABLE_SIZE];
1627 /*
1628 * If the hash bucket is empty then just insert a new record into
1629 * the bucket.
1630 */
1631 if (*bucket == NULL) {
1632 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1633 KM_SLEEP);
1634 bcp->bc_blkno = blkno;
1635 bcp->bc_len = len;
1636 bcp->bc_refcount = 1;
1637 bcp->bc_next = NULL;
1638 *bucket = bcp;
1639 return;
1640 }
1641
1642 /*
1643 * The hash bucket is not empty, so search for duplicates of our
1644 * record. If we find one them just bump its refcount. If not
1645 * then add us at the end of the list.
1646 */
1647 prevp = NULL;
1648 nextp = *bucket;
1649 while (nextp != NULL) {
1650 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1651 nextp->bc_refcount++;
1652 return;
1653 }
1654 prevp = nextp;
1655 nextp = nextp->bc_next;
1656 }
1657 ASSERT(prevp != NULL);
1658 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1659 KM_SLEEP);
1660 bcp->bc_blkno = blkno;
1661 bcp->bc_len = len;
1662 bcp->bc_refcount = 1;
1663 bcp->bc_next = NULL;
1664 prevp->bc_next = bcp;
1665 }
1666
1667 /*
1668 * Check to see whether the buffer being recovered has a corresponding
1669 * entry in the buffer cancel record table. If it does then return 1
1670 * so that it will be cancelled, otherwise return 0. If the buffer is
1671 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1672 * the refcount on the entry in the table and remove it from the table
1673 * if this is the last reference.
1674 *
1675 * We remove the cancel record from the table when we encounter its
1676 * last occurrence in the log so that if the same buffer is re-used
1677 * again after its last cancellation we actually replay the changes
1678 * made at that point.
1679 */
1680 STATIC int
1681 xlog_check_buffer_cancelled(
1682 xlog_t *log,
1683 xfs_daddr_t blkno,
1684 uint len,
1685 ushort flags)
1686 {
1687 xfs_buf_cancel_t *bcp;
1688 xfs_buf_cancel_t *prevp;
1689 xfs_buf_cancel_t **bucket;
1690
1691 if (log->l_buf_cancel_table == NULL) {
1692 /*
1693 * There is nothing in the table built in pass one,
1694 * so this buffer must not be cancelled.
1695 */
1696 ASSERT(!(flags & XFS_BLI_CANCEL));
1697 return 0;
1698 }
1699
1700 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1701 XLOG_BC_TABLE_SIZE];
1702 bcp = *bucket;
1703 if (bcp == NULL) {
1704 /*
1705 * There is no corresponding entry in the table built
1706 * in pass one, so this buffer has not been cancelled.
1707 */
1708 ASSERT(!(flags & XFS_BLI_CANCEL));
1709 return 0;
1710 }
1711
1712 /*
1713 * Search for an entry in the buffer cancel table that
1714 * matches our buffer.
1715 */
1716 prevp = NULL;
1717 while (bcp != NULL) {
1718 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1719 /*
1720 * We've go a match, so return 1 so that the
1721 * recovery of this buffer is cancelled.
1722 * If this buffer is actually a buffer cancel
1723 * log item, then decrement the refcount on the
1724 * one in the table and remove it if this is the
1725 * last reference.
1726 */
1727 if (flags & XFS_BLI_CANCEL) {
1728 bcp->bc_refcount--;
1729 if (bcp->bc_refcount == 0) {
1730 if (prevp == NULL) {
1731 *bucket = bcp->bc_next;
1732 } else {
1733 prevp->bc_next = bcp->bc_next;
1734 }
1735 kmem_free(bcp);
1736 }
1737 }
1738 return 1;
1739 }
1740 prevp = bcp;
1741 bcp = bcp->bc_next;
1742 }
1743 /*
1744 * We didn't find a corresponding entry in the table, so
1745 * return 0 so that the buffer is NOT cancelled.
1746 */
1747 ASSERT(!(flags & XFS_BLI_CANCEL));
1748 return 0;
1749 }
1750
1751 STATIC int
1752 xlog_recover_do_buffer_pass2(
1753 xlog_t *log,
1754 xfs_buf_log_format_t *buf_f)
1755 {
1756 xfs_daddr_t blkno = 0;
1757 ushort flags = 0;
1758 uint len = 0;
1759
1760 switch (buf_f->blf_type) {
1761 case XFS_LI_BUF:
1762 blkno = buf_f->blf_blkno;
1763 flags = buf_f->blf_flags;
1764 len = buf_f->blf_len;
1765 break;
1766 }
1767
1768 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1769 }
1770
1771 /*
1772 * Perform recovery for a buffer full of inodes. In these buffers,
1773 * the only data which should be recovered is that which corresponds
1774 * to the di_next_unlinked pointers in the on disk inode structures.
1775 * The rest of the data for the inodes is always logged through the
1776 * inodes themselves rather than the inode buffer and is recovered
1777 * in xlog_recover_do_inode_trans().
1778 *
1779 * The only time when buffers full of inodes are fully recovered is
1780 * when the buffer is full of newly allocated inodes. In this case
1781 * the buffer will not be marked as an inode buffer and so will be
1782 * sent to xlog_recover_do_reg_buffer() below during recovery.
1783 */
1784 STATIC int
1785 xlog_recover_do_inode_buffer(
1786 xfs_mount_t *mp,
1787 xlog_recover_item_t *item,
1788 xfs_buf_t *bp,
1789 xfs_buf_log_format_t *buf_f)
1790 {
1791 int i;
1792 int item_index;
1793 int bit;
1794 int nbits;
1795 int reg_buf_offset;
1796 int reg_buf_bytes;
1797 int next_unlinked_offset;
1798 int inodes_per_buf;
1799 xfs_agino_t *logged_nextp;
1800 xfs_agino_t *buffer_nextp;
1801 unsigned int *data_map = NULL;
1802 unsigned int map_size = 0;
1803
1804 switch (buf_f->blf_type) {
1805 case XFS_LI_BUF:
1806 data_map = buf_f->blf_data_map;
1807 map_size = buf_f->blf_map_size;
1808 break;
1809 }
1810 /*
1811 * Set the variables corresponding to the current region to
1812 * 0 so that we'll initialize them on the first pass through
1813 * the loop.
1814 */
1815 reg_buf_offset = 0;
1816 reg_buf_bytes = 0;
1817 bit = 0;
1818 nbits = 0;
1819 item_index = 0;
1820 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1821 for (i = 0; i < inodes_per_buf; i++) {
1822 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1823 offsetof(xfs_dinode_t, di_next_unlinked);
1824
1825 while (next_unlinked_offset >=
1826 (reg_buf_offset + reg_buf_bytes)) {
1827 /*
1828 * The next di_next_unlinked field is beyond
1829 * the current logged region. Find the next
1830 * logged region that contains or is beyond
1831 * the current di_next_unlinked field.
1832 */
1833 bit += nbits;
1834 bit = xfs_next_bit(data_map, map_size, bit);
1835
1836 /*
1837 * If there are no more logged regions in the
1838 * buffer, then we're done.
1839 */
1840 if (bit == -1) {
1841 return 0;
1842 }
1843
1844 nbits = xfs_contig_bits(data_map, map_size,
1845 bit);
1846 ASSERT(nbits > 0);
1847 reg_buf_offset = bit << XFS_BLI_SHIFT;
1848 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1849 item_index++;
1850 }
1851
1852 /*
1853 * If the current logged region starts after the current
1854 * di_next_unlinked field, then move on to the next
1855 * di_next_unlinked field.
1856 */
1857 if (next_unlinked_offset < reg_buf_offset) {
1858 continue;
1859 }
1860
1861 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1862 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1863 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1864
1865 /*
1866 * The current logged region contains a copy of the
1867 * current di_next_unlinked field. Extract its value
1868 * and copy it to the buffer copy.
1869 */
1870 logged_nextp = (xfs_agino_t *)
1871 ((char *)(item->ri_buf[item_index].i_addr) +
1872 (next_unlinked_offset - reg_buf_offset));
1873 if (unlikely(*logged_nextp == 0)) {
1874 xfs_fs_cmn_err(CE_ALERT, mp,
1875 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1876 item, bp);
1877 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1878 XFS_ERRLEVEL_LOW, mp);
1879 return XFS_ERROR(EFSCORRUPTED);
1880 }
1881
1882 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1883 next_unlinked_offset);
1884 *buffer_nextp = *logged_nextp;
1885 }
1886
1887 return 0;
1888 }
1889
1890 /*
1891 * Perform a 'normal' buffer recovery. Each logged region of the
1892 * buffer should be copied over the corresponding region in the
1893 * given buffer. The bitmap in the buf log format structure indicates
1894 * where to place the logged data.
1895 */
1896 /*ARGSUSED*/
1897 STATIC void
1898 xlog_recover_do_reg_buffer(
1899 xlog_recover_item_t *item,
1900 xfs_buf_t *bp,
1901 xfs_buf_log_format_t *buf_f)
1902 {
1903 int i;
1904 int bit;
1905 int nbits;
1906 unsigned int *data_map = NULL;
1907 unsigned int map_size = 0;
1908 int error;
1909
1910 switch (buf_f->blf_type) {
1911 case XFS_LI_BUF:
1912 data_map = buf_f->blf_data_map;
1913 map_size = buf_f->blf_map_size;
1914 break;
1915 }
1916 bit = 0;
1917 i = 1; /* 0 is the buf format structure */
1918 while (1) {
1919 bit = xfs_next_bit(data_map, map_size, bit);
1920 if (bit == -1)
1921 break;
1922 nbits = xfs_contig_bits(data_map, map_size, bit);
1923 ASSERT(nbits > 0);
1924 ASSERT(item->ri_buf[i].i_addr != NULL);
1925 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1926 ASSERT(XFS_BUF_COUNT(bp) >=
1927 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1928
1929 /*
1930 * Do a sanity check if this is a dquot buffer. Just checking
1931 * the first dquot in the buffer should do. XXXThis is
1932 * probably a good thing to do for other buf types also.
1933 */
1934 error = 0;
1935 if (buf_f->blf_flags &
1936 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1937 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1938 item->ri_buf[i].i_addr,
1939 -1, 0, XFS_QMOPT_DOWARN,
1940 "dquot_buf_recover");
1941 }
1942 if (!error)
1943 memcpy(xfs_buf_offset(bp,
1944 (uint)bit << XFS_BLI_SHIFT), /* dest */
1945 item->ri_buf[i].i_addr, /* source */
1946 nbits<<XFS_BLI_SHIFT); /* length */
1947 i++;
1948 bit += nbits;
1949 }
1950
1951 /* Shouldn't be any more regions */
1952 ASSERT(i == item->ri_total);
1953 }
1954
1955 /*
1956 * Do some primitive error checking on ondisk dquot data structures.
1957 */
1958 int
1959 xfs_qm_dqcheck(
1960 xfs_disk_dquot_t *ddq,
1961 xfs_dqid_t id,
1962 uint type, /* used only when IO_dorepair is true */
1963 uint flags,
1964 char *str)
1965 {
1966 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1967 int errs = 0;
1968
1969 /*
1970 * We can encounter an uninitialized dquot buffer for 2 reasons:
1971 * 1. If we crash while deleting the quotainode(s), and those blks got
1972 * used for user data. This is because we take the path of regular
1973 * file deletion; however, the size field of quotainodes is never
1974 * updated, so all the tricks that we play in itruncate_finish
1975 * don't quite matter.
1976 *
1977 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1978 * But the allocation will be replayed so we'll end up with an
1979 * uninitialized quota block.
1980 *
1981 * This is all fine; things are still consistent, and we haven't lost
1982 * any quota information. Just don't complain about bad dquot blks.
1983 */
1984 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1985 if (flags & XFS_QMOPT_DOWARN)
1986 cmn_err(CE_ALERT,
1987 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1988 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1989 errs++;
1990 }
1991 if (ddq->d_version != XFS_DQUOT_VERSION) {
1992 if (flags & XFS_QMOPT_DOWARN)
1993 cmn_err(CE_ALERT,
1994 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1995 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1996 errs++;
1997 }
1998
1999 if (ddq->d_flags != XFS_DQ_USER &&
2000 ddq->d_flags != XFS_DQ_PROJ &&
2001 ddq->d_flags != XFS_DQ_GROUP) {
2002 if (flags & XFS_QMOPT_DOWARN)
2003 cmn_err(CE_ALERT,
2004 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2005 str, id, ddq->d_flags);
2006 errs++;
2007 }
2008
2009 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2010 if (flags & XFS_QMOPT_DOWARN)
2011 cmn_err(CE_ALERT,
2012 "%s : ondisk-dquot 0x%p, ID mismatch: "
2013 "0x%x expected, found id 0x%x",
2014 str, ddq, id, be32_to_cpu(ddq->d_id));
2015 errs++;
2016 }
2017
2018 if (!errs && ddq->d_id) {
2019 if (ddq->d_blk_softlimit &&
2020 be64_to_cpu(ddq->d_bcount) >=
2021 be64_to_cpu(ddq->d_blk_softlimit)) {
2022 if (!ddq->d_btimer) {
2023 if (flags & XFS_QMOPT_DOWARN)
2024 cmn_err(CE_ALERT,
2025 "%s : Dquot ID 0x%x (0x%p) "
2026 "BLK TIMER NOT STARTED",
2027 str, (int)be32_to_cpu(ddq->d_id), ddq);
2028 errs++;
2029 }
2030 }
2031 if (ddq->d_ino_softlimit &&
2032 be64_to_cpu(ddq->d_icount) >=
2033 be64_to_cpu(ddq->d_ino_softlimit)) {
2034 if (!ddq->d_itimer) {
2035 if (flags & XFS_QMOPT_DOWARN)
2036 cmn_err(CE_ALERT,
2037 "%s : Dquot ID 0x%x (0x%p) "
2038 "INODE TIMER NOT STARTED",
2039 str, (int)be32_to_cpu(ddq->d_id), ddq);
2040 errs++;
2041 }
2042 }
2043 if (ddq->d_rtb_softlimit &&
2044 be64_to_cpu(ddq->d_rtbcount) >=
2045 be64_to_cpu(ddq->d_rtb_softlimit)) {
2046 if (!ddq->d_rtbtimer) {
2047 if (flags & XFS_QMOPT_DOWARN)
2048 cmn_err(CE_ALERT,
2049 "%s : Dquot ID 0x%x (0x%p) "
2050 "RTBLK TIMER NOT STARTED",
2051 str, (int)be32_to_cpu(ddq->d_id), ddq);
2052 errs++;
2053 }
2054 }
2055 }
2056
2057 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2058 return errs;
2059
2060 if (flags & XFS_QMOPT_DOWARN)
2061 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2062
2063 /*
2064 * Typically, a repair is only requested by quotacheck.
2065 */
2066 ASSERT(id != -1);
2067 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2068 memset(d, 0, sizeof(xfs_dqblk_t));
2069
2070 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2071 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2072 d->dd_diskdq.d_flags = type;
2073 d->dd_diskdq.d_id = cpu_to_be32(id);
2074
2075 return errs;
2076 }
2077
2078 /*
2079 * Perform a dquot buffer recovery.
2080 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2081 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2082 * Else, treat it as a regular buffer and do recovery.
2083 */
2084 STATIC void
2085 xlog_recover_do_dquot_buffer(
2086 xfs_mount_t *mp,
2087 xlog_t *log,
2088 xlog_recover_item_t *item,
2089 xfs_buf_t *bp,
2090 xfs_buf_log_format_t *buf_f)
2091 {
2092 uint type;
2093
2094 /*
2095 * Filesystems are required to send in quota flags at mount time.
2096 */
2097 if (mp->m_qflags == 0) {
2098 return;
2099 }
2100
2101 type = 0;
2102 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2103 type |= XFS_DQ_USER;
2104 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2105 type |= XFS_DQ_PROJ;
2106 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2107 type |= XFS_DQ_GROUP;
2108 /*
2109 * This type of quotas was turned off, so ignore this buffer
2110 */
2111 if (log->l_quotaoffs_flag & type)
2112 return;
2113
2114 xlog_recover_do_reg_buffer(item, bp, buf_f);
2115 }
2116
2117 /*
2118 * This routine replays a modification made to a buffer at runtime.
2119 * There are actually two types of buffer, regular and inode, which
2120 * are handled differently. Inode buffers are handled differently
2121 * in that we only recover a specific set of data from them, namely
2122 * the inode di_next_unlinked fields. This is because all other inode
2123 * data is actually logged via inode records and any data we replay
2124 * here which overlaps that may be stale.
2125 *
2126 * When meta-data buffers are freed at run time we log a buffer item
2127 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2128 * of the buffer in the log should not be replayed at recovery time.
2129 * This is so that if the blocks covered by the buffer are reused for
2130 * file data before we crash we don't end up replaying old, freed
2131 * meta-data into a user's file.
2132 *
2133 * To handle the cancellation of buffer log items, we make two passes
2134 * over the log during recovery. During the first we build a table of
2135 * those buffers which have been cancelled, and during the second we
2136 * only replay those buffers which do not have corresponding cancel
2137 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2138 * for more details on the implementation of the table of cancel records.
2139 */
2140 STATIC int
2141 xlog_recover_do_buffer_trans(
2142 xlog_t *log,
2143 xlog_recover_item_t *item,
2144 int pass)
2145 {
2146 xfs_buf_log_format_t *buf_f;
2147 xfs_mount_t *mp;
2148 xfs_buf_t *bp;
2149 int error;
2150 int cancel;
2151 xfs_daddr_t blkno;
2152 int len;
2153 ushort flags;
2154
2155 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2156
2157 if (pass == XLOG_RECOVER_PASS1) {
2158 /*
2159 * In this pass we're only looking for buf items
2160 * with the XFS_BLI_CANCEL bit set.
2161 */
2162 xlog_recover_do_buffer_pass1(log, buf_f);
2163 return 0;
2164 } else {
2165 /*
2166 * In this pass we want to recover all the buffers
2167 * which have not been cancelled and are not
2168 * cancellation buffers themselves. The routine
2169 * we call here will tell us whether or not to
2170 * continue with the replay of this buffer.
2171 */
2172 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2173 if (cancel) {
2174 return 0;
2175 }
2176 }
2177 switch (buf_f->blf_type) {
2178 case XFS_LI_BUF:
2179 blkno = buf_f->blf_blkno;
2180 len = buf_f->blf_len;
2181 flags = buf_f->blf_flags;
2182 break;
2183 default:
2184 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2185 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2186 buf_f->blf_type, log->l_mp->m_logname ?
2187 log->l_mp->m_logname : "internal");
2188 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2189 XFS_ERRLEVEL_LOW, log->l_mp);
2190 return XFS_ERROR(EFSCORRUPTED);
2191 }
2192
2193 mp = log->l_mp;
2194 if (flags & XFS_BLI_INODE_BUF) {
2195 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2196 XFS_BUF_LOCK);
2197 } else {
2198 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2199 }
2200 if (XFS_BUF_ISERROR(bp)) {
2201 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2202 bp, blkno);
2203 error = XFS_BUF_GETERROR(bp);
2204 xfs_buf_relse(bp);
2205 return error;
2206 }
2207
2208 error = 0;
2209 if (flags & XFS_BLI_INODE_BUF) {
2210 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2211 } else if (flags &
2212 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2213 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2214 } else {
2215 xlog_recover_do_reg_buffer(item, bp, buf_f);
2216 }
2217 if (error)
2218 return XFS_ERROR(error);
2219
2220 /*
2221 * Perform delayed write on the buffer. Asynchronous writes will be
2222 * slower when taking into account all the buffers to be flushed.
2223 *
2224 * Also make sure that only inode buffers with good sizes stay in
2225 * the buffer cache. The kernel moves inodes in buffers of 1 block
2226 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2227 * buffers in the log can be a different size if the log was generated
2228 * by an older kernel using unclustered inode buffers or a newer kernel
2229 * running with a different inode cluster size. Regardless, if the
2230 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2231 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2232 * the buffer out of the buffer cache so that the buffer won't
2233 * overlap with future reads of those inodes.
2234 */
2235 if (XFS_DINODE_MAGIC ==
2236 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2237 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2238 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2239 XFS_BUF_STALE(bp);
2240 error = xfs_bwrite(mp, bp);
2241 } else {
2242 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2243 bp->b_mount = mp;
2244 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2245 xfs_bdwrite(mp, bp);
2246 }
2247
2248 return (error);
2249 }
2250
2251 STATIC int
2252 xlog_recover_do_inode_trans(
2253 xlog_t *log,
2254 xlog_recover_item_t *item,
2255 int pass)
2256 {
2257 xfs_inode_log_format_t *in_f;
2258 xfs_mount_t *mp;
2259 xfs_buf_t *bp;
2260 xfs_dinode_t *dip;
2261 xfs_ino_t ino;
2262 int len;
2263 xfs_caddr_t src;
2264 xfs_caddr_t dest;
2265 int error;
2266 int attr_index;
2267 uint fields;
2268 xfs_icdinode_t *dicp;
2269 int need_free = 0;
2270
2271 if (pass == XLOG_RECOVER_PASS1) {
2272 return 0;
2273 }
2274
2275 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2276 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2277 } else {
2278 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2279 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2280 need_free = 1;
2281 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2282 if (error)
2283 goto error;
2284 }
2285 ino = in_f->ilf_ino;
2286 mp = log->l_mp;
2287
2288 /*
2289 * Inode buffers can be freed, look out for it,
2290 * and do not replay the inode.
2291 */
2292 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2293 in_f->ilf_len, 0)) {
2294 error = 0;
2295 goto error;
2296 }
2297
2298 bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2299 in_f->ilf_len, XFS_BUF_LOCK);
2300 if (XFS_BUF_ISERROR(bp)) {
2301 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2302 bp, in_f->ilf_blkno);
2303 error = XFS_BUF_GETERROR(bp);
2304 xfs_buf_relse(bp);
2305 goto error;
2306 }
2307 error = 0;
2308 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2309 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2310
2311 /*
2312 * Make sure the place we're flushing out to really looks
2313 * like an inode!
2314 */
2315 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2316 xfs_buf_relse(bp);
2317 xfs_fs_cmn_err(CE_ALERT, mp,
2318 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2319 dip, bp, ino);
2320 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2321 XFS_ERRLEVEL_LOW, mp);
2322 error = EFSCORRUPTED;
2323 goto error;
2324 }
2325 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2326 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2327 xfs_buf_relse(bp);
2328 xfs_fs_cmn_err(CE_ALERT, mp,
2329 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2330 item, ino);
2331 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2332 XFS_ERRLEVEL_LOW, mp);
2333 error = EFSCORRUPTED;
2334 goto error;
2335 }
2336
2337 /* Skip replay when the on disk inode is newer than the log one */
2338 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2339 /*
2340 * Deal with the wrap case, DI_MAX_FLUSH is less
2341 * than smaller numbers
2342 */
2343 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2344 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2345 /* do nothing */
2346 } else {
2347 xfs_buf_relse(bp);
2348 error = 0;
2349 goto error;
2350 }
2351 }
2352 /* Take the opportunity to reset the flush iteration count */
2353 dicp->di_flushiter = 0;
2354
2355 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2356 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2357 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2358 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2359 XFS_ERRLEVEL_LOW, mp, dicp);
2360 xfs_buf_relse(bp);
2361 xfs_fs_cmn_err(CE_ALERT, mp,
2362 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2363 item, dip, bp, ino);
2364 error = EFSCORRUPTED;
2365 goto error;
2366 }
2367 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2368 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2369 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2370 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2371 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2372 XFS_ERRLEVEL_LOW, mp, dicp);
2373 xfs_buf_relse(bp);
2374 xfs_fs_cmn_err(CE_ALERT, mp,
2375 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2376 item, dip, bp, ino);
2377 error = EFSCORRUPTED;
2378 goto error;
2379 }
2380 }
2381 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2382 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2383 XFS_ERRLEVEL_LOW, mp, dicp);
2384 xfs_buf_relse(bp);
2385 xfs_fs_cmn_err(CE_ALERT, mp,
2386 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2387 item, dip, bp, ino,
2388 dicp->di_nextents + dicp->di_anextents,
2389 dicp->di_nblocks);
2390 error = EFSCORRUPTED;
2391 goto error;
2392 }
2393 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2394 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2395 XFS_ERRLEVEL_LOW, mp, dicp);
2396 xfs_buf_relse(bp);
2397 xfs_fs_cmn_err(CE_ALERT, mp,
2398 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2399 item, dip, bp, ino, dicp->di_forkoff);
2400 error = EFSCORRUPTED;
2401 goto error;
2402 }
2403 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2404 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2405 XFS_ERRLEVEL_LOW, mp, dicp);
2406 xfs_buf_relse(bp);
2407 xfs_fs_cmn_err(CE_ALERT, mp,
2408 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2409 item->ri_buf[1].i_len, item);
2410 error = EFSCORRUPTED;
2411 goto error;
2412 }
2413
2414 /* The core is in in-core format */
2415 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2416
2417 /* the rest is in on-disk format */
2418 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2419 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2420 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2421 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2422 }
2423
2424 fields = in_f->ilf_fields;
2425 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2426 case XFS_ILOG_DEV:
2427 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2428 break;
2429 case XFS_ILOG_UUID:
2430 memcpy(XFS_DFORK_DPTR(dip),
2431 &in_f->ilf_u.ilfu_uuid,
2432 sizeof(uuid_t));
2433 break;
2434 }
2435
2436 if (in_f->ilf_size == 2)
2437 goto write_inode_buffer;
2438 len = item->ri_buf[2].i_len;
2439 src = item->ri_buf[2].i_addr;
2440 ASSERT(in_f->ilf_size <= 4);
2441 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2442 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2443 (len == in_f->ilf_dsize));
2444
2445 switch (fields & XFS_ILOG_DFORK) {
2446 case XFS_ILOG_DDATA:
2447 case XFS_ILOG_DEXT:
2448 memcpy(XFS_DFORK_DPTR(dip), src, len);
2449 break;
2450
2451 case XFS_ILOG_DBROOT:
2452 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2453 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2454 XFS_DFORK_DSIZE(dip, mp));
2455 break;
2456
2457 default:
2458 /*
2459 * There are no data fork flags set.
2460 */
2461 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2462 break;
2463 }
2464
2465 /*
2466 * If we logged any attribute data, recover it. There may or
2467 * may not have been any other non-core data logged in this
2468 * transaction.
2469 */
2470 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2471 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2472 attr_index = 3;
2473 } else {
2474 attr_index = 2;
2475 }
2476 len = item->ri_buf[attr_index].i_len;
2477 src = item->ri_buf[attr_index].i_addr;
2478 ASSERT(len == in_f->ilf_asize);
2479
2480 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2481 case XFS_ILOG_ADATA:
2482 case XFS_ILOG_AEXT:
2483 dest = XFS_DFORK_APTR(dip);
2484 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2485 memcpy(dest, src, len);
2486 break;
2487
2488 case XFS_ILOG_ABROOT:
2489 dest = XFS_DFORK_APTR(dip);
2490 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2491 len, (xfs_bmdr_block_t*)dest,
2492 XFS_DFORK_ASIZE(dip, mp));
2493 break;
2494
2495 default:
2496 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2497 ASSERT(0);
2498 xfs_buf_relse(bp);
2499 error = EIO;
2500 goto error;
2501 }
2502 }
2503
2504 write_inode_buffer:
2505 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2506 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2507 bp->b_mount = mp;
2508 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2509 xfs_bdwrite(mp, bp);
2510 } else {
2511 XFS_BUF_STALE(bp);
2512 error = xfs_bwrite(mp, bp);
2513 }
2514
2515 error:
2516 if (need_free)
2517 kmem_free(in_f);
2518 return XFS_ERROR(error);
2519 }
2520
2521 /*
2522 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2523 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2524 * of that type.
2525 */
2526 STATIC int
2527 xlog_recover_do_quotaoff_trans(
2528 xlog_t *log,
2529 xlog_recover_item_t *item,
2530 int pass)
2531 {
2532 xfs_qoff_logformat_t *qoff_f;
2533
2534 if (pass == XLOG_RECOVER_PASS2) {
2535 return (0);
2536 }
2537
2538 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2539 ASSERT(qoff_f);
2540
2541 /*
2542 * The logitem format's flag tells us if this was user quotaoff,
2543 * group/project quotaoff or both.
2544 */
2545 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2546 log->l_quotaoffs_flag |= XFS_DQ_USER;
2547 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2548 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2549 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2550 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2551
2552 return (0);
2553 }
2554
2555 /*
2556 * Recover a dquot record
2557 */
2558 STATIC int
2559 xlog_recover_do_dquot_trans(
2560 xlog_t *log,
2561 xlog_recover_item_t *item,
2562 int pass)
2563 {
2564 xfs_mount_t *mp;
2565 xfs_buf_t *bp;
2566 struct xfs_disk_dquot *ddq, *recddq;
2567 int error;
2568 xfs_dq_logformat_t *dq_f;
2569 uint type;
2570
2571 if (pass == XLOG_RECOVER_PASS1) {
2572 return 0;
2573 }
2574 mp = log->l_mp;
2575
2576 /*
2577 * Filesystems are required to send in quota flags at mount time.
2578 */
2579 if (mp->m_qflags == 0)
2580 return (0);
2581
2582 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2583 ASSERT(recddq);
2584 /*
2585 * This type of quotas was turned off, so ignore this record.
2586 */
2587 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2588 ASSERT(type);
2589 if (log->l_quotaoffs_flag & type)
2590 return (0);
2591
2592 /*
2593 * At this point we know that quota was _not_ turned off.
2594 * Since the mount flags are not indicating to us otherwise, this
2595 * must mean that quota is on, and the dquot needs to be replayed.
2596 * Remember that we may not have fully recovered the superblock yet,
2597 * so we can't do the usual trick of looking at the SB quota bits.
2598 *
2599 * The other possibility, of course, is that the quota subsystem was
2600 * removed since the last mount - ENOSYS.
2601 */
2602 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2603 ASSERT(dq_f);
2604 if ((error = xfs_qm_dqcheck(recddq,
2605 dq_f->qlf_id,
2606 0, XFS_QMOPT_DOWARN,
2607 "xlog_recover_do_dquot_trans (log copy)"))) {
2608 return XFS_ERROR(EIO);
2609 }
2610 ASSERT(dq_f->qlf_len == 1);
2611
2612 error = xfs_read_buf(mp, mp->m_ddev_targp,
2613 dq_f->qlf_blkno,
2614 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2615 0, &bp);
2616 if (error) {
2617 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2618 bp, dq_f->qlf_blkno);
2619 return error;
2620 }
2621 ASSERT(bp);
2622 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2623
2624 /*
2625 * At least the magic num portion should be on disk because this
2626 * was among a chunk of dquots created earlier, and we did some
2627 * minimal initialization then.
2628 */
2629 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2630 "xlog_recover_do_dquot_trans")) {
2631 xfs_buf_relse(bp);
2632 return XFS_ERROR(EIO);
2633 }
2634
2635 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2636
2637 ASSERT(dq_f->qlf_size == 2);
2638 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2639 bp->b_mount = mp;
2640 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2641 xfs_bdwrite(mp, bp);
2642
2643 return (0);
2644 }
2645
2646 /*
2647 * This routine is called to create an in-core extent free intent
2648 * item from the efi format structure which was logged on disk.
2649 * It allocates an in-core efi, copies the extents from the format
2650 * structure into it, and adds the efi to the AIL with the given
2651 * LSN.
2652 */
2653 STATIC int
2654 xlog_recover_do_efi_trans(
2655 xlog_t *log,
2656 xlog_recover_item_t *item,
2657 xfs_lsn_t lsn,
2658 int pass)
2659 {
2660 int error;
2661 xfs_mount_t *mp;
2662 xfs_efi_log_item_t *efip;
2663 xfs_efi_log_format_t *efi_formatp;
2664
2665 if (pass == XLOG_RECOVER_PASS1) {
2666 return 0;
2667 }
2668
2669 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2670
2671 mp = log->l_mp;
2672 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2673 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2674 &(efip->efi_format)))) {
2675 xfs_efi_item_free(efip);
2676 return error;
2677 }
2678 efip->efi_next_extent = efi_formatp->efi_nextents;
2679 efip->efi_flags |= XFS_EFI_COMMITTED;
2680
2681 spin_lock(&log->l_ailp->xa_lock);
2682 /*
2683 * xfs_trans_ail_update() drops the AIL lock.
2684 */
2685 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2686 return 0;
2687 }
2688
2689
2690 /*
2691 * This routine is called when an efd format structure is found in
2692 * a committed transaction in the log. It's purpose is to cancel
2693 * the corresponding efi if it was still in the log. To do this
2694 * it searches the AIL for the efi with an id equal to that in the
2695 * efd format structure. If we find it, we remove the efi from the
2696 * AIL and free it.
2697 */
2698 STATIC void
2699 xlog_recover_do_efd_trans(
2700 xlog_t *log,
2701 xlog_recover_item_t *item,
2702 int pass)
2703 {
2704 xfs_efd_log_format_t *efd_formatp;
2705 xfs_efi_log_item_t *efip = NULL;
2706 xfs_log_item_t *lip;
2707 __uint64_t efi_id;
2708 struct xfs_ail_cursor cur;
2709 struct xfs_ail *ailp = log->l_ailp;
2710
2711 if (pass == XLOG_RECOVER_PASS1) {
2712 return;
2713 }
2714
2715 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2716 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2717 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2718 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2719 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2720 efi_id = efd_formatp->efd_efi_id;
2721
2722 /*
2723 * Search for the efi with the id in the efd format structure
2724 * in the AIL.
2725 */
2726 spin_lock(&ailp->xa_lock);
2727 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2728 while (lip != NULL) {
2729 if (lip->li_type == XFS_LI_EFI) {
2730 efip = (xfs_efi_log_item_t *)lip;
2731 if (efip->efi_format.efi_id == efi_id) {
2732 /*
2733 * xfs_trans_ail_delete() drops the
2734 * AIL lock.
2735 */
2736 xfs_trans_ail_delete(ailp, lip);
2737 xfs_efi_item_free(efip);
2738 spin_lock(&ailp->xa_lock);
2739 break;
2740 }
2741 }
2742 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2743 }
2744 xfs_trans_ail_cursor_done(ailp, &cur);
2745 spin_unlock(&ailp->xa_lock);
2746 }
2747
2748 /*
2749 * Perform the transaction
2750 *
2751 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2753 */
2754 STATIC int
2755 xlog_recover_do_trans(
2756 xlog_t *log,
2757 xlog_recover_t *trans,
2758 int pass)
2759 {
2760 int error = 0;
2761 xlog_recover_item_t *item, *first_item;
2762
2763 if ((error = xlog_recover_reorder_trans(trans)))
2764 return error;
2765 first_item = item = trans->r_itemq;
2766 do {
2767 /*
2768 * we don't need to worry about the block number being
2769 * truncated in > 1 TB buffers because in user-land,
2770 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2771 * the blknos will get through the user-mode buffer
2772 * cache properly. The only bad case is o32 kernels
2773 * where xfs_daddr_t is 32-bits but mount will warn us
2774 * off a > 1 TB filesystem before we get here.
2775 */
2776 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2777 if ((error = xlog_recover_do_buffer_trans(log, item,
2778 pass)))
2779 break;
2780 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2781 if ((error = xlog_recover_do_inode_trans(log, item,
2782 pass)))
2783 break;
2784 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2785 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2786 pass)))
2787 break;
2788 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2789 xlog_recover_do_efd_trans(log, item, pass);
2790 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2791 if ((error = xlog_recover_do_dquot_trans(log, item,
2792 pass)))
2793 break;
2794 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2795 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2796 pass)))
2797 break;
2798 } else {
2799 xlog_warn("XFS: xlog_recover_do_trans");
2800 ASSERT(0);
2801 error = XFS_ERROR(EIO);
2802 break;
2803 }
2804 item = item->ri_next;
2805 } while (first_item != item);
2806
2807 return error;
2808 }
2809
2810 /*
2811 * Free up any resources allocated by the transaction
2812 *
2813 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2814 */
2815 STATIC void
2816 xlog_recover_free_trans(
2817 xlog_recover_t *trans)
2818 {
2819 xlog_recover_item_t *first_item, *item, *free_item;
2820 int i;
2821
2822 item = first_item = trans->r_itemq;
2823 do {
2824 free_item = item;
2825 item = item->ri_next;
2826 /* Free the regions in the item. */
2827 for (i = 0; i < free_item->ri_cnt; i++) {
2828 kmem_free(free_item->ri_buf[i].i_addr);
2829 }
2830 /* Free the item itself */
2831 kmem_free(free_item->ri_buf);
2832 kmem_free(free_item);
2833 } while (first_item != item);
2834 /* Free the transaction recover structure */
2835 kmem_free(trans);
2836 }
2837
2838 STATIC int
2839 xlog_recover_commit_trans(
2840 xlog_t *log,
2841 xlog_recover_t **q,
2842 xlog_recover_t *trans,
2843 int pass)
2844 {
2845 int error;
2846
2847 if ((error = xlog_recover_unlink_tid(q, trans)))
2848 return error;
2849 if ((error = xlog_recover_do_trans(log, trans, pass)))
2850 return error;
2851 xlog_recover_free_trans(trans); /* no error */
2852 return 0;
2853 }
2854
2855 STATIC int
2856 xlog_recover_unmount_trans(
2857 xlog_recover_t *trans)
2858 {
2859 /* Do nothing now */
2860 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2861 return 0;
2862 }
2863
2864 /*
2865 * There are two valid states of the r_state field. 0 indicates that the
2866 * transaction structure is in a normal state. We have either seen the
2867 * start of the transaction or the last operation we added was not a partial
2868 * operation. If the last operation we added to the transaction was a
2869 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2870 *
2871 * NOTE: skip LRs with 0 data length.
2872 */
2873 STATIC int
2874 xlog_recover_process_data(
2875 xlog_t *log,
2876 xlog_recover_t *rhash[],
2877 xlog_rec_header_t *rhead,
2878 xfs_caddr_t dp,
2879 int pass)
2880 {
2881 xfs_caddr_t lp;
2882 int num_logops;
2883 xlog_op_header_t *ohead;
2884 xlog_recover_t *trans;
2885 xlog_tid_t tid;
2886 int error;
2887 unsigned long hash;
2888 uint flags;
2889
2890 lp = dp + be32_to_cpu(rhead->h_len);
2891 num_logops = be32_to_cpu(rhead->h_num_logops);
2892
2893 /* check the log format matches our own - else we can't recover */
2894 if (xlog_header_check_recover(log->l_mp, rhead))
2895 return (XFS_ERROR(EIO));
2896
2897 while ((dp < lp) && num_logops) {
2898 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2899 ohead = (xlog_op_header_t *)dp;
2900 dp += sizeof(xlog_op_header_t);
2901 if (ohead->oh_clientid != XFS_TRANSACTION &&
2902 ohead->oh_clientid != XFS_LOG) {
2903 xlog_warn(
2904 "XFS: xlog_recover_process_data: bad clientid");
2905 ASSERT(0);
2906 return (XFS_ERROR(EIO));
2907 }
2908 tid = be32_to_cpu(ohead->oh_tid);
2909 hash = XLOG_RHASH(tid);
2910 trans = xlog_recover_find_tid(rhash[hash], tid);
2911 if (trans == NULL) { /* not found; add new tid */
2912 if (ohead->oh_flags & XLOG_START_TRANS)
2913 xlog_recover_new_tid(&rhash[hash], tid,
2914 be64_to_cpu(rhead->h_lsn));
2915 } else {
2916 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2917 xlog_warn(
2918 "XFS: xlog_recover_process_data: bad length");
2919 WARN_ON(1);
2920 return (XFS_ERROR(EIO));
2921 }
2922 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2923 if (flags & XLOG_WAS_CONT_TRANS)
2924 flags &= ~XLOG_CONTINUE_TRANS;
2925 switch (flags) {
2926 case XLOG_COMMIT_TRANS:
2927 error = xlog_recover_commit_trans(log,
2928 &rhash[hash], trans, pass);
2929 break;
2930 case XLOG_UNMOUNT_TRANS:
2931 error = xlog_recover_unmount_trans(trans);
2932 break;
2933 case XLOG_WAS_CONT_TRANS:
2934 error = xlog_recover_add_to_cont_trans(trans,
2935 dp, be32_to_cpu(ohead->oh_len));
2936 break;
2937 case XLOG_START_TRANS:
2938 xlog_warn(
2939 "XFS: xlog_recover_process_data: bad transaction");
2940 ASSERT(0);
2941 error = XFS_ERROR(EIO);
2942 break;
2943 case 0:
2944 case XLOG_CONTINUE_TRANS:
2945 error = xlog_recover_add_to_trans(trans,
2946 dp, be32_to_cpu(ohead->oh_len));
2947 break;
2948 default:
2949 xlog_warn(
2950 "XFS: xlog_recover_process_data: bad flag");
2951 ASSERT(0);
2952 error = XFS_ERROR(EIO);
2953 break;
2954 }
2955 if (error)
2956 return error;
2957 }
2958 dp += be32_to_cpu(ohead->oh_len);
2959 num_logops--;
2960 }
2961 return 0;
2962 }
2963
2964 /*
2965 * Process an extent free intent item that was recovered from
2966 * the log. We need to free the extents that it describes.
2967 */
2968 STATIC int
2969 xlog_recover_process_efi(
2970 xfs_mount_t *mp,
2971 xfs_efi_log_item_t *efip)
2972 {
2973 xfs_efd_log_item_t *efdp;
2974 xfs_trans_t *tp;
2975 int i;
2976 int error = 0;
2977 xfs_extent_t *extp;
2978 xfs_fsblock_t startblock_fsb;
2979
2980 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2981
2982 /*
2983 * First check the validity of the extents described by the
2984 * EFI. If any are bad, then assume that all are bad and
2985 * just toss the EFI.
2986 */
2987 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2988 extp = &(efip->efi_format.efi_extents[i]);
2989 startblock_fsb = XFS_BB_TO_FSB(mp,
2990 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2991 if ((startblock_fsb == 0) ||
2992 (extp->ext_len == 0) ||
2993 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2994 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2995 /*
2996 * This will pull the EFI from the AIL and
2997 * free the memory associated with it.
2998 */
2999 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3000 return XFS_ERROR(EIO);
3001 }
3002 }
3003
3004 tp = xfs_trans_alloc(mp, 0);
3005 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3006 if (error)
3007 goto abort_error;
3008 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3009
3010 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3011 extp = &(efip->efi_format.efi_extents[i]);
3012 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3013 if (error)
3014 goto abort_error;
3015 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3016 extp->ext_len);
3017 }
3018
3019 efip->efi_flags |= XFS_EFI_RECOVERED;
3020 error = xfs_trans_commit(tp, 0);
3021 return error;
3022
3023 abort_error:
3024 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3025 return error;
3026 }
3027
3028 /*
3029 * When this is called, all of the EFIs which did not have
3030 * corresponding EFDs should be in the AIL. What we do now
3031 * is free the extents associated with each one.
3032 *
3033 * Since we process the EFIs in normal transactions, they
3034 * will be removed at some point after the commit. This prevents
3035 * us from just walking down the list processing each one.
3036 * We'll use a flag in the EFI to skip those that we've already
3037 * processed and use the AIL iteration mechanism's generation
3038 * count to try to speed this up at least a bit.
3039 *
3040 * When we start, we know that the EFIs are the only things in
3041 * the AIL. As we process them, however, other items are added
3042 * to the AIL. Since everything added to the AIL must come after
3043 * everything already in the AIL, we stop processing as soon as
3044 * we see something other than an EFI in the AIL.
3045 */
3046 STATIC int
3047 xlog_recover_process_efis(
3048 xlog_t *log)
3049 {
3050 xfs_log_item_t *lip;
3051 xfs_efi_log_item_t *efip;
3052 int error = 0;
3053 struct xfs_ail_cursor cur;
3054 struct xfs_ail *ailp;
3055
3056 ailp = log->l_ailp;
3057 spin_lock(&ailp->xa_lock);
3058 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3059 while (lip != NULL) {
3060 /*
3061 * We're done when we see something other than an EFI.
3062 * There should be no EFIs left in the AIL now.
3063 */
3064 if (lip->li_type != XFS_LI_EFI) {
3065 #ifdef DEBUG
3066 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3067 ASSERT(lip->li_type != XFS_LI_EFI);
3068 #endif
3069 break;
3070 }
3071
3072 /*
3073 * Skip EFIs that we've already processed.
3074 */
3075 efip = (xfs_efi_log_item_t *)lip;
3076 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3077 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3078 continue;
3079 }
3080
3081 spin_unlock(&ailp->xa_lock);
3082 error = xlog_recover_process_efi(log->l_mp, efip);
3083 spin_lock(&ailp->xa_lock);
3084 if (error)
3085 goto out;
3086 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3087 }
3088 out:
3089 xfs_trans_ail_cursor_done(ailp, &cur);
3090 spin_unlock(&ailp->xa_lock);
3091 return error;
3092 }
3093
3094 /*
3095 * This routine performs a transaction to null out a bad inode pointer
3096 * in an agi unlinked inode hash bucket.
3097 */
3098 STATIC void
3099 xlog_recover_clear_agi_bucket(
3100 xfs_mount_t *mp,
3101 xfs_agnumber_t agno,
3102 int bucket)
3103 {
3104 xfs_trans_t *tp;
3105 xfs_agi_t *agi;
3106 xfs_buf_t *agibp;
3107 int offset;
3108 int error;
3109
3110 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3111 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3112 0, 0, 0);
3113 if (error)
3114 goto out_abort;
3115
3116 error = xfs_read_agi(mp, tp, agno, &agibp);
3117 if (error)
3118 goto out_abort;
3119
3120 agi = XFS_BUF_TO_AGI(agibp);
3121 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3122 offset = offsetof(xfs_agi_t, agi_unlinked) +
3123 (sizeof(xfs_agino_t) * bucket);
3124 xfs_trans_log_buf(tp, agibp, offset,
3125 (offset + sizeof(xfs_agino_t) - 1));
3126
3127 error = xfs_trans_commit(tp, 0);
3128 if (error)
3129 goto out_error;
3130 return;
3131
3132 out_abort:
3133 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3134 out_error:
3135 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3136 "failed to clear agi %d. Continuing.", agno);
3137 return;
3138 }
3139
3140 STATIC xfs_agino_t
3141 xlog_recover_process_one_iunlink(
3142 struct xfs_mount *mp,
3143 xfs_agnumber_t agno,
3144 xfs_agino_t agino,
3145 int bucket)
3146 {
3147 struct xfs_buf *ibp;
3148 struct xfs_dinode *dip;
3149 struct xfs_inode *ip;
3150 xfs_ino_t ino;
3151 int error;
3152
3153 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3154 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3155 if (error)
3156 goto fail;
3157
3158 /*
3159 * Get the on disk inode to find the next inode in the bucket.
3160 */
3161 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3162 if (error)
3163 goto fail_iput;
3164
3165 ASSERT(ip->i_d.di_nlink == 0);
3166 ASSERT(ip->i_d.di_mode != 0);
3167
3168 /* setup for the next pass */
3169 agino = be32_to_cpu(dip->di_next_unlinked);
3170 xfs_buf_relse(ibp);
3171
3172 /*
3173 * Prevent any DMAPI event from being sent when the reference on
3174 * the inode is dropped.
3175 */
3176 ip->i_d.di_dmevmask = 0;
3177
3178 IRELE(ip);
3179 return agino;
3180
3181 fail_iput:
3182 IRELE(ip);
3183 fail:
3184 /*
3185 * We can't read in the inode this bucket points to, or this inode
3186 * is messed up. Just ditch this bucket of inodes. We will lose
3187 * some inodes and space, but at least we won't hang.
3188 *
3189 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3190 * clear the inode pointer in the bucket.
3191 */
3192 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3193 return NULLAGINO;
3194 }
3195
3196 /*
3197 * xlog_iunlink_recover
3198 *
3199 * This is called during recovery to process any inodes which
3200 * we unlinked but not freed when the system crashed. These
3201 * inodes will be on the lists in the AGI blocks. What we do
3202 * here is scan all the AGIs and fully truncate and free any
3203 * inodes found on the lists. Each inode is removed from the
3204 * lists when it has been fully truncated and is freed. The
3205 * freeing of the inode and its removal from the list must be
3206 * atomic.
3207 */
3208 void
3209 xlog_recover_process_iunlinks(
3210 xlog_t *log)
3211 {
3212 xfs_mount_t *mp;
3213 xfs_agnumber_t agno;
3214 xfs_agi_t *agi;
3215 xfs_buf_t *agibp;
3216 xfs_agino_t agino;
3217 int bucket;
3218 int error;
3219 uint mp_dmevmask;
3220
3221 mp = log->l_mp;
3222
3223 /*
3224 * Prevent any DMAPI event from being sent while in this function.
3225 */
3226 mp_dmevmask = mp->m_dmevmask;
3227 mp->m_dmevmask = 0;
3228
3229 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3230 /*
3231 * Find the agi for this ag.
3232 */
3233 error = xfs_read_agi(mp, NULL, agno, &agibp);
3234 if (error) {
3235 /*
3236 * AGI is b0rked. Don't process it.
3237 *
3238 * We should probably mark the filesystem as corrupt
3239 * after we've recovered all the ag's we can....
3240 */
3241 continue;
3242 }
3243 agi = XFS_BUF_TO_AGI(agibp);
3244
3245 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3246 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3247 while (agino != NULLAGINO) {
3248 /*
3249 * Release the agi buffer so that it can
3250 * be acquired in the normal course of the
3251 * transaction to truncate and free the inode.
3252 */
3253 xfs_buf_relse(agibp);
3254
3255 agino = xlog_recover_process_one_iunlink(mp,
3256 agno, agino, bucket);
3257
3258 /*
3259 * Reacquire the agibuffer and continue around
3260 * the loop. This should never fail as we know
3261 * the buffer was good earlier on.
3262 */
3263 error = xfs_read_agi(mp, NULL, agno, &agibp);
3264 ASSERT(error == 0);
3265 agi = XFS_BUF_TO_AGI(agibp);
3266 }
3267 }
3268
3269 /*
3270 * Release the buffer for the current agi so we can
3271 * go on to the next one.
3272 */
3273 xfs_buf_relse(agibp);
3274 }
3275
3276 mp->m_dmevmask = mp_dmevmask;
3277 }
3278
3279
3280 #ifdef DEBUG
3281 STATIC void
3282 xlog_pack_data_checksum(
3283 xlog_t *log,
3284 xlog_in_core_t *iclog,
3285 int size)
3286 {
3287 int i;
3288 __be32 *up;
3289 uint chksum = 0;
3290
3291 up = (__be32 *)iclog->ic_datap;
3292 /* divide length by 4 to get # words */
3293 for (i = 0; i < (size >> 2); i++) {
3294 chksum ^= be32_to_cpu(*up);
3295 up++;
3296 }
3297 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3298 }
3299 #else
3300 #define xlog_pack_data_checksum(log, iclog, size)
3301 #endif
3302
3303 /*
3304 * Stamp cycle number in every block
3305 */
3306 void
3307 xlog_pack_data(
3308 xlog_t *log,
3309 xlog_in_core_t *iclog,
3310 int roundoff)
3311 {
3312 int i, j, k;
3313 int size = iclog->ic_offset + roundoff;
3314 __be32 cycle_lsn;
3315 xfs_caddr_t dp;
3316
3317 xlog_pack_data_checksum(log, iclog, size);
3318
3319 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3320
3321 dp = iclog->ic_datap;
3322 for (i = 0; i < BTOBB(size) &&
3323 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3324 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3325 *(__be32 *)dp = cycle_lsn;
3326 dp += BBSIZE;
3327 }
3328
3329 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3330 xlog_in_core_2_t *xhdr = iclog->ic_data;
3331
3332 for ( ; i < BTOBB(size); i++) {
3333 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3334 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3335 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3336 *(__be32 *)dp = cycle_lsn;
3337 dp += BBSIZE;
3338 }
3339
3340 for (i = 1; i < log->l_iclog_heads; i++) {
3341 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3342 }
3343 }
3344 }
3345
3346 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3347 STATIC void
3348 xlog_unpack_data_checksum(
3349 xlog_rec_header_t *rhead,
3350 xfs_caddr_t dp,
3351 xlog_t *log)
3352 {
3353 __be32 *up = (__be32 *)dp;
3354 uint chksum = 0;
3355 int i;
3356
3357 /* divide length by 4 to get # words */
3358 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3359 chksum ^= be32_to_cpu(*up);
3360 up++;
3361 }
3362 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3363 if (rhead->h_chksum ||
3364 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3365 cmn_err(CE_DEBUG,
3366 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3367 be32_to_cpu(rhead->h_chksum), chksum);
3368 cmn_err(CE_DEBUG,
3369 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3370 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3371 cmn_err(CE_DEBUG,
3372 "XFS: LogR this is a LogV2 filesystem\n");
3373 }
3374 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3375 }
3376 }
3377 }
3378 #else
3379 #define xlog_unpack_data_checksum(rhead, dp, log)
3380 #endif
3381
3382 STATIC void
3383 xlog_unpack_data(
3384 xlog_rec_header_t *rhead,
3385 xfs_caddr_t dp,
3386 xlog_t *log)
3387 {
3388 int i, j, k;
3389
3390 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3391 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3392 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3393 dp += BBSIZE;
3394 }
3395
3396 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3397 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3398 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3399 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3400 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3401 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3402 dp += BBSIZE;
3403 }
3404 }
3405
3406 xlog_unpack_data_checksum(rhead, dp, log);
3407 }
3408
3409 STATIC int
3410 xlog_valid_rec_header(
3411 xlog_t *log,
3412 xlog_rec_header_t *rhead,
3413 xfs_daddr_t blkno)
3414 {
3415 int hlen;
3416
3417 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3418 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3419 XFS_ERRLEVEL_LOW, log->l_mp);
3420 return XFS_ERROR(EFSCORRUPTED);
3421 }
3422 if (unlikely(
3423 (!rhead->h_version ||
3424 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3425 xlog_warn("XFS: %s: unrecognised log version (%d).",
3426 __func__, be32_to_cpu(rhead->h_version));
3427 return XFS_ERROR(EIO);
3428 }
3429
3430 /* LR body must have data or it wouldn't have been written */
3431 hlen = be32_to_cpu(rhead->h_len);
3432 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3433 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3434 XFS_ERRLEVEL_LOW, log->l_mp);
3435 return XFS_ERROR(EFSCORRUPTED);
3436 }
3437 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3438 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3439 XFS_ERRLEVEL_LOW, log->l_mp);
3440 return XFS_ERROR(EFSCORRUPTED);
3441 }
3442 return 0;
3443 }
3444
3445 /*
3446 * Read the log from tail to head and process the log records found.
3447 * Handle the two cases where the tail and head are in the same cycle
3448 * and where the active portion of the log wraps around the end of
3449 * the physical log separately. The pass parameter is passed through
3450 * to the routines called to process the data and is not looked at
3451 * here.
3452 */
3453 STATIC int
3454 xlog_do_recovery_pass(
3455 xlog_t *log,
3456 xfs_daddr_t head_blk,
3457 xfs_daddr_t tail_blk,
3458 int pass)
3459 {
3460 xlog_rec_header_t *rhead;
3461 xfs_daddr_t blk_no;
3462 xfs_caddr_t bufaddr, offset;
3463 xfs_buf_t *hbp, *dbp;
3464 int error = 0, h_size;
3465 int bblks, split_bblks;
3466 int hblks, split_hblks, wrapped_hblks;
3467 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3468
3469 ASSERT(head_blk != tail_blk);
3470
3471 /*
3472 * Read the header of the tail block and get the iclog buffer size from
3473 * h_size. Use this to tell how many sectors make up the log header.
3474 */
3475 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3476 /*
3477 * When using variable length iclogs, read first sector of
3478 * iclog header and extract the header size from it. Get a
3479 * new hbp that is the correct size.
3480 */
3481 hbp = xlog_get_bp(log, 1);
3482 if (!hbp)
3483 return ENOMEM;
3484 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3485 goto bread_err1;
3486 offset = xlog_align(log, tail_blk, 1, hbp);
3487 rhead = (xlog_rec_header_t *)offset;
3488 error = xlog_valid_rec_header(log, rhead, tail_blk);
3489 if (error)
3490 goto bread_err1;
3491 h_size = be32_to_cpu(rhead->h_size);
3492 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3493 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3494 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3495 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3496 hblks++;
3497 xlog_put_bp(hbp);
3498 hbp = xlog_get_bp(log, hblks);
3499 } else {
3500 hblks = 1;
3501 }
3502 } else {
3503 ASSERT(log->l_sectbb_log == 0);
3504 hblks = 1;
3505 hbp = xlog_get_bp(log, 1);
3506 h_size = XLOG_BIG_RECORD_BSIZE;
3507 }
3508
3509 if (!hbp)
3510 return ENOMEM;
3511 dbp = xlog_get_bp(log, BTOBB(h_size));
3512 if (!dbp) {
3513 xlog_put_bp(hbp);
3514 return ENOMEM;
3515 }
3516
3517 memset(rhash, 0, sizeof(rhash));
3518 if (tail_blk <= head_blk) {
3519 for (blk_no = tail_blk; blk_no < head_blk; ) {
3520 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3521 goto bread_err2;
3522 offset = xlog_align(log, blk_no, hblks, hbp);
3523 rhead = (xlog_rec_header_t *)offset;
3524 error = xlog_valid_rec_header(log, rhead, blk_no);
3525 if (error)
3526 goto bread_err2;
3527
3528 /* blocks in data section */
3529 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3530 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3531 if (error)
3532 goto bread_err2;
3533 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3534 xlog_unpack_data(rhead, offset, log);
3535 if ((error = xlog_recover_process_data(log,
3536 rhash, rhead, offset, pass)))
3537 goto bread_err2;
3538 blk_no += bblks + hblks;
3539 }
3540 } else {
3541 /*
3542 * Perform recovery around the end of the physical log.
3543 * When the head is not on the same cycle number as the tail,
3544 * we can't do a sequential recovery as above.
3545 */
3546 blk_no = tail_blk;
3547 while (blk_no < log->l_logBBsize) {
3548 /*
3549 * Check for header wrapping around physical end-of-log
3550 */
3551 offset = NULL;
3552 split_hblks = 0;
3553 wrapped_hblks = 0;
3554 if (blk_no + hblks <= log->l_logBBsize) {
3555 /* Read header in one read */
3556 error = xlog_bread(log, blk_no, hblks, hbp);
3557 if (error)
3558 goto bread_err2;
3559 offset = xlog_align(log, blk_no, hblks, hbp);
3560 } else {
3561 /* This LR is split across physical log end */
3562 if (blk_no != log->l_logBBsize) {
3563 /* some data before physical log end */
3564 ASSERT(blk_no <= INT_MAX);
3565 split_hblks = log->l_logBBsize - (int)blk_no;
3566 ASSERT(split_hblks > 0);
3567 if ((error = xlog_bread(log, blk_no,
3568 split_hblks, hbp)))
3569 goto bread_err2;
3570 offset = xlog_align(log, blk_no,
3571 split_hblks, hbp);
3572 }
3573 /*
3574 * Note: this black magic still works with
3575 * large sector sizes (non-512) only because:
3576 * - we increased the buffer size originally
3577 * by 1 sector giving us enough extra space
3578 * for the second read;
3579 * - the log start is guaranteed to be sector
3580 * aligned;
3581 * - we read the log end (LR header start)
3582 * _first_, then the log start (LR header end)
3583 * - order is important.
3584 */
3585 wrapped_hblks = hblks - split_hblks;
3586 bufaddr = XFS_BUF_PTR(hbp);
3587 error = XFS_BUF_SET_PTR(hbp,
3588 bufaddr + BBTOB(split_hblks),
3589 BBTOB(hblks - split_hblks));
3590 if (!error)
3591 error = xlog_bread(log, 0,
3592 wrapped_hblks, hbp);
3593 if (!error)
3594 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3595 BBTOB(hblks));
3596 if (error)
3597 goto bread_err2;
3598 if (!offset)
3599 offset = xlog_align(log, 0,
3600 wrapped_hblks, hbp);
3601 }
3602 rhead = (xlog_rec_header_t *)offset;
3603 error = xlog_valid_rec_header(log, rhead,
3604 split_hblks ? blk_no : 0);
3605 if (error)
3606 goto bread_err2;
3607
3608 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3609 blk_no += hblks;
3610
3611 /* Read in data for log record */
3612 if (blk_no + bblks <= log->l_logBBsize) {
3613 error = xlog_bread(log, blk_no, bblks, dbp);
3614 if (error)
3615 goto bread_err2;
3616 offset = xlog_align(log, blk_no, bblks, dbp);
3617 } else {
3618 /* This log record is split across the
3619 * physical end of log */
3620 offset = NULL;
3621 split_bblks = 0;
3622 if (blk_no != log->l_logBBsize) {
3623 /* some data is before the physical
3624 * end of log */
3625 ASSERT(!wrapped_hblks);
3626 ASSERT(blk_no <= INT_MAX);
3627 split_bblks =
3628 log->l_logBBsize - (int)blk_no;
3629 ASSERT(split_bblks > 0);
3630 if ((error = xlog_bread(log, blk_no,
3631 split_bblks, dbp)))
3632 goto bread_err2;
3633 offset = xlog_align(log, blk_no,
3634 split_bblks, dbp);
3635 }
3636 /*
3637 * Note: this black magic still works with
3638 * large sector sizes (non-512) only because:
3639 * - we increased the buffer size originally
3640 * by 1 sector giving us enough extra space
3641 * for the second read;
3642 * - the log start is guaranteed to be sector
3643 * aligned;
3644 * - we read the log end (LR header start)
3645 * _first_, then the log start (LR header end)
3646 * - order is important.
3647 */
3648 bufaddr = XFS_BUF_PTR(dbp);
3649 error = XFS_BUF_SET_PTR(dbp,
3650 bufaddr + BBTOB(split_bblks),
3651 BBTOB(bblks - split_bblks));
3652 if (!error)
3653 error = xlog_bread(log, wrapped_hblks,
3654 bblks - split_bblks,
3655 dbp);
3656 if (!error)
3657 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3658 h_size);
3659 if (error)
3660 goto bread_err2;
3661 if (!offset)
3662 offset = xlog_align(log, wrapped_hblks,
3663 bblks - split_bblks, dbp);
3664 }
3665 xlog_unpack_data(rhead, offset, log);
3666 if ((error = xlog_recover_process_data(log, rhash,
3667 rhead, offset, pass)))
3668 goto bread_err2;
3669 blk_no += bblks;
3670 }
3671
3672 ASSERT(blk_no >= log->l_logBBsize);
3673 blk_no -= log->l_logBBsize;
3674
3675 /* read first part of physical log */
3676 while (blk_no < head_blk) {
3677 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3678 goto bread_err2;
3679 offset = xlog_align(log, blk_no, hblks, hbp);
3680 rhead = (xlog_rec_header_t *)offset;
3681 error = xlog_valid_rec_header(log, rhead, blk_no);
3682 if (error)
3683 goto bread_err2;
3684 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3685 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3686 goto bread_err2;
3687 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3688 xlog_unpack_data(rhead, offset, log);
3689 if ((error = xlog_recover_process_data(log, rhash,
3690 rhead, offset, pass)))
3691 goto bread_err2;
3692 blk_no += bblks + hblks;
3693 }
3694 }
3695
3696 bread_err2:
3697 xlog_put_bp(dbp);
3698 bread_err1:
3699 xlog_put_bp(hbp);
3700 return error;
3701 }
3702
3703 /*
3704 * Do the recovery of the log. We actually do this in two phases.
3705 * The two passes are necessary in order to implement the function
3706 * of cancelling a record written into the log. The first pass
3707 * determines those things which have been cancelled, and the
3708 * second pass replays log items normally except for those which
3709 * have been cancelled. The handling of the replay and cancellations
3710 * takes place in the log item type specific routines.
3711 *
3712 * The table of items which have cancel records in the log is allocated
3713 * and freed at this level, since only here do we know when all of
3714 * the log recovery has been completed.
3715 */
3716 STATIC int
3717 xlog_do_log_recovery(
3718 xlog_t *log,
3719 xfs_daddr_t head_blk,
3720 xfs_daddr_t tail_blk)
3721 {
3722 int error;
3723
3724 ASSERT(head_blk != tail_blk);
3725
3726 /*
3727 * First do a pass to find all of the cancelled buf log items.
3728 * Store them in the buf_cancel_table for use in the second pass.
3729 */
3730 log->l_buf_cancel_table =
3731 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3732 sizeof(xfs_buf_cancel_t*),
3733 KM_SLEEP);
3734 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3735 XLOG_RECOVER_PASS1);
3736 if (error != 0) {
3737 kmem_free(log->l_buf_cancel_table);
3738 log->l_buf_cancel_table = NULL;
3739 return error;
3740 }
3741 /*
3742 * Then do a second pass to actually recover the items in the log.
3743 * When it is complete free the table of buf cancel items.
3744 */
3745 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3746 XLOG_RECOVER_PASS2);
3747 #ifdef DEBUG
3748 if (!error) {
3749 int i;
3750
3751 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3752 ASSERT(log->l_buf_cancel_table[i] == NULL);
3753 }
3754 #endif /* DEBUG */
3755
3756 kmem_free(log->l_buf_cancel_table);
3757 log->l_buf_cancel_table = NULL;
3758
3759 return error;
3760 }
3761
3762 /*
3763 * Do the actual recovery
3764 */
3765 STATIC int
3766 xlog_do_recover(
3767 xlog_t *log,
3768 xfs_daddr_t head_blk,
3769 xfs_daddr_t tail_blk)
3770 {
3771 int error;
3772 xfs_buf_t *bp;
3773 xfs_sb_t *sbp;
3774
3775 /*
3776 * First replay the images in the log.
3777 */
3778 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3779 if (error) {
3780 return error;
3781 }
3782
3783 XFS_bflush(log->l_mp->m_ddev_targp);
3784
3785 /*
3786 * If IO errors happened during recovery, bail out.
3787 */
3788 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3789 return (EIO);
3790 }
3791
3792 /*
3793 * We now update the tail_lsn since much of the recovery has completed
3794 * and there may be space available to use. If there were no extent
3795 * or iunlinks, we can free up the entire log and set the tail_lsn to
3796 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3797 * lsn of the last known good LR on disk. If there are extent frees
3798 * or iunlinks they will have some entries in the AIL; so we look at
3799 * the AIL to determine how to set the tail_lsn.
3800 */
3801 xlog_assign_tail_lsn(log->l_mp);
3802
3803 /*
3804 * Now that we've finished replaying all buffer and inode
3805 * updates, re-read in the superblock.
3806 */
3807 bp = xfs_getsb(log->l_mp, 0);
3808 XFS_BUF_UNDONE(bp);
3809 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3810 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3811 XFS_BUF_READ(bp);
3812 XFS_BUF_UNASYNC(bp);
3813 xfsbdstrat(log->l_mp, bp);
3814 error = xfs_iowait(bp);
3815 if (error) {
3816 xfs_ioerror_alert("xlog_do_recover",
3817 log->l_mp, bp, XFS_BUF_ADDR(bp));
3818 ASSERT(0);
3819 xfs_buf_relse(bp);
3820 return error;
3821 }
3822
3823 /* Convert superblock from on-disk format */
3824 sbp = &log->l_mp->m_sb;
3825 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3826 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3827 ASSERT(xfs_sb_good_version(sbp));
3828 xfs_buf_relse(bp);
3829
3830 /* We've re-read the superblock so re-initialize per-cpu counters */
3831 xfs_icsb_reinit_counters(log->l_mp);
3832
3833 xlog_recover_check_summary(log);
3834
3835 /* Normal transactions can now occur */
3836 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3837 return 0;
3838 }
3839
3840 /*
3841 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3842 *
3843 * Return error or zero.
3844 */
3845 int
3846 xlog_recover(
3847 xlog_t *log)
3848 {
3849 xfs_daddr_t head_blk, tail_blk;
3850 int error;
3851
3852 /* find the tail of the log */
3853 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3854 return error;
3855
3856 if (tail_blk != head_blk) {
3857 /* There used to be a comment here:
3858 *
3859 * disallow recovery on read-only mounts. note -- mount
3860 * checks for ENOSPC and turns it into an intelligent
3861 * error message.
3862 * ...but this is no longer true. Now, unless you specify
3863 * NORECOVERY (in which case this function would never be
3864 * called), we just go ahead and recover. We do this all
3865 * under the vfs layer, so we can get away with it unless
3866 * the device itself is read-only, in which case we fail.
3867 */
3868 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3869 return error;
3870 }
3871
3872 cmn_err(CE_NOTE,
3873 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3874 log->l_mp->m_fsname, log->l_mp->m_logname ?
3875 log->l_mp->m_logname : "internal");
3876
3877 error = xlog_do_recover(log, head_blk, tail_blk);
3878 log->l_flags |= XLOG_RECOVERY_NEEDED;
3879 }
3880 return error;
3881 }
3882
3883 /*
3884 * In the first part of recovery we replay inodes and buffers and build
3885 * up the list of extent free items which need to be processed. Here
3886 * we process the extent free items and clean up the on disk unlinked
3887 * inode lists. This is separated from the first part of recovery so
3888 * that the root and real-time bitmap inodes can be read in from disk in
3889 * between the two stages. This is necessary so that we can free space
3890 * in the real-time portion of the file system.
3891 */
3892 int
3893 xlog_recover_finish(
3894 xlog_t *log)
3895 {
3896 /*
3897 * Now we're ready to do the transactions needed for the
3898 * rest of recovery. Start with completing all the extent
3899 * free intent records and then process the unlinked inode
3900 * lists. At this point, we essentially run in normal mode
3901 * except that we're still performing recovery actions
3902 * rather than accepting new requests.
3903 */
3904 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3905 int error;
3906 error = xlog_recover_process_efis(log);
3907 if (error) {
3908 cmn_err(CE_ALERT,
3909 "Failed to recover EFIs on filesystem: %s",
3910 log->l_mp->m_fsname);
3911 return error;
3912 }
3913 /*
3914 * Sync the log to get all the EFIs out of the AIL.
3915 * This isn't absolutely necessary, but it helps in
3916 * case the unlink transactions would have problems
3917 * pushing the EFIs out of the way.
3918 */
3919 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3920 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3921
3922 xlog_recover_process_iunlinks(log);
3923
3924 xlog_recover_check_summary(log);
3925
3926 cmn_err(CE_NOTE,
3927 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3928 log->l_mp->m_fsname, log->l_mp->m_logname ?
3929 log->l_mp->m_logname : "internal");
3930 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3931 } else {
3932 cmn_err(CE_DEBUG,
3933 "!Ending clean XFS mount for filesystem: %s\n",
3934 log->l_mp->m_fsname);
3935 }
3936 return 0;
3937 }
3938
3939
3940 #if defined(DEBUG)
3941 /*
3942 * Read all of the agf and agi counters and check that they
3943 * are consistent with the superblock counters.
3944 */
3945 void
3946 xlog_recover_check_summary(
3947 xlog_t *log)
3948 {
3949 xfs_mount_t *mp;
3950 xfs_agf_t *agfp;
3951 xfs_buf_t *agfbp;
3952 xfs_buf_t *agibp;
3953 xfs_buf_t *sbbp;
3954 #ifdef XFS_LOUD_RECOVERY
3955 xfs_sb_t *sbp;
3956 #endif
3957 xfs_agnumber_t agno;
3958 __uint64_t freeblks;
3959 __uint64_t itotal;
3960 __uint64_t ifree;
3961 int error;
3962
3963 mp = log->l_mp;
3964
3965 freeblks = 0LL;
3966 itotal = 0LL;
3967 ifree = 0LL;
3968 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3969 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3970 if (error) {
3971 xfs_fs_cmn_err(CE_ALERT, mp,
3972 "xlog_recover_check_summary(agf)"
3973 "agf read failed agno %d error %d",
3974 agno, error);
3975 } else {
3976 agfp = XFS_BUF_TO_AGF(agfbp);
3977 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3978 be32_to_cpu(agfp->agf_flcount);
3979 xfs_buf_relse(agfbp);
3980 }
3981
3982 error = xfs_read_agi(mp, NULL, agno, &agibp);
3983 if (!error) {
3984 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3985
3986 itotal += be32_to_cpu(agi->agi_count);
3987 ifree += be32_to_cpu(agi->agi_freecount);
3988 xfs_buf_relse(agibp);
3989 }
3990 }
3991
3992 sbbp = xfs_getsb(mp, 0);
3993 #ifdef XFS_LOUD_RECOVERY
3994 sbp = &mp->m_sb;
3995 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
3996 cmn_err(CE_NOTE,
3997 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3998 sbp->sb_icount, itotal);
3999 cmn_err(CE_NOTE,
4000 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4001 sbp->sb_ifree, ifree);
4002 cmn_err(CE_NOTE,
4003 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4004 sbp->sb_fdblocks, freeblks);
4005 #if 0
4006 /*
4007 * This is turned off until I account for the allocation
4008 * btree blocks which live in free space.
4009 */
4010 ASSERT(sbp->sb_icount == itotal);
4011 ASSERT(sbp->sb_ifree == ifree);
4012 ASSERT(sbp->sb_fdblocks == freeblks);
4013 #endif
4014 #endif
4015 xfs_buf_relse(sbbp);
4016 }
4017 #endif /* DEBUG */