[9610] usbpd change abnormal detection threshold/time
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_log.h"
32
33
34 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
35
36 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
37 {
38 return container_of(lip, struct xfs_inode_log_item, ili_item);
39 }
40
41 STATIC void
42 xfs_inode_item_data_fork_size(
43 struct xfs_inode_log_item *iip,
44 int *nvecs,
45 int *nbytes)
46 {
47 struct xfs_inode *ip = iip->ili_inode;
48
49 switch (ip->i_d.di_format) {
50 case XFS_DINODE_FMT_EXTENTS:
51 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
52 ip->i_d.di_nextents > 0 &&
53 ip->i_df.if_bytes > 0) {
54 /* worst case, doesn't subtract delalloc extents */
55 *nbytes += XFS_IFORK_DSIZE(ip);
56 *nvecs += 1;
57 }
58 break;
59 case XFS_DINODE_FMT_BTREE:
60 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
61 ip->i_df.if_broot_bytes > 0) {
62 *nbytes += ip->i_df.if_broot_bytes;
63 *nvecs += 1;
64 }
65 break;
66 case XFS_DINODE_FMT_LOCAL:
67 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
68 ip->i_df.if_bytes > 0) {
69 *nbytes += roundup(ip->i_df.if_bytes, 4);
70 *nvecs += 1;
71 }
72 break;
73
74 case XFS_DINODE_FMT_DEV:
75 case XFS_DINODE_FMT_UUID:
76 break;
77 default:
78 ASSERT(0);
79 break;
80 }
81 }
82
83 STATIC void
84 xfs_inode_item_attr_fork_size(
85 struct xfs_inode_log_item *iip,
86 int *nvecs,
87 int *nbytes)
88 {
89 struct xfs_inode *ip = iip->ili_inode;
90
91 switch (ip->i_d.di_aformat) {
92 case XFS_DINODE_FMT_EXTENTS:
93 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
94 ip->i_d.di_anextents > 0 &&
95 ip->i_afp->if_bytes > 0) {
96 /* worst case, doesn't subtract unused space */
97 *nbytes += XFS_IFORK_ASIZE(ip);
98 *nvecs += 1;
99 }
100 break;
101 case XFS_DINODE_FMT_BTREE:
102 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
103 ip->i_afp->if_broot_bytes > 0) {
104 *nbytes += ip->i_afp->if_broot_bytes;
105 *nvecs += 1;
106 }
107 break;
108 case XFS_DINODE_FMT_LOCAL:
109 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110 ip->i_afp->if_bytes > 0) {
111 *nbytes += roundup(ip->i_afp->if_bytes, 4);
112 *nvecs += 1;
113 }
114 break;
115 default:
116 ASSERT(0);
117 break;
118 }
119 }
120
121 /*
122 * This returns the number of iovecs needed to log the given inode item.
123 *
124 * We need one iovec for the inode log format structure, one for the
125 * inode core, and possibly one for the inode data/extents/b-tree root
126 * and one for the inode attribute data/extents/b-tree root.
127 */
128 STATIC void
129 xfs_inode_item_size(
130 struct xfs_log_item *lip,
131 int *nvecs,
132 int *nbytes)
133 {
134 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
135 struct xfs_inode *ip = iip->ili_inode;
136
137 *nvecs += 2;
138 *nbytes += sizeof(struct xfs_inode_log_format) +
139 xfs_log_dinode_size(ip->i_d.di_version);
140
141 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
142 if (XFS_IFORK_Q(ip))
143 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
144 }
145
146 STATIC void
147 xfs_inode_item_format_data_fork(
148 struct xfs_inode_log_item *iip,
149 struct xfs_inode_log_format *ilf,
150 struct xfs_log_vec *lv,
151 struct xfs_log_iovec **vecp)
152 {
153 struct xfs_inode *ip = iip->ili_inode;
154 size_t data_bytes;
155
156 switch (ip->i_d.di_format) {
157 case XFS_DINODE_FMT_EXTENTS:
158 iip->ili_fields &=
159 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
160 XFS_ILOG_DEV | XFS_ILOG_UUID);
161
162 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
163 ip->i_d.di_nextents > 0 &&
164 ip->i_df.if_bytes > 0) {
165 struct xfs_bmbt_rec *p;
166
167 ASSERT(ip->i_df.if_u1.if_extents != NULL);
168 ASSERT(xfs_iext_count(&ip->i_df) > 0);
169
170 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
171 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
172 xlog_finish_iovec(lv, *vecp, data_bytes);
173
174 ASSERT(data_bytes <= ip->i_df.if_bytes);
175
176 ilf->ilf_dsize = data_bytes;
177 ilf->ilf_size++;
178 } else {
179 iip->ili_fields &= ~XFS_ILOG_DEXT;
180 }
181 break;
182 case XFS_DINODE_FMT_BTREE:
183 iip->ili_fields &=
184 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
185 XFS_ILOG_DEV | XFS_ILOG_UUID);
186
187 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
188 ip->i_df.if_broot_bytes > 0) {
189 ASSERT(ip->i_df.if_broot != NULL);
190 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
191 ip->i_df.if_broot,
192 ip->i_df.if_broot_bytes);
193 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
194 ilf->ilf_size++;
195 } else {
196 ASSERT(!(iip->ili_fields &
197 XFS_ILOG_DBROOT));
198 iip->ili_fields &= ~XFS_ILOG_DBROOT;
199 }
200 break;
201 case XFS_DINODE_FMT_LOCAL:
202 iip->ili_fields &=
203 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
204 XFS_ILOG_DEV | XFS_ILOG_UUID);
205 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
206 ip->i_df.if_bytes > 0) {
207 /*
208 * Round i_bytes up to a word boundary.
209 * The underlying memory is guaranteed to
210 * to be there by xfs_idata_realloc().
211 */
212 data_bytes = roundup(ip->i_df.if_bytes, 4);
213 ASSERT(ip->i_df.if_real_bytes == 0 ||
214 ip->i_df.if_real_bytes >= data_bytes);
215 ASSERT(ip->i_df.if_u1.if_data != NULL);
216 ASSERT(ip->i_d.di_size > 0);
217 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
218 ip->i_df.if_u1.if_data, data_bytes);
219 ilf->ilf_dsize = (unsigned)data_bytes;
220 ilf->ilf_size++;
221 } else {
222 iip->ili_fields &= ~XFS_ILOG_DDATA;
223 }
224 break;
225 case XFS_DINODE_FMT_DEV:
226 iip->ili_fields &=
227 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
228 XFS_ILOG_DEXT | XFS_ILOG_UUID);
229 if (iip->ili_fields & XFS_ILOG_DEV)
230 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
231 break;
232 case XFS_DINODE_FMT_UUID:
233 iip->ili_fields &=
234 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
235 XFS_ILOG_DEXT | XFS_ILOG_DEV);
236 if (iip->ili_fields & XFS_ILOG_UUID)
237 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
238 break;
239 default:
240 ASSERT(0);
241 break;
242 }
243 }
244
245 STATIC void
246 xfs_inode_item_format_attr_fork(
247 struct xfs_inode_log_item *iip,
248 struct xfs_inode_log_format *ilf,
249 struct xfs_log_vec *lv,
250 struct xfs_log_iovec **vecp)
251 {
252 struct xfs_inode *ip = iip->ili_inode;
253 size_t data_bytes;
254
255 switch (ip->i_d.di_aformat) {
256 case XFS_DINODE_FMT_EXTENTS:
257 iip->ili_fields &=
258 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
259
260 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
261 ip->i_d.di_anextents > 0 &&
262 ip->i_afp->if_bytes > 0) {
263 struct xfs_bmbt_rec *p;
264
265 ASSERT(xfs_iext_count(ip->i_afp) ==
266 ip->i_d.di_anextents);
267 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
268
269 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
270 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
271 xlog_finish_iovec(lv, *vecp, data_bytes);
272
273 ilf->ilf_asize = data_bytes;
274 ilf->ilf_size++;
275 } else {
276 iip->ili_fields &= ~XFS_ILOG_AEXT;
277 }
278 break;
279 case XFS_DINODE_FMT_BTREE:
280 iip->ili_fields &=
281 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
282
283 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
284 ip->i_afp->if_broot_bytes > 0) {
285 ASSERT(ip->i_afp->if_broot != NULL);
286
287 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
288 ip->i_afp->if_broot,
289 ip->i_afp->if_broot_bytes);
290 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
291 ilf->ilf_size++;
292 } else {
293 iip->ili_fields &= ~XFS_ILOG_ABROOT;
294 }
295 break;
296 case XFS_DINODE_FMT_LOCAL:
297 iip->ili_fields &=
298 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
299
300 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
301 ip->i_afp->if_bytes > 0) {
302 /*
303 * Round i_bytes up to a word boundary.
304 * The underlying memory is guaranteed to
305 * to be there by xfs_idata_realloc().
306 */
307 data_bytes = roundup(ip->i_afp->if_bytes, 4);
308 ASSERT(ip->i_afp->if_real_bytes == 0 ||
309 ip->i_afp->if_real_bytes >= data_bytes);
310 ASSERT(ip->i_afp->if_u1.if_data != NULL);
311 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
312 ip->i_afp->if_u1.if_data,
313 data_bytes);
314 ilf->ilf_asize = (unsigned)data_bytes;
315 ilf->ilf_size++;
316 } else {
317 iip->ili_fields &= ~XFS_ILOG_ADATA;
318 }
319 break;
320 default:
321 ASSERT(0);
322 break;
323 }
324 }
325
326 static void
327 xfs_inode_to_log_dinode(
328 struct xfs_inode *ip,
329 struct xfs_log_dinode *to,
330 xfs_lsn_t lsn)
331 {
332 struct xfs_icdinode *from = &ip->i_d;
333 struct inode *inode = VFS_I(ip);
334
335 to->di_magic = XFS_DINODE_MAGIC;
336
337 to->di_version = from->di_version;
338 to->di_format = from->di_format;
339 to->di_uid = from->di_uid;
340 to->di_gid = from->di_gid;
341 to->di_projid_lo = from->di_projid_lo;
342 to->di_projid_hi = from->di_projid_hi;
343
344 memset(to->di_pad, 0, sizeof(to->di_pad));
345 memset(to->di_pad3, 0, sizeof(to->di_pad3));
346 to->di_atime.t_sec = inode->i_atime.tv_sec;
347 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
348 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
349 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
350 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
351 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
352 to->di_nlink = inode->i_nlink;
353 to->di_gen = inode->i_generation;
354 to->di_mode = inode->i_mode;
355
356 to->di_size = from->di_size;
357 to->di_nblocks = from->di_nblocks;
358 to->di_extsize = from->di_extsize;
359 to->di_nextents = from->di_nextents;
360 to->di_anextents = from->di_anextents;
361 to->di_forkoff = from->di_forkoff;
362 to->di_aformat = from->di_aformat;
363 to->di_dmevmask = from->di_dmevmask;
364 to->di_dmstate = from->di_dmstate;
365 to->di_flags = from->di_flags;
366
367 /* log a dummy value to ensure log structure is fully initialised */
368 to->di_next_unlinked = NULLAGINO;
369
370 if (from->di_version == 3) {
371 to->di_changecount = inode->i_version;
372 to->di_crtime.t_sec = from->di_crtime.t_sec;
373 to->di_crtime.t_nsec = from->di_crtime.t_nsec;
374 to->di_flags2 = from->di_flags2;
375 to->di_cowextsize = from->di_cowextsize;
376 to->di_ino = ip->i_ino;
377 to->di_lsn = lsn;
378 memset(to->di_pad2, 0, sizeof(to->di_pad2));
379 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
380 to->di_flushiter = 0;
381 } else {
382 to->di_flushiter = from->di_flushiter;
383 }
384 }
385
386 /*
387 * Format the inode core. Current timestamp data is only in the VFS inode
388 * fields, so we need to grab them from there. Hence rather than just copying
389 * the XFS inode core structure, format the fields directly into the iovec.
390 */
391 static void
392 xfs_inode_item_format_core(
393 struct xfs_inode *ip,
394 struct xfs_log_vec *lv,
395 struct xfs_log_iovec **vecp)
396 {
397 struct xfs_log_dinode *dic;
398
399 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
400 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
401 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
402 }
403
404 /*
405 * This is called to fill in the vector of log iovecs for the given inode
406 * log item. It fills the first item with an inode log format structure,
407 * the second with the on-disk inode structure, and a possible third and/or
408 * fourth with the inode data/extents/b-tree root and inode attributes
409 * data/extents/b-tree root.
410 *
411 * Note: Always use the 64 bit inode log format structure so we don't
412 * leave an uninitialised hole in the format item on 64 bit systems. Log
413 * recovery on 32 bit systems handles this just fine, so there's no reason
414 * for not using an initialising the properly padded structure all the time.
415 */
416 STATIC void
417 xfs_inode_item_format(
418 struct xfs_log_item *lip,
419 struct xfs_log_vec *lv)
420 {
421 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
422 struct xfs_inode *ip = iip->ili_inode;
423 struct xfs_log_iovec *vecp = NULL;
424 struct xfs_inode_log_format *ilf;
425
426 ASSERT(ip->i_d.di_version > 1);
427
428 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
429 ilf->ilf_type = XFS_LI_INODE;
430 ilf->ilf_ino = ip->i_ino;
431 ilf->ilf_blkno = ip->i_imap.im_blkno;
432 ilf->ilf_len = ip->i_imap.im_len;
433 ilf->ilf_boffset = ip->i_imap.im_boffset;
434 ilf->ilf_fields = XFS_ILOG_CORE;
435 ilf->ilf_size = 2; /* format + core */
436
437 /*
438 * make sure we don't leak uninitialised data into the log in the case
439 * when we don't log every field in the inode.
440 */
441 ilf->ilf_dsize = 0;
442 ilf->ilf_asize = 0;
443 ilf->ilf_pad = 0;
444 uuid_copy(&ilf->ilf_u.ilfu_uuid, &uuid_null);
445
446 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
447
448 xfs_inode_item_format_core(ip, lv, &vecp);
449 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
450 if (XFS_IFORK_Q(ip)) {
451 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
452 } else {
453 iip->ili_fields &=
454 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
455 }
456
457 /* update the format with the exact fields we actually logged */
458 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
459 }
460
461 /*
462 * This is called to pin the inode associated with the inode log
463 * item in memory so it cannot be written out.
464 */
465 STATIC void
466 xfs_inode_item_pin(
467 struct xfs_log_item *lip)
468 {
469 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
470
471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
472
473 trace_xfs_inode_pin(ip, _RET_IP_);
474 atomic_inc(&ip->i_pincount);
475 }
476
477
478 /*
479 * This is called to unpin the inode associated with the inode log
480 * item which was previously pinned with a call to xfs_inode_item_pin().
481 *
482 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
483 */
484 STATIC void
485 xfs_inode_item_unpin(
486 struct xfs_log_item *lip,
487 int remove)
488 {
489 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
490
491 trace_xfs_inode_unpin(ip, _RET_IP_);
492 ASSERT(atomic_read(&ip->i_pincount) > 0);
493 if (atomic_dec_and_test(&ip->i_pincount))
494 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
495 }
496
497 /*
498 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
499 * have been failed during writeback
500 *
501 * This informs the AIL that the inode is already flush locked on the next push,
502 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
503 * dirty data makes it to disk.
504 */
505 STATIC void
506 xfs_inode_item_error(
507 struct xfs_log_item *lip,
508 struct xfs_buf *bp)
509 {
510 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
511 xfs_set_li_failed(lip, bp);
512 }
513
514 STATIC uint
515 xfs_inode_item_push(
516 struct xfs_log_item *lip,
517 struct list_head *buffer_list)
518 __releases(&lip->li_ailp->xa_lock)
519 __acquires(&lip->li_ailp->xa_lock)
520 {
521 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
522 struct xfs_inode *ip = iip->ili_inode;
523 struct xfs_buf *bp = lip->li_buf;
524 uint rval = XFS_ITEM_SUCCESS;
525 int error;
526
527 if (xfs_ipincount(ip) > 0)
528 return XFS_ITEM_PINNED;
529
530 /*
531 * The buffer containing this item failed to be written back
532 * previously. Resubmit the buffer for IO.
533 */
534 if (lip->li_flags & XFS_LI_FAILED) {
535 if (!xfs_buf_trylock(bp))
536 return XFS_ITEM_LOCKED;
537
538 if (!xfs_buf_resubmit_failed_buffers(bp, lip, buffer_list))
539 rval = XFS_ITEM_FLUSHING;
540
541 xfs_buf_unlock(bp);
542 return rval;
543 }
544
545 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
546 return XFS_ITEM_LOCKED;
547
548 /*
549 * Re-check the pincount now that we stabilized the value by
550 * taking the ilock.
551 */
552 if (xfs_ipincount(ip) > 0) {
553 rval = XFS_ITEM_PINNED;
554 goto out_unlock;
555 }
556
557 /*
558 * Stale inode items should force out the iclog.
559 */
560 if (ip->i_flags & XFS_ISTALE) {
561 rval = XFS_ITEM_PINNED;
562 goto out_unlock;
563 }
564
565 /*
566 * Someone else is already flushing the inode. Nothing we can do
567 * here but wait for the flush to finish and remove the item from
568 * the AIL.
569 */
570 if (!xfs_iflock_nowait(ip)) {
571 rval = XFS_ITEM_FLUSHING;
572 goto out_unlock;
573 }
574
575 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
576 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
577
578 spin_unlock(&lip->li_ailp->xa_lock);
579
580 error = xfs_iflush(ip, &bp);
581 if (!error) {
582 if (!xfs_buf_delwri_queue(bp, buffer_list))
583 rval = XFS_ITEM_FLUSHING;
584 xfs_buf_relse(bp);
585 }
586
587 spin_lock(&lip->li_ailp->xa_lock);
588 out_unlock:
589 xfs_iunlock(ip, XFS_ILOCK_SHARED);
590 return rval;
591 }
592
593 /*
594 * Unlock the inode associated with the inode log item.
595 * Clear the fields of the inode and inode log item that
596 * are specific to the current transaction. If the
597 * hold flags is set, do not unlock the inode.
598 */
599 STATIC void
600 xfs_inode_item_unlock(
601 struct xfs_log_item *lip)
602 {
603 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
604 struct xfs_inode *ip = iip->ili_inode;
605 unsigned short lock_flags;
606
607 ASSERT(ip->i_itemp != NULL);
608 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
609
610 lock_flags = iip->ili_lock_flags;
611 iip->ili_lock_flags = 0;
612 if (lock_flags)
613 xfs_iunlock(ip, lock_flags);
614 }
615
616 /*
617 * This is called to find out where the oldest active copy of the inode log
618 * item in the on disk log resides now that the last log write of it completed
619 * at the given lsn. Since we always re-log all dirty data in an inode, the
620 * latest copy in the on disk log is the only one that matters. Therefore,
621 * simply return the given lsn.
622 *
623 * If the inode has been marked stale because the cluster is being freed, we
624 * don't want to (re-)insert this inode into the AIL. There is a race condition
625 * where the cluster buffer may be unpinned before the inode is inserted into
626 * the AIL during transaction committed processing. If the buffer is unpinned
627 * before the inode item has been committed and inserted, then it is possible
628 * for the buffer to be written and IO completes before the inode is inserted
629 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
630 * AIL which will never get removed. It will, however, get reclaimed which
631 * triggers an assert in xfs_inode_free() complaining about freein an inode
632 * still in the AIL.
633 *
634 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
635 * transaction committed code knows that it does not need to do any further
636 * processing on the item.
637 */
638 STATIC xfs_lsn_t
639 xfs_inode_item_committed(
640 struct xfs_log_item *lip,
641 xfs_lsn_t lsn)
642 {
643 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
644 struct xfs_inode *ip = iip->ili_inode;
645
646 if (xfs_iflags_test(ip, XFS_ISTALE)) {
647 xfs_inode_item_unpin(lip, 0);
648 return -1;
649 }
650 return lsn;
651 }
652
653 /*
654 * XXX rcc - this one really has to do something. Probably needs
655 * to stamp in a new field in the incore inode.
656 */
657 STATIC void
658 xfs_inode_item_committing(
659 struct xfs_log_item *lip,
660 xfs_lsn_t lsn)
661 {
662 INODE_ITEM(lip)->ili_last_lsn = lsn;
663 }
664
665 /*
666 * This is the ops vector shared by all buf log items.
667 */
668 static const struct xfs_item_ops xfs_inode_item_ops = {
669 .iop_size = xfs_inode_item_size,
670 .iop_format = xfs_inode_item_format,
671 .iop_pin = xfs_inode_item_pin,
672 .iop_unpin = xfs_inode_item_unpin,
673 .iop_unlock = xfs_inode_item_unlock,
674 .iop_committed = xfs_inode_item_committed,
675 .iop_push = xfs_inode_item_push,
676 .iop_committing = xfs_inode_item_committing,
677 .iop_error = xfs_inode_item_error
678 };
679
680
681 /*
682 * Initialize the inode log item for a newly allocated (in-core) inode.
683 */
684 void
685 xfs_inode_item_init(
686 struct xfs_inode *ip,
687 struct xfs_mount *mp)
688 {
689 struct xfs_inode_log_item *iip;
690
691 ASSERT(ip->i_itemp == NULL);
692 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
693
694 iip->ili_inode = ip;
695 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
696 &xfs_inode_item_ops);
697 }
698
699 /*
700 * Free the inode log item and any memory hanging off of it.
701 */
702 void
703 xfs_inode_item_destroy(
704 xfs_inode_t *ip)
705 {
706 kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
707 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
708 }
709
710
711 /*
712 * This is the inode flushing I/O completion routine. It is called
713 * from interrupt level when the buffer containing the inode is
714 * flushed to disk. It is responsible for removing the inode item
715 * from the AIL if it has not been re-logged, and unlocking the inode's
716 * flush lock.
717 *
718 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
719 * list for other inodes that will run this function. We remove them from the
720 * buffer list so we can process all the inode IO completions in one AIL lock
721 * traversal.
722 */
723 void
724 xfs_iflush_done(
725 struct xfs_buf *bp,
726 struct xfs_log_item *lip)
727 {
728 struct xfs_inode_log_item *iip;
729 struct xfs_log_item *blip;
730 struct xfs_log_item *next;
731 struct xfs_log_item *prev;
732 struct xfs_ail *ailp = lip->li_ailp;
733 int need_ail = 0;
734
735 /*
736 * Scan the buffer IO completions for other inodes being completed and
737 * attach them to the current inode log item.
738 */
739 blip = bp->b_fspriv;
740 prev = NULL;
741 while (blip != NULL) {
742 if (blip->li_cb != xfs_iflush_done) {
743 prev = blip;
744 blip = blip->li_bio_list;
745 continue;
746 }
747
748 /* remove from list */
749 next = blip->li_bio_list;
750 if (!prev) {
751 bp->b_fspriv = next;
752 } else {
753 prev->li_bio_list = next;
754 }
755
756 /* add to current list */
757 blip->li_bio_list = lip->li_bio_list;
758 lip->li_bio_list = blip;
759
760 /*
761 * while we have the item, do the unlocked check for needing
762 * the AIL lock.
763 */
764 iip = INODE_ITEM(blip);
765 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
766 (blip->li_flags & XFS_LI_FAILED))
767 need_ail++;
768
769 blip = next;
770 }
771
772 /* make sure we capture the state of the initial inode. */
773 iip = INODE_ITEM(lip);
774 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
775 lip->li_flags & XFS_LI_FAILED)
776 need_ail++;
777
778 /*
779 * We only want to pull the item from the AIL if it is
780 * actually there and its location in the log has not
781 * changed since we started the flush. Thus, we only bother
782 * if the ili_logged flag is set and the inode's lsn has not
783 * changed. First we check the lsn outside
784 * the lock since it's cheaper, and then we recheck while
785 * holding the lock before removing the inode from the AIL.
786 */
787 if (need_ail) {
788 bool mlip_changed = false;
789
790 /* this is an opencoded batch version of xfs_trans_ail_delete */
791 spin_lock(&ailp->xa_lock);
792 for (blip = lip; blip; blip = blip->li_bio_list) {
793 if (INODE_ITEM(blip)->ili_logged &&
794 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
795 mlip_changed |= xfs_ail_delete_one(ailp, blip);
796 else {
797 xfs_clear_li_failed(blip);
798 }
799 }
800
801 if (mlip_changed) {
802 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
803 xlog_assign_tail_lsn_locked(ailp->xa_mount);
804 if (list_empty(&ailp->xa_ail))
805 wake_up_all(&ailp->xa_empty);
806 }
807 spin_unlock(&ailp->xa_lock);
808
809 if (mlip_changed)
810 xfs_log_space_wake(ailp->xa_mount);
811 }
812
813 /*
814 * clean up and unlock the flush lock now we are done. We can clear the
815 * ili_last_fields bits now that we know that the data corresponding to
816 * them is safely on disk.
817 */
818 for (blip = lip; blip; blip = next) {
819 next = blip->li_bio_list;
820 blip->li_bio_list = NULL;
821
822 iip = INODE_ITEM(blip);
823 iip->ili_logged = 0;
824 iip->ili_last_fields = 0;
825 xfs_ifunlock(iip->ili_inode);
826 }
827 }
828
829 /*
830 * This is the inode flushing abort routine. It is called from xfs_iflush when
831 * the filesystem is shutting down to clean up the inode state. It is
832 * responsible for removing the inode item from the AIL if it has not been
833 * re-logged, and unlocking the inode's flush lock.
834 */
835 void
836 xfs_iflush_abort(
837 xfs_inode_t *ip,
838 bool stale)
839 {
840 xfs_inode_log_item_t *iip = ip->i_itemp;
841
842 if (iip) {
843 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
844 xfs_trans_ail_remove(&iip->ili_item,
845 stale ? SHUTDOWN_LOG_IO_ERROR :
846 SHUTDOWN_CORRUPT_INCORE);
847 }
848 iip->ili_logged = 0;
849 /*
850 * Clear the ili_last_fields bits now that we know that the
851 * data corresponding to them is safely on disk.
852 */
853 iip->ili_last_fields = 0;
854 /*
855 * Clear the inode logging fields so no more flushes are
856 * attempted.
857 */
858 iip->ili_fields = 0;
859 iip->ili_fsync_fields = 0;
860 }
861 /*
862 * Release the inode's flush lock since we're done with it.
863 */
864 xfs_ifunlock(ip);
865 }
866
867 void
868 xfs_istale_done(
869 struct xfs_buf *bp,
870 struct xfs_log_item *lip)
871 {
872 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
873 }
874
875 /*
876 * convert an xfs_inode_log_format struct from the old 32 bit version
877 * (which can have different field alignments) to the native 64 bit version
878 */
879 int
880 xfs_inode_item_format_convert(
881 struct xfs_log_iovec *buf,
882 struct xfs_inode_log_format *in_f)
883 {
884 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
885
886 if (buf->i_len != sizeof(*in_f32))
887 return -EFSCORRUPTED;
888
889 in_f->ilf_type = in_f32->ilf_type;
890 in_f->ilf_size = in_f32->ilf_size;
891 in_f->ilf_fields = in_f32->ilf_fields;
892 in_f->ilf_asize = in_f32->ilf_asize;
893 in_f->ilf_dsize = in_f32->ilf_dsize;
894 in_f->ilf_ino = in_f32->ilf_ino;
895 /* copy biggest field of ilf_u */
896 uuid_copy(&in_f->ilf_u.ilfu_uuid, &in_f32->ilf_u.ilfu_uuid);
897 in_f->ilf_blkno = in_f32->ilf_blkno;
898 in_f->ilf_len = in_f32->ilf_len;
899 in_f->ilf_boffset = in_f32->ilf_boffset;
900 return 0;
901 }