805cab7b2770942dcc26407f7623fd085ecedbc8
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
53
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
57
58 /*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62 #define XFS_ITRUNC_MAX_EXTENTS 2
63
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
69 #ifdef DEBUG
70 /*
71 * Make sure that the extents in the given memory buffer
72 * are valid.
73 */
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
79 {
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
83
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
91 }
92 }
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
96
97 /*
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
100 */
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
106 {
107 int i;
108 int j;
109 xfs_dinode_t *dip;
110
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
121 }
122 }
123 }
124 #endif
125
126 /*
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
132 *
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
135 *
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
138 */
139 STATIC int
140 xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
147 {
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
153
154 /*
155 * Call the space management code to find the location of the
156 * inode on disk.
157 */
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
165 }
166
167 /*
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
171 */
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
179 return XFS_ERROR(EINVAL);
180 }
181
182 /*
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
185 */
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
194 }
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
207 }
208
209 xfs_inobp_check(mp, bp);
210
211 /*
212 * Set *dipp to point to the on-disk inode in the buffer.
213 */
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
218 }
219
220
221 /*
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
227 *
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
230 *
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
240 */
241 int
242 xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
248 xfs_daddr_t bno,
249 uint imap_flags)
250 {
251 xfs_imap_t imap;
252 xfs_buf_t *bp;
253 int error;
254 int i;
255 int ni;
256
257 if (ip->i_blkno == (xfs_daddr_t)0) {
258 /*
259 * Call the space management code to find the location of the
260 * inode on disk.
261 */
262 imap.im_blkno = bno;
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
265 return error;
266
267 /*
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
272 */
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
286 }
287
288 /*
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
291 */
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
296 /*
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
299 */
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
303 }
304 ASSERT(bno == 0 || bno == imap.im_blkno);
305
306 /*
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
309 */
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 if (error) {
313 #ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 return error;
321 }
322
323 /*
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
327 */
328 #if !defined(__KERNEL__)
329 ni = 0;
330 #elif defined(DEBUG)
331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else /* usual case */
333 ni = 1;
334 #endif
335
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
339
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
350 }
351 #ifdef DEBUG
352 cmn_err(CE_ALERT,
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 (unsigned long long)imap.im_blkno, i,
357 be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379 }
380
381 /*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390 STATIC int
391 xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394 {
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
411 (unsigned long long)
412 be64_to_cpu(dip->di_core.di_nblocks));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417
418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 dip->di_core.di_forkoff);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 ip->i_d.di_size = 0;
439 ip->i_size = 0;
440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 break;
442
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
446 switch (dip->di_core.di_format) {
447 case XFS_DINODE_FMT_LOCAL:
448 /*
449 * no local regular files yet
450 */
451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
460 }
461
462 di_size = be64_to_cpu(dip->di_core.di_size);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (dip->di_core.di_aformat) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526 }
527
528 /*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544 {
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
562 }
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 }
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
580 }
581
582 /*
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
590 */
591 STATIC int
592 xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
596 {
597 xfs_bmbt_rec_t *dp;
598 xfs_ifork_t *ifp;
599 int nex;
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
621 ifp->if_real_bytes = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else
627 xfs_iext_add(ifp, 0, nex);
628
629 ifp->if_bytes = size;
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
637 }
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
642 ifp, 0, nex))) {
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
647 }
648 }
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
651 }
652
653 /*
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
660 */
661 STATIC int
662 xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
666 {
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
672
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677
678 /*
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
684 */
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
695 }
696
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
700 /*
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
703 */
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
708
709 return 0;
710 }
711
712 void
713 xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
716 {
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
745 }
746
747 void
748 xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
751 {
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
780 }
781
782 STATIC uint
783 _xfs_dic2xflags(
784 __uint16_t di_flags)
785 {
786 uint flags = 0;
787
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
817 }
818
819 return flags;
820 }
821
822 uint
823 xfs_ip2xflags(
824 xfs_inode_t *ip)
825 {
826 xfs_icdinode_t *dic = &ip->i_d;
827
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
830 }
831
832 uint
833 xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835 {
836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
838 }
839
840 /*
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848 int
849 xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno,
855 uint imap_flags)
856 {
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
867 atomic_set(&ip->i_iocount, 0);
868 spin_lock_init(&ip->i_flags_lock);
869
870 /*
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
876 */
877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 if (error) {
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
881 }
882
883 /*
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
886 */
887 #ifdef XFS_INODE_TRACE
888 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #endif
902 #ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904 #endif
905
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913 #ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 be16_to_cpu(dip->di_core.di_magic),
918 XFS_DINODE_MAGIC);
919 #endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940 #endif /* DEBUG */
941 return error;
942 }
943 } else {
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
984 ip->i_size = ip->i_d.di_size;
985
986 /*
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
990 */
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992
993 /*
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1005 */
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1009 }
1010
1011 /*
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1014 */
1015 int
1016 xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1020 {
1021 int error;
1022 xfs_ifork_t *ifp;
1023 xfs_extnum_t nextents;
1024 size_t size;
1025
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1030 }
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1033 ifp = XFS_IFORK_PTR(ip, whichfork);
1034
1035 /*
1036 * We know that the size is valid (it's checked in iformat_btree)
1037 */
1038 ifp->if_lastex = NULLEXTNUM;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags |= XFS_IFEXTENTS;
1041 xfs_iext_add(ifp, 0, nextents);
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
1044 xfs_iext_destroy(ifp);
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1047 }
1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1049 return 0;
1050 }
1051
1052 /*
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1057 *
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1063 *
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 *
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1077 *
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1082 */
1083 int
1084 xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
1088 xfs_nlink_t nlink,
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1096 {
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
1099 bhv_vnode_t *vp;
1100 uint flags;
1101 int error;
1102
1103 /*
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1106 */
1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1111 }
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1115 }
1116 ASSERT(*ialloc_context == NULL);
1117
1118 /*
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1122 */
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 if (error != 0) {
1126 return error;
1127 }
1128 ASSERT(ip != NULL);
1129
1130 vp = XFS_ITOV(ip);
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139
1140 /*
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1145 */
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 /*
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1152 */
1153 }
1154
1155 /*
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 */
1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 xfs_bump_ino_vers2(tp, ip);
1160
1161 if (pip && XFS_INHERIT_GID(pip)) {
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1165 }
1166 }
1167
1168 /*
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 */
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1177 }
1178
1179 ip->i_d.di_size = 0;
1180 ip->i_size = 0;
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 /*
1185 * di_gen will have been taken care of in xfs_iread.
1186 */
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
1203 if (pip && xfs_inode_is_filestream(pip)) {
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 }
1210 /* fall through */
1211 case S_IFDIR:
1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1213 uint di_flags = 0;
1214
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 }
1222 } else if ((mode & S_IFMT) == S_IFREG) {
1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1224 di_flags |= XFS_DIFLAG_REALTIME;
1225 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1226 di_flags |= XFS_DIFLAG_EXTSIZE;
1227 ip->i_d.di_extsize = pip->i_d.di_extsize;
1228 }
1229 }
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1231 xfs_inherit_noatime)
1232 di_flags |= XFS_DIFLAG_NOATIME;
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1234 xfs_inherit_nodump)
1235 di_flags |= XFS_DIFLAG_NODUMP;
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1237 xfs_inherit_sync)
1238 di_flags |= XFS_DIFLAG_SYNC;
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1240 xfs_inherit_nosymlinks)
1241 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1243 di_flags |= XFS_DIFLAG_PROJINHERIT;
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1245 xfs_inherit_nodefrag)
1246 di_flags |= XFS_DIFLAG_NODEFRAG;
1247 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1248 di_flags |= XFS_DIFLAG_FILESTREAM;
1249 ip->i_d.di_flags |= di_flags;
1250 }
1251 /* FALLTHROUGH */
1252 case S_IFLNK:
1253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1254 ip->i_df.if_flags = XFS_IFEXTENTS;
1255 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1256 ip->i_df.if_u1.if_extents = NULL;
1257 break;
1258 default:
1259 ASSERT(0);
1260 }
1261 /*
1262 * Attribute fork settings for new inode.
1263 */
1264 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1265 ip->i_d.di_anextents = 0;
1266
1267 /*
1268 * Log the new values stuffed into the inode.
1269 */
1270 xfs_trans_log_inode(tp, ip, flags);
1271
1272 /* now that we have an i_mode we can setup inode ops and unlock */
1273 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1274
1275 *ipp = ip;
1276 return 0;
1277 }
1278
1279 /*
1280 * Check to make sure that there are no blocks allocated to the
1281 * file beyond the size of the file. We don't check this for
1282 * files with fixed size extents or real time extents, but we
1283 * at least do it for regular files.
1284 */
1285 #ifdef DEBUG
1286 void
1287 xfs_isize_check(
1288 xfs_mount_t *mp,
1289 xfs_inode_t *ip,
1290 xfs_fsize_t isize)
1291 {
1292 xfs_fileoff_t map_first;
1293 int nimaps;
1294 xfs_bmbt_irec_t imaps[2];
1295
1296 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1297 return;
1298
1299 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1300 return;
1301
1302 nimaps = 2;
1303 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1304 /*
1305 * The filesystem could be shutting down, so bmapi may return
1306 * an error.
1307 */
1308 if (xfs_bmapi(NULL, ip, map_first,
1309 (XFS_B_TO_FSB(mp,
1310 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1311 map_first),
1312 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1313 NULL, NULL))
1314 return;
1315 ASSERT(nimaps == 1);
1316 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1317 }
1318 #endif /* DEBUG */
1319
1320 /*
1321 * Calculate the last possible buffered byte in a file. This must
1322 * include data that was buffered beyond the EOF by the write code.
1323 * This also needs to deal with overflowing the xfs_fsize_t type
1324 * which can happen for sizes near the limit.
1325 *
1326 * We also need to take into account any blocks beyond the EOF. It
1327 * may be the case that they were buffered by a write which failed.
1328 * In that case the pages will still be in memory, but the inode size
1329 * will never have been updated.
1330 */
1331 xfs_fsize_t
1332 xfs_file_last_byte(
1333 xfs_inode_t *ip)
1334 {
1335 xfs_mount_t *mp;
1336 xfs_fsize_t last_byte;
1337 xfs_fileoff_t last_block;
1338 xfs_fileoff_t size_last_block;
1339 int error;
1340
1341 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1342
1343 mp = ip->i_mount;
1344 /*
1345 * Only check for blocks beyond the EOF if the extents have
1346 * been read in. This eliminates the need for the inode lock,
1347 * and it also saves us from looking when it really isn't
1348 * necessary.
1349 */
1350 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1351 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1352 XFS_DATA_FORK);
1353 if (error) {
1354 last_block = 0;
1355 }
1356 } else {
1357 last_block = 0;
1358 }
1359 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1360 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1361
1362 last_byte = XFS_FSB_TO_B(mp, last_block);
1363 if (last_byte < 0) {
1364 return XFS_MAXIOFFSET(mp);
1365 }
1366 last_byte += (1 << mp->m_writeio_log);
1367 if (last_byte < 0) {
1368 return XFS_MAXIOFFSET(mp);
1369 }
1370 return last_byte;
1371 }
1372
1373 #if defined(XFS_RW_TRACE)
1374 STATIC void
1375 xfs_itrunc_trace(
1376 int tag,
1377 xfs_inode_t *ip,
1378 int flag,
1379 xfs_fsize_t new_size,
1380 xfs_off_t toss_start,
1381 xfs_off_t toss_finish)
1382 {
1383 if (ip->i_rwtrace == NULL) {
1384 return;
1385 }
1386
1387 ktrace_enter(ip->i_rwtrace,
1388 (void*)((long)tag),
1389 (void*)ip,
1390 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1392 (void*)((long)flag),
1393 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1394 (void*)(unsigned long)(new_size & 0xffffffff),
1395 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(toss_start & 0xffffffff),
1397 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_finish & 0xffffffff),
1399 (void*)(unsigned long)current_cpu(),
1400 (void*)(unsigned long)current_pid(),
1401 (void*)NULL,
1402 (void*)NULL,
1403 (void*)NULL);
1404 }
1405 #else
1406 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1407 #endif
1408
1409 /*
1410 * Start the truncation of the file to new_size. The new size
1411 * must be smaller than the current size. This routine will
1412 * clear the buffer and page caches of file data in the removed
1413 * range, and xfs_itruncate_finish() will remove the underlying
1414 * disk blocks.
1415 *
1416 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1417 * must NOT have the inode lock held at all. This is because we're
1418 * calling into the buffer/page cache code and we can't hold the
1419 * inode lock when we do so.
1420 *
1421 * We need to wait for any direct I/Os in flight to complete before we
1422 * proceed with the truncate. This is needed to prevent the extents
1423 * being read or written by the direct I/Os from being removed while the
1424 * I/O is in flight as there is no other method of synchronising
1425 * direct I/O with the truncate operation. Also, because we hold
1426 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1427 * started until the truncate completes and drops the lock. Essentially,
1428 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1429 * between direct I/Os and the truncate operation.
1430 *
1431 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1432 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1433 * in the case that the caller is locking things out of order and
1434 * may not be able to call xfs_itruncate_finish() with the inode lock
1435 * held without dropping the I/O lock. If the caller must drop the
1436 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1437 * must be called again with all the same restrictions as the initial
1438 * call.
1439 */
1440 int
1441 xfs_itruncate_start(
1442 xfs_inode_t *ip,
1443 uint flags,
1444 xfs_fsize_t new_size)
1445 {
1446 xfs_fsize_t last_byte;
1447 xfs_off_t toss_start;
1448 xfs_mount_t *mp;
1449 bhv_vnode_t *vp;
1450 int error = 0;
1451
1452 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1453 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1454 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1455 (flags == XFS_ITRUNC_MAYBE));
1456
1457 mp = ip->i_mount;
1458 vp = XFS_ITOV(ip);
1459
1460 /* wait for the completion of any pending DIOs */
1461 if (new_size < ip->i_size)
1462 vn_iowait(ip);
1463
1464 /*
1465 * Call toss_pages or flushinval_pages to get rid of pages
1466 * overlapping the region being removed. We have to use
1467 * the less efficient flushinval_pages in the case that the
1468 * caller may not be able to finish the truncate without
1469 * dropping the inode's I/O lock. Make sure
1470 * to catch any pages brought in by buffers overlapping
1471 * the EOF by searching out beyond the isize by our
1472 * block size. We round new_size up to a block boundary
1473 * so that we don't toss things on the same block as
1474 * new_size but before it.
1475 *
1476 * Before calling toss_page or flushinval_pages, make sure to
1477 * call remapf() over the same region if the file is mapped.
1478 * This frees up mapped file references to the pages in the
1479 * given range and for the flushinval_pages case it ensures
1480 * that we get the latest mapped changes flushed out.
1481 */
1482 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1483 toss_start = XFS_FSB_TO_B(mp, toss_start);
1484 if (toss_start < 0) {
1485 /*
1486 * The place to start tossing is beyond our maximum
1487 * file size, so there is no way that the data extended
1488 * out there.
1489 */
1490 return 0;
1491 }
1492 last_byte = xfs_file_last_byte(ip);
1493 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1494 last_byte);
1495 if (last_byte > toss_start) {
1496 if (flags & XFS_ITRUNC_DEFINITE) {
1497 xfs_tosspages(ip, toss_start,
1498 -1, FI_REMAPF_LOCKED);
1499 } else {
1500 error = xfs_flushinval_pages(ip, toss_start,
1501 -1, FI_REMAPF_LOCKED);
1502 }
1503 }
1504
1505 #ifdef DEBUG
1506 if (new_size == 0) {
1507 ASSERT(VN_CACHED(vp) == 0);
1508 }
1509 #endif
1510 return error;
1511 }
1512
1513 /*
1514 * Shrink the file to the given new_size. The new
1515 * size must be smaller than the current size.
1516 * This will free up the underlying blocks
1517 * in the removed range after a call to xfs_itruncate_start()
1518 * or xfs_atruncate_start().
1519 *
1520 * The transaction passed to this routine must have made
1521 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1522 * This routine may commit the given transaction and
1523 * start new ones, so make sure everything involved in
1524 * the transaction is tidy before calling here.
1525 * Some transaction will be returned to the caller to be
1526 * committed. The incoming transaction must already include
1527 * the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On
1529 * return the inode will be "held" within the returned transaction.
1530 * This routine does NOT require any disk space to be reserved
1531 * for it within the transaction.
1532 *
1533 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1534 * and it indicates the fork which is to be truncated. For the
1535 * attribute fork we only support truncation to size 0.
1536 *
1537 * We use the sync parameter to indicate whether or not the first
1538 * transaction we perform might have to be synchronous. For the attr fork,
1539 * it needs to be so if the unlink of the inode is not yet known to be
1540 * permanent in the log. This keeps us from freeing and reusing the
1541 * blocks of the attribute fork before the unlink of the inode becomes
1542 * permanent.
1543 *
1544 * For the data fork, we normally have to run synchronously if we're
1545 * being called out of the inactive path or we're being called
1546 * out of the create path where we're truncating an existing file.
1547 * Either way, the truncate needs to be sync so blocks don't reappear
1548 * in the file with altered data in case of a crash. wsync filesystems
1549 * can run the first case async because anything that shrinks the inode
1550 * has to run sync so by the time we're called here from inactive, the
1551 * inode size is permanently set to 0.
1552 *
1553 * Calls from the truncate path always need to be sync unless we're
1554 * in a wsync filesystem and the file has already been unlinked.
1555 *
1556 * The caller is responsible for correctly setting the sync parameter.
1557 * It gets too hard for us to guess here which path we're being called
1558 * out of just based on inode state.
1559 */
1560 int
1561 xfs_itruncate_finish(
1562 xfs_trans_t **tp,
1563 xfs_inode_t *ip,
1564 xfs_fsize_t new_size,
1565 int fork,
1566 int sync)
1567 {
1568 xfs_fsblock_t first_block;
1569 xfs_fileoff_t first_unmap_block;
1570 xfs_fileoff_t last_block;
1571 xfs_filblks_t unmap_len=0;
1572 xfs_mount_t *mp;
1573 xfs_trans_t *ntp;
1574 int done;
1575 int committed;
1576 xfs_bmap_free_t free_list;
1577 int error;
1578
1579 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1580 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1581 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1582 ASSERT(*tp != NULL);
1583 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1584 ASSERT(ip->i_transp == *tp);
1585 ASSERT(ip->i_itemp != NULL);
1586 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1587
1588
1589 ntp = *tp;
1590 mp = (ntp)->t_mountp;
1591 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1592
1593 /*
1594 * We only support truncating the entire attribute fork.
1595 */
1596 if (fork == XFS_ATTR_FORK) {
1597 new_size = 0LL;
1598 }
1599 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1600 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1601 /*
1602 * The first thing we do is set the size to new_size permanently
1603 * on disk. This way we don't have to worry about anyone ever
1604 * being able to look at the data being freed even in the face
1605 * of a crash. What we're getting around here is the case where
1606 * we free a block, it is allocated to another file, it is written
1607 * to, and then we crash. If the new data gets written to the
1608 * file but the log buffers containing the free and reallocation
1609 * don't, then we'd end up with garbage in the blocks being freed.
1610 * As long as we make the new_size permanent before actually
1611 * freeing any blocks it doesn't matter if they get writtten to.
1612 *
1613 * The callers must signal into us whether or not the size
1614 * setting here must be synchronous. There are a few cases
1615 * where it doesn't have to be synchronous. Those cases
1616 * occur if the file is unlinked and we know the unlink is
1617 * permanent or if the blocks being truncated are guaranteed
1618 * to be beyond the inode eof (regardless of the link count)
1619 * and the eof value is permanent. Both of these cases occur
1620 * only on wsync-mounted filesystems. In those cases, we're
1621 * guaranteed that no user will ever see the data in the blocks
1622 * that are being truncated so the truncate can run async.
1623 * In the free beyond eof case, the file may wind up with
1624 * more blocks allocated to it than it needs if we crash
1625 * and that won't get fixed until the next time the file
1626 * is re-opened and closed but that's ok as that shouldn't
1627 * be too many blocks.
1628 *
1629 * However, we can't just make all wsync xactions run async
1630 * because there's one call out of the create path that needs
1631 * to run sync where it's truncating an existing file to size
1632 * 0 whose size is > 0.
1633 *
1634 * It's probably possible to come up with a test in this
1635 * routine that would correctly distinguish all the above
1636 * cases from the values of the function parameters and the
1637 * inode state but for sanity's sake, I've decided to let the
1638 * layers above just tell us. It's simpler to correctly figure
1639 * out in the layer above exactly under what conditions we
1640 * can run async and I think it's easier for others read and
1641 * follow the logic in case something has to be changed.
1642 * cscope is your friend -- rcc.
1643 *
1644 * The attribute fork is much simpler.
1645 *
1646 * For the attribute fork we allow the caller to tell us whether
1647 * the unlink of the inode that led to this call is yet permanent
1648 * in the on disk log. If it is not and we will be freeing extents
1649 * in this inode then we make the first transaction synchronous
1650 * to make sure that the unlink is permanent by the time we free
1651 * the blocks.
1652 */
1653 if (fork == XFS_DATA_FORK) {
1654 if (ip->i_d.di_nextents > 0) {
1655 /*
1656 * If we are not changing the file size then do
1657 * not update the on-disk file size - we may be
1658 * called from xfs_inactive_free_eofblocks(). If we
1659 * update the on-disk file size and then the system
1660 * crashes before the contents of the file are
1661 * flushed to disk then the files may be full of
1662 * holes (ie NULL files bug).
1663 */
1664 if (ip->i_size != new_size) {
1665 ip->i_d.di_size = new_size;
1666 ip->i_size = new_size;
1667 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1668 }
1669 }
1670 } else if (sync) {
1671 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1672 if (ip->i_d.di_anextents > 0)
1673 xfs_trans_set_sync(ntp);
1674 }
1675 ASSERT(fork == XFS_DATA_FORK ||
1676 (fork == XFS_ATTR_FORK &&
1677 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1678 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1679
1680 /*
1681 * Since it is possible for space to become allocated beyond
1682 * the end of the file (in a crash where the space is allocated
1683 * but the inode size is not yet updated), simply remove any
1684 * blocks which show up between the new EOF and the maximum
1685 * possible file size. If the first block to be removed is
1686 * beyond the maximum file size (ie it is the same as last_block),
1687 * then there is nothing to do.
1688 */
1689 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1690 ASSERT(first_unmap_block <= last_block);
1691 done = 0;
1692 if (last_block == first_unmap_block) {
1693 done = 1;
1694 } else {
1695 unmap_len = last_block - first_unmap_block + 1;
1696 }
1697 while (!done) {
1698 /*
1699 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1700 * will tell us whether it freed the entire range or
1701 * not. If this is a synchronous mount (wsync),
1702 * then we can tell bunmapi to keep all the
1703 * transactions asynchronous since the unlink
1704 * transaction that made this inode inactive has
1705 * already hit the disk. There's no danger of
1706 * the freed blocks being reused, there being a
1707 * crash, and the reused blocks suddenly reappearing
1708 * in this file with garbage in them once recovery
1709 * runs.
1710 */
1711 XFS_BMAP_INIT(&free_list, &first_block);
1712 error = xfs_bunmapi(ntp, ip,
1713 first_unmap_block, unmap_len,
1714 XFS_BMAPI_AFLAG(fork) |
1715 (sync ? 0 : XFS_BMAPI_ASYNC),
1716 XFS_ITRUNC_MAX_EXTENTS,
1717 &first_block, &free_list,
1718 NULL, &done);
1719 if (error) {
1720 /*
1721 * If the bunmapi call encounters an error,
1722 * return to the caller where the transaction
1723 * can be properly aborted. We just need to
1724 * make sure we're not holding any resources
1725 * that we were not when we came in.
1726 */
1727 xfs_bmap_cancel(&free_list);
1728 return error;
1729 }
1730
1731 /*
1732 * Duplicate the transaction that has the permanent
1733 * reservation and commit the old transaction.
1734 */
1735 error = xfs_bmap_finish(tp, &free_list, &committed);
1736 ntp = *tp;
1737 if (error) {
1738 /*
1739 * If the bmap finish call encounters an error,
1740 * return to the caller where the transaction
1741 * can be properly aborted. We just need to
1742 * make sure we're not holding any resources
1743 * that we were not when we came in.
1744 *
1745 * Aborting from this point might lose some
1746 * blocks in the file system, but oh well.
1747 */
1748 xfs_bmap_cancel(&free_list);
1749 if (committed) {
1750 /*
1751 * If the passed in transaction committed
1752 * in xfs_bmap_finish(), then we want to
1753 * add the inode to this one before returning.
1754 * This keeps things simple for the higher
1755 * level code, because it always knows that
1756 * the inode is locked and held in the
1757 * transaction that returns to it whether
1758 * errors occur or not. We don't mark the
1759 * inode dirty so that this transaction can
1760 * be easily aborted if possible.
1761 */
1762 xfs_trans_ijoin(ntp, ip,
1763 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1764 xfs_trans_ihold(ntp, ip);
1765 }
1766 return error;
1767 }
1768
1769 if (committed) {
1770 /*
1771 * The first xact was committed,
1772 * so add the inode to the new one.
1773 * Mark it dirty so it will be logged
1774 * and moved forward in the log as
1775 * part of every commit.
1776 */
1777 xfs_trans_ijoin(ntp, ip,
1778 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1779 xfs_trans_ihold(ntp, ip);
1780 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1781 }
1782 ntp = xfs_trans_dup(ntp);
1783 (void) xfs_trans_commit(*tp, 0);
1784 *tp = ntp;
1785 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1786 XFS_TRANS_PERM_LOG_RES,
1787 XFS_ITRUNCATE_LOG_COUNT);
1788 /*
1789 * Add the inode being truncated to the next chained
1790 * transaction.
1791 */
1792 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1793 xfs_trans_ihold(ntp, ip);
1794 if (error)
1795 return (error);
1796 }
1797 /*
1798 * Only update the size in the case of the data fork, but
1799 * always re-log the inode so that our permanent transaction
1800 * can keep on rolling it forward in the log.
1801 */
1802 if (fork == XFS_DATA_FORK) {
1803 xfs_isize_check(mp, ip, new_size);
1804 /*
1805 * If we are not changing the file size then do
1806 * not update the on-disk file size - we may be
1807 * called from xfs_inactive_free_eofblocks(). If we
1808 * update the on-disk file size and then the system
1809 * crashes before the contents of the file are
1810 * flushed to disk then the files may be full of
1811 * holes (ie NULL files bug).
1812 */
1813 if (ip->i_size != new_size) {
1814 ip->i_d.di_size = new_size;
1815 ip->i_size = new_size;
1816 }
1817 }
1818 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1819 ASSERT((new_size != 0) ||
1820 (fork == XFS_ATTR_FORK) ||
1821 (ip->i_delayed_blks == 0));
1822 ASSERT((new_size != 0) ||
1823 (fork == XFS_ATTR_FORK) ||
1824 (ip->i_d.di_nextents == 0));
1825 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1826 return 0;
1827 }
1828
1829
1830 /*
1831 * xfs_igrow_start
1832 *
1833 * Do the first part of growing a file: zero any data in the last
1834 * block that is beyond the old EOF. We need to do this before
1835 * the inode is joined to the transaction to modify the i_size.
1836 * That way we can drop the inode lock and call into the buffer
1837 * cache to get the buffer mapping the EOF.
1838 */
1839 int
1840 xfs_igrow_start(
1841 xfs_inode_t *ip,
1842 xfs_fsize_t new_size,
1843 cred_t *credp)
1844 {
1845 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1846 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1847 ASSERT(new_size > ip->i_size);
1848
1849 /*
1850 * Zero any pages that may have been created by
1851 * xfs_write_file() beyond the end of the file
1852 * and any blocks between the old and new file sizes.
1853 */
1854 return xfs_zero_eof(ip, new_size, ip->i_size);
1855 }
1856
1857 /*
1858 * xfs_igrow_finish
1859 *
1860 * This routine is called to extend the size of a file.
1861 * The inode must have both the iolock and the ilock locked
1862 * for update and it must be a part of the current transaction.
1863 * The xfs_igrow_start() function must have been called previously.
1864 * If the change_flag is not zero, the inode change timestamp will
1865 * be updated.
1866 */
1867 void
1868 xfs_igrow_finish(
1869 xfs_trans_t *tp,
1870 xfs_inode_t *ip,
1871 xfs_fsize_t new_size,
1872 int change_flag)
1873 {
1874 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1875 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1876 ASSERT(ip->i_transp == tp);
1877 ASSERT(new_size > ip->i_size);
1878
1879 /*
1880 * Update the file size. Update the inode change timestamp
1881 * if change_flag set.
1882 */
1883 ip->i_d.di_size = new_size;
1884 ip->i_size = new_size;
1885 if (change_flag)
1886 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1887 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1888
1889 }
1890
1891
1892 /*
1893 * This is called when the inode's link count goes to 0.
1894 * We place the on-disk inode on a list in the AGI. It
1895 * will be pulled from this list when the inode is freed.
1896 */
1897 int
1898 xfs_iunlink(
1899 xfs_trans_t *tp,
1900 xfs_inode_t *ip)
1901 {
1902 xfs_mount_t *mp;
1903 xfs_agi_t *agi;
1904 xfs_dinode_t *dip;
1905 xfs_buf_t *agibp;
1906 xfs_buf_t *ibp;
1907 xfs_agnumber_t agno;
1908 xfs_daddr_t agdaddr;
1909 xfs_agino_t agino;
1910 short bucket_index;
1911 int offset;
1912 int error;
1913 int agi_ok;
1914
1915 ASSERT(ip->i_d.di_nlink == 0);
1916 ASSERT(ip->i_d.di_mode != 0);
1917 ASSERT(ip->i_transp == tp);
1918
1919 mp = tp->t_mountp;
1920
1921 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1922 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1923
1924 /*
1925 * Get the agi buffer first. It ensures lock ordering
1926 * on the list.
1927 */
1928 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1929 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1930 if (error)
1931 return error;
1932
1933 /*
1934 * Validate the magic number of the agi block.
1935 */
1936 agi = XFS_BUF_TO_AGI(agibp);
1937 agi_ok =
1938 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1939 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1940 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1941 XFS_RANDOM_IUNLINK))) {
1942 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1943 xfs_trans_brelse(tp, agibp);
1944 return XFS_ERROR(EFSCORRUPTED);
1945 }
1946 /*
1947 * Get the index into the agi hash table for the
1948 * list this inode will go on.
1949 */
1950 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1951 ASSERT(agino != 0);
1952 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1953 ASSERT(agi->agi_unlinked[bucket_index]);
1954 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1955
1956 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1957 /*
1958 * There is already another inode in the bucket we need
1959 * to add ourselves to. Add us at the front of the list.
1960 * Here we put the head pointer into our next pointer,
1961 * and then we fall through to point the head at us.
1962 */
1963 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1964 if (error)
1965 return error;
1966
1967 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1968 /* both on-disk, don't endian flip twice */
1969 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1970 offset = ip->i_boffset +
1971 offsetof(xfs_dinode_t, di_next_unlinked);
1972 xfs_trans_inode_buf(tp, ibp);
1973 xfs_trans_log_buf(tp, ibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 xfs_inobp_check(mp, ibp);
1976 }
1977
1978 /*
1979 * Point the bucket head pointer at the inode being inserted.
1980 */
1981 ASSERT(agino != 0);
1982 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1983 offset = offsetof(xfs_agi_t, agi_unlinked) +
1984 (sizeof(xfs_agino_t) * bucket_index);
1985 xfs_trans_log_buf(tp, agibp, offset,
1986 (offset + sizeof(xfs_agino_t) - 1));
1987 return 0;
1988 }
1989
1990 /*
1991 * Pull the on-disk inode from the AGI unlinked list.
1992 */
1993 STATIC int
1994 xfs_iunlink_remove(
1995 xfs_trans_t *tp,
1996 xfs_inode_t *ip)
1997 {
1998 xfs_ino_t next_ino;
1999 xfs_mount_t *mp;
2000 xfs_agi_t *agi;
2001 xfs_dinode_t *dip;
2002 xfs_buf_t *agibp;
2003 xfs_buf_t *ibp;
2004 xfs_agnumber_t agno;
2005 xfs_daddr_t agdaddr;
2006 xfs_agino_t agino;
2007 xfs_agino_t next_agino;
2008 xfs_buf_t *last_ibp;
2009 xfs_dinode_t *last_dip = NULL;
2010 short bucket_index;
2011 int offset, last_offset = 0;
2012 int error;
2013 int agi_ok;
2014
2015 /*
2016 * First pull the on-disk inode from the AGI unlinked list.
2017 */
2018 mp = tp->t_mountp;
2019
2020 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2021 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2022
2023 /*
2024 * Get the agi buffer first. It ensures lock ordering
2025 * on the list.
2026 */
2027 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2028 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2029 if (error) {
2030 cmn_err(CE_WARN,
2031 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2032 error, mp->m_fsname);
2033 return error;
2034 }
2035 /*
2036 * Validate the magic number of the agi block.
2037 */
2038 agi = XFS_BUF_TO_AGI(agibp);
2039 agi_ok =
2040 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2041 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2042 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2043 XFS_RANDOM_IUNLINK_REMOVE))) {
2044 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2045 mp, agi);
2046 xfs_trans_brelse(tp, agibp);
2047 cmn_err(CE_WARN,
2048 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2049 mp->m_fsname);
2050 return XFS_ERROR(EFSCORRUPTED);
2051 }
2052 /*
2053 * Get the index into the agi hash table for the
2054 * list this inode will go on.
2055 */
2056 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2057 ASSERT(agino != 0);
2058 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2059 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2060 ASSERT(agi->agi_unlinked[bucket_index]);
2061
2062 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2063 /*
2064 * We're at the head of the list. Get the inode's
2065 * on-disk buffer to see if there is anyone after us
2066 * on the list. Only modify our next pointer if it
2067 * is not already NULLAGINO. This saves us the overhead
2068 * of dealing with the buffer when there is no need to
2069 * change it.
2070 */
2071 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2072 if (error) {
2073 cmn_err(CE_WARN,
2074 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2076 return error;
2077 }
2078 next_agino = be32_to_cpu(dip->di_next_unlinked);
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
2081 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082 offset = ip->i_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2084 xfs_trans_inode_buf(tp, ibp);
2085 xfs_trans_log_buf(tp, ibp, offset,
2086 (offset + sizeof(xfs_agino_t) - 1));
2087 xfs_inobp_check(mp, ibp);
2088 } else {
2089 xfs_trans_brelse(tp, ibp);
2090 }
2091 /*
2092 * Point the bucket head pointer at the next inode.
2093 */
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
2096 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2097 offset = offsetof(xfs_agi_t, agi_unlinked) +
2098 (sizeof(xfs_agino_t) * bucket_index);
2099 xfs_trans_log_buf(tp, agibp, offset,
2100 (offset + sizeof(xfs_agino_t) - 1));
2101 } else {
2102 /*
2103 * We need to search the list for the inode being freed.
2104 */
2105 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2106 last_ibp = NULL;
2107 while (next_agino != agino) {
2108 /*
2109 * If the last inode wasn't the one pointing to
2110 * us, then release its buffer since we're not
2111 * going to do anything with it.
2112 */
2113 if (last_ibp != NULL) {
2114 xfs_trans_brelse(tp, last_ibp);
2115 }
2116 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2117 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2118 &last_ibp, &last_offset);
2119 if (error) {
2120 cmn_err(CE_WARN,
2121 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2122 error, mp->m_fsname);
2123 return error;
2124 }
2125 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2128 }
2129 /*
2130 * Now last_ibp points to the buffer previous to us on
2131 * the unlinked list. Pull us from the list.
2132 */
2133 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2134 if (error) {
2135 cmn_err(CE_WARN,
2136 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2137 error, mp->m_fsname);
2138 return error;
2139 }
2140 next_agino = be32_to_cpu(dip->di_next_unlinked);
2141 ASSERT(next_agino != 0);
2142 ASSERT(next_agino != agino);
2143 if (next_agino != NULLAGINO) {
2144 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2145 offset = ip->i_boffset +
2146 offsetof(xfs_dinode_t, di_next_unlinked);
2147 xfs_trans_inode_buf(tp, ibp);
2148 xfs_trans_log_buf(tp, ibp, offset,
2149 (offset + sizeof(xfs_agino_t) - 1));
2150 xfs_inobp_check(mp, ibp);
2151 } else {
2152 xfs_trans_brelse(tp, ibp);
2153 }
2154 /*
2155 * Point the previous inode on the list to the next inode.
2156 */
2157 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2158 ASSERT(next_agino != 0);
2159 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2160 xfs_trans_inode_buf(tp, last_ibp);
2161 xfs_trans_log_buf(tp, last_ibp, offset,
2162 (offset + sizeof(xfs_agino_t) - 1));
2163 xfs_inobp_check(mp, last_ibp);
2164 }
2165 return 0;
2166 }
2167
2168 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2169 {
2170 return (((ip->i_itemp == NULL) ||
2171 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2172 (ip->i_update_core == 0));
2173 }
2174
2175 STATIC void
2176 xfs_ifree_cluster(
2177 xfs_inode_t *free_ip,
2178 xfs_trans_t *tp,
2179 xfs_ino_t inum)
2180 {
2181 xfs_mount_t *mp = free_ip->i_mount;
2182 int blks_per_cluster;
2183 int nbufs;
2184 int ninodes;
2185 int i, j, found, pre_flushed;
2186 xfs_daddr_t blkno;
2187 xfs_buf_t *bp;
2188 xfs_inode_t *ip, **ip_found;
2189 xfs_inode_log_item_t *iip;
2190 xfs_log_item_t *lip;
2191 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2192
2193 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2194 blks_per_cluster = 1;
2195 ninodes = mp->m_sb.sb_inopblock;
2196 nbufs = XFS_IALLOC_BLOCKS(mp);
2197 } else {
2198 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2199 mp->m_sb.sb_blocksize;
2200 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2201 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2202 }
2203
2204 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2205
2206 for (j = 0; j < nbufs; j++, inum += ninodes) {
2207 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2208 XFS_INO_TO_AGBNO(mp, inum));
2209
2210
2211 /*
2212 * Look for each inode in memory and attempt to lock it,
2213 * we can be racing with flush and tail pushing here.
2214 * any inode we get the locks on, add to an array of
2215 * inode items to process later.
2216 *
2217 * The get the buffer lock, we could beat a flush
2218 * or tail pushing thread to the lock here, in which
2219 * case they will go looking for the inode buffer
2220 * and fail, we need some other form of interlock
2221 * here.
2222 */
2223 found = 0;
2224 for (i = 0; i < ninodes; i++) {
2225 read_lock(&pag->pag_ici_lock);
2226 ip = radix_tree_lookup(&pag->pag_ici_root,
2227 XFS_INO_TO_AGINO(mp, (inum + i)));
2228
2229 /* Inode not in memory or we found it already,
2230 * nothing to do
2231 */
2232 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2233 read_unlock(&pag->pag_ici_lock);
2234 continue;
2235 }
2236
2237 if (xfs_inode_clean(ip)) {
2238 read_unlock(&pag->pag_ici_lock);
2239 continue;
2240 }
2241
2242 /* If we can get the locks then add it to the
2243 * list, otherwise by the time we get the bp lock
2244 * below it will already be attached to the
2245 * inode buffer.
2246 */
2247
2248 /* This inode will already be locked - by us, lets
2249 * keep it that way.
2250 */
2251
2252 if (ip == free_ip) {
2253 if (xfs_iflock_nowait(ip)) {
2254 xfs_iflags_set(ip, XFS_ISTALE);
2255 if (xfs_inode_clean(ip)) {
2256 xfs_ifunlock(ip);
2257 } else {
2258 ip_found[found++] = ip;
2259 }
2260 }
2261 read_unlock(&pag->pag_ici_lock);
2262 continue;
2263 }
2264
2265 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2266 if (xfs_iflock_nowait(ip)) {
2267 xfs_iflags_set(ip, XFS_ISTALE);
2268
2269 if (xfs_inode_clean(ip)) {
2270 xfs_ifunlock(ip);
2271 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2272 } else {
2273 ip_found[found++] = ip;
2274 }
2275 } else {
2276 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2277 }
2278 }
2279 read_unlock(&pag->pag_ici_lock);
2280 }
2281
2282 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2283 mp->m_bsize * blks_per_cluster,
2284 XFS_BUF_LOCK);
2285
2286 pre_flushed = 0;
2287 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2288 while (lip) {
2289 if (lip->li_type == XFS_LI_INODE) {
2290 iip = (xfs_inode_log_item_t *)lip;
2291 ASSERT(iip->ili_logged == 1);
2292 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2293 spin_lock(&mp->m_ail_lock);
2294 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2295 spin_unlock(&mp->m_ail_lock);
2296 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2297 pre_flushed++;
2298 }
2299 lip = lip->li_bio_list;
2300 }
2301
2302 for (i = 0; i < found; i++) {
2303 ip = ip_found[i];
2304 iip = ip->i_itemp;
2305
2306 if (!iip) {
2307 ip->i_update_core = 0;
2308 xfs_ifunlock(ip);
2309 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2310 continue;
2311 }
2312
2313 iip->ili_last_fields = iip->ili_format.ilf_fields;
2314 iip->ili_format.ilf_fields = 0;
2315 iip->ili_logged = 1;
2316 spin_lock(&mp->m_ail_lock);
2317 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2318 spin_unlock(&mp->m_ail_lock);
2319
2320 xfs_buf_attach_iodone(bp,
2321 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2322 xfs_istale_done, (xfs_log_item_t *)iip);
2323 if (ip != free_ip) {
2324 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2325 }
2326 }
2327
2328 if (found || pre_flushed)
2329 xfs_trans_stale_inode_buf(tp, bp);
2330 xfs_trans_binval(tp, bp);
2331 }
2332
2333 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2334 xfs_put_perag(mp, pag);
2335 }
2336
2337 /*
2338 * This is called to return an inode to the inode free list.
2339 * The inode should already be truncated to 0 length and have
2340 * no pages associated with it. This routine also assumes that
2341 * the inode is already a part of the transaction.
2342 *
2343 * The on-disk copy of the inode will have been added to the list
2344 * of unlinked inodes in the AGI. We need to remove the inode from
2345 * that list atomically with respect to freeing it here.
2346 */
2347 int
2348 xfs_ifree(
2349 xfs_trans_t *tp,
2350 xfs_inode_t *ip,
2351 xfs_bmap_free_t *flist)
2352 {
2353 int error;
2354 int delete;
2355 xfs_ino_t first_ino;
2356 xfs_dinode_t *dip;
2357 xfs_buf_t *ibp;
2358
2359 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2360 ASSERT(ip->i_transp == tp);
2361 ASSERT(ip->i_d.di_nlink == 0);
2362 ASSERT(ip->i_d.di_nextents == 0);
2363 ASSERT(ip->i_d.di_anextents == 0);
2364 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2365 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2366 ASSERT(ip->i_d.di_nblocks == 0);
2367
2368 /*
2369 * Pull the on-disk inode from the AGI unlinked list.
2370 */
2371 error = xfs_iunlink_remove(tp, ip);
2372 if (error != 0) {
2373 return error;
2374 }
2375
2376 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2377 if (error != 0) {
2378 return error;
2379 }
2380 ip->i_d.di_mode = 0; /* mark incore inode as free */
2381 ip->i_d.di_flags = 0;
2382 ip->i_d.di_dmevmask = 0;
2383 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2384 ip->i_df.if_ext_max =
2385 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2386 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2387 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2388 /*
2389 * Bump the generation count so no one will be confused
2390 * by reincarnations of this inode.
2391 */
2392 ip->i_d.di_gen++;
2393
2394 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2395
2396 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
2397 if (error)
2398 return error;
2399
2400 /*
2401 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2402 * from picking up this inode when it is reclaimed (its incore state
2403 * initialzed but not flushed to disk yet). The in-core di_mode is
2404 * already cleared and a corresponding transaction logged.
2405 * The hack here just synchronizes the in-core to on-disk
2406 * di_mode value in advance before the actual inode sync to disk.
2407 * This is OK because the inode is already unlinked and would never
2408 * change its di_mode again for this inode generation.
2409 * This is a temporary hack that would require a proper fix
2410 * in the future.
2411 */
2412 dip->di_core.di_mode = 0;
2413
2414 if (delete) {
2415 xfs_ifree_cluster(ip, tp, first_ino);
2416 }
2417
2418 return 0;
2419 }
2420
2421 /*
2422 * Reallocate the space for if_broot based on the number of records
2423 * being added or deleted as indicated in rec_diff. Move the records
2424 * and pointers in if_broot to fit the new size. When shrinking this
2425 * will eliminate holes between the records and pointers created by
2426 * the caller. When growing this will create holes to be filled in
2427 * by the caller.
2428 *
2429 * The caller must not request to add more records than would fit in
2430 * the on-disk inode root. If the if_broot is currently NULL, then
2431 * if we adding records one will be allocated. The caller must also
2432 * not request that the number of records go below zero, although
2433 * it can go to zero.
2434 *
2435 * ip -- the inode whose if_broot area is changing
2436 * ext_diff -- the change in the number of records, positive or negative,
2437 * requested for the if_broot array.
2438 */
2439 void
2440 xfs_iroot_realloc(
2441 xfs_inode_t *ip,
2442 int rec_diff,
2443 int whichfork)
2444 {
2445 int cur_max;
2446 xfs_ifork_t *ifp;
2447 xfs_bmbt_block_t *new_broot;
2448 int new_max;
2449 size_t new_size;
2450 char *np;
2451 char *op;
2452
2453 /*
2454 * Handle the degenerate case quietly.
2455 */
2456 if (rec_diff == 0) {
2457 return;
2458 }
2459
2460 ifp = XFS_IFORK_PTR(ip, whichfork);
2461 if (rec_diff > 0) {
2462 /*
2463 * If there wasn't any memory allocated before, just
2464 * allocate it now and get out.
2465 */
2466 if (ifp->if_broot_bytes == 0) {
2467 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2468 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2469 KM_SLEEP);
2470 ifp->if_broot_bytes = (int)new_size;
2471 return;
2472 }
2473
2474 /*
2475 * If there is already an existing if_broot, then we need
2476 * to realloc() it and shift the pointers to their new
2477 * location. The records don't change location because
2478 * they are kept butted up against the btree block header.
2479 */
2480 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2481 new_max = cur_max + rec_diff;
2482 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2483 ifp->if_broot = (xfs_bmbt_block_t *)
2484 kmem_realloc(ifp->if_broot,
2485 new_size,
2486 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2487 KM_SLEEP);
2488 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2489 ifp->if_broot_bytes);
2490 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2491 (int)new_size);
2492 ifp->if_broot_bytes = (int)new_size;
2493 ASSERT(ifp->if_broot_bytes <=
2494 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2495 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2496 return;
2497 }
2498
2499 /*
2500 * rec_diff is less than 0. In this case, we are shrinking the
2501 * if_broot buffer. It must already exist. If we go to zero
2502 * records, just get rid of the root and clear the status bit.
2503 */
2504 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2505 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2506 new_max = cur_max + rec_diff;
2507 ASSERT(new_max >= 0);
2508 if (new_max > 0)
2509 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2510 else
2511 new_size = 0;
2512 if (new_size > 0) {
2513 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2514 /*
2515 * First copy over the btree block header.
2516 */
2517 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2518 } else {
2519 new_broot = NULL;
2520 ifp->if_flags &= ~XFS_IFBROOT;
2521 }
2522
2523 /*
2524 * Only copy the records and pointers if there are any.
2525 */
2526 if (new_max > 0) {
2527 /*
2528 * First copy the records.
2529 */
2530 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2531 ifp->if_broot_bytes);
2532 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2533 (int)new_size);
2534 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2535
2536 /*
2537 * Then copy the pointers.
2538 */
2539 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2540 ifp->if_broot_bytes);
2541 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2542 (int)new_size);
2543 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2544 }
2545 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2546 ifp->if_broot = new_broot;
2547 ifp->if_broot_bytes = (int)new_size;
2548 ASSERT(ifp->if_broot_bytes <=
2549 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2550 return;
2551 }
2552
2553
2554 /*
2555 * This is called when the amount of space needed for if_data
2556 * is increased or decreased. The change in size is indicated by
2557 * the number of bytes that need to be added or deleted in the
2558 * byte_diff parameter.
2559 *
2560 * If the amount of space needed has decreased below the size of the
2561 * inline buffer, then switch to using the inline buffer. Otherwise,
2562 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2563 * to what is needed.
2564 *
2565 * ip -- the inode whose if_data area is changing
2566 * byte_diff -- the change in the number of bytes, positive or negative,
2567 * requested for the if_data array.
2568 */
2569 void
2570 xfs_idata_realloc(
2571 xfs_inode_t *ip,
2572 int byte_diff,
2573 int whichfork)
2574 {
2575 xfs_ifork_t *ifp;
2576 int new_size;
2577 int real_size;
2578
2579 if (byte_diff == 0) {
2580 return;
2581 }
2582
2583 ifp = XFS_IFORK_PTR(ip, whichfork);
2584 new_size = (int)ifp->if_bytes + byte_diff;
2585 ASSERT(new_size >= 0);
2586
2587 if (new_size == 0) {
2588 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2590 }
2591 ifp->if_u1.if_data = NULL;
2592 real_size = 0;
2593 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2594 /*
2595 * If the valid extents/data can fit in if_inline_ext/data,
2596 * copy them from the malloc'd vector and free it.
2597 */
2598 if (ifp->if_u1.if_data == NULL) {
2599 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2600 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2601 ASSERT(ifp->if_real_bytes != 0);
2602 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2603 new_size);
2604 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2605 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2606 }
2607 real_size = 0;
2608 } else {
2609 /*
2610 * Stuck with malloc/realloc.
2611 * For inline data, the underlying buffer must be
2612 * a multiple of 4 bytes in size so that it can be
2613 * logged and stay on word boundaries. We enforce
2614 * that here.
2615 */
2616 real_size = roundup(new_size, 4);
2617 if (ifp->if_u1.if_data == NULL) {
2618 ASSERT(ifp->if_real_bytes == 0);
2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2621 /*
2622 * Only do the realloc if the underlying size
2623 * is really changing.
2624 */
2625 if (ifp->if_real_bytes != real_size) {
2626 ifp->if_u1.if_data =
2627 kmem_realloc(ifp->if_u1.if_data,
2628 real_size,
2629 ifp->if_real_bytes,
2630 KM_SLEEP);
2631 }
2632 } else {
2633 ASSERT(ifp->if_real_bytes == 0);
2634 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2635 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2636 ifp->if_bytes);
2637 }
2638 }
2639 ifp->if_real_bytes = real_size;
2640 ifp->if_bytes = new_size;
2641 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2642 }
2643
2644
2645
2646
2647 /*
2648 * Map inode to disk block and offset.
2649 *
2650 * mp -- the mount point structure for the current file system
2651 * tp -- the current transaction
2652 * ino -- the inode number of the inode to be located
2653 * imap -- this structure is filled in with the information necessary
2654 * to retrieve the given inode from disk
2655 * flags -- flags to pass to xfs_dilocate indicating whether or not
2656 * lookups in the inode btree were OK or not
2657 */
2658 int
2659 xfs_imap(
2660 xfs_mount_t *mp,
2661 xfs_trans_t *tp,
2662 xfs_ino_t ino,
2663 xfs_imap_t *imap,
2664 uint flags)
2665 {
2666 xfs_fsblock_t fsbno;
2667 int len;
2668 int off;
2669 int error;
2670
2671 fsbno = imap->im_blkno ?
2672 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2673 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2674 if (error != 0) {
2675 return error;
2676 }
2677 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2678 imap->im_len = XFS_FSB_TO_BB(mp, len);
2679 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2680 imap->im_ioffset = (ushort)off;
2681 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2682 return 0;
2683 }
2684
2685 void
2686 xfs_idestroy_fork(
2687 xfs_inode_t *ip,
2688 int whichfork)
2689 {
2690 xfs_ifork_t *ifp;
2691
2692 ifp = XFS_IFORK_PTR(ip, whichfork);
2693 if (ifp->if_broot != NULL) {
2694 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2695 ifp->if_broot = NULL;
2696 }
2697
2698 /*
2699 * If the format is local, then we can't have an extents
2700 * array so just look for an inline data array. If we're
2701 * not local then we may or may not have an extents list,
2702 * so check and free it up if we do.
2703 */
2704 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2705 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2706 (ifp->if_u1.if_data != NULL)) {
2707 ASSERT(ifp->if_real_bytes != 0);
2708 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2709 ifp->if_u1.if_data = NULL;
2710 ifp->if_real_bytes = 0;
2711 }
2712 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2713 ((ifp->if_flags & XFS_IFEXTIREC) ||
2714 ((ifp->if_u1.if_extents != NULL) &&
2715 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2716 ASSERT(ifp->if_real_bytes != 0);
2717 xfs_iext_destroy(ifp);
2718 }
2719 ASSERT(ifp->if_u1.if_extents == NULL ||
2720 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2721 ASSERT(ifp->if_real_bytes == 0);
2722 if (whichfork == XFS_ATTR_FORK) {
2723 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2724 ip->i_afp = NULL;
2725 }
2726 }
2727
2728 /*
2729 * This is called free all the memory associated with an inode.
2730 * It must free the inode itself and any buffers allocated for
2731 * if_extents/if_data and if_broot. It must also free the lock
2732 * associated with the inode.
2733 */
2734 void
2735 xfs_idestroy(
2736 xfs_inode_t *ip)
2737 {
2738 switch (ip->i_d.di_mode & S_IFMT) {
2739 case S_IFREG:
2740 case S_IFDIR:
2741 case S_IFLNK:
2742 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2743 break;
2744 }
2745 if (ip->i_afp)
2746 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2747 mrfree(&ip->i_lock);
2748 mrfree(&ip->i_iolock);
2749 freesema(&ip->i_flock);
2750
2751 #ifdef XFS_INODE_TRACE
2752 ktrace_free(ip->i_trace);
2753 #endif
2754 #ifdef XFS_BMAP_TRACE
2755 ktrace_free(ip->i_xtrace);
2756 #endif
2757 #ifdef XFS_BMBT_TRACE
2758 ktrace_free(ip->i_btrace);
2759 #endif
2760 #ifdef XFS_RW_TRACE
2761 ktrace_free(ip->i_rwtrace);
2762 #endif
2763 #ifdef XFS_ILOCK_TRACE
2764 ktrace_free(ip->i_lock_trace);
2765 #endif
2766 #ifdef XFS_DIR2_TRACE
2767 ktrace_free(ip->i_dir_trace);
2768 #endif
2769 if (ip->i_itemp) {
2770 /*
2771 * Only if we are shutting down the fs will we see an
2772 * inode still in the AIL. If it is there, we should remove
2773 * it to prevent a use-after-free from occurring.
2774 */
2775 xfs_mount_t *mp = ip->i_mount;
2776 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2777
2778 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2779 XFS_FORCED_SHUTDOWN(ip->i_mount));
2780 if (lip->li_flags & XFS_LI_IN_AIL) {
2781 spin_lock(&mp->m_ail_lock);
2782 if (lip->li_flags & XFS_LI_IN_AIL)
2783 xfs_trans_delete_ail(mp, lip);
2784 else
2785 spin_unlock(&mp->m_ail_lock);
2786 }
2787 xfs_inode_item_destroy(ip);
2788 }
2789 kmem_zone_free(xfs_inode_zone, ip);
2790 }
2791
2792
2793 /*
2794 * Increment the pin count of the given buffer.
2795 * This value is protected by ipinlock spinlock in the mount structure.
2796 */
2797 void
2798 xfs_ipin(
2799 xfs_inode_t *ip)
2800 {
2801 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2802
2803 atomic_inc(&ip->i_pincount);
2804 }
2805
2806 /*
2807 * Decrement the pin count of the given inode, and wake up
2808 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2809 * inode must have been previously pinned with a call to xfs_ipin().
2810 */
2811 void
2812 xfs_iunpin(
2813 xfs_inode_t *ip)
2814 {
2815 ASSERT(atomic_read(&ip->i_pincount) > 0);
2816
2817 if (atomic_dec_and_test(&ip->i_pincount))
2818 wake_up(&ip->i_ipin_wait);
2819 }
2820
2821 /*
2822 * This is called to wait for the given inode to be unpinned.
2823 * It will sleep until this happens. The caller must have the
2824 * inode locked in at least shared mode so that the buffer cannot
2825 * be subsequently pinned once someone is waiting for it to be
2826 * unpinned.
2827 */
2828 STATIC void
2829 xfs_iunpin_wait(
2830 xfs_inode_t *ip)
2831 {
2832 xfs_inode_log_item_t *iip;
2833 xfs_lsn_t lsn;
2834
2835 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2836
2837 if (atomic_read(&ip->i_pincount) == 0) {
2838 return;
2839 }
2840
2841 iip = ip->i_itemp;
2842 if (iip && iip->ili_last_lsn) {
2843 lsn = iip->ili_last_lsn;
2844 } else {
2845 lsn = (xfs_lsn_t)0;
2846 }
2847
2848 /*
2849 * Give the log a push so we don't wait here too long.
2850 */
2851 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2852
2853 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2854 }
2855
2856
2857 /*
2858 * xfs_iextents_copy()
2859 *
2860 * This is called to copy the REAL extents (as opposed to the delayed
2861 * allocation extents) from the inode into the given buffer. It
2862 * returns the number of bytes copied into the buffer.
2863 *
2864 * If there are no delayed allocation extents, then we can just
2865 * memcpy() the extents into the buffer. Otherwise, we need to
2866 * examine each extent in turn and skip those which are delayed.
2867 */
2868 int
2869 xfs_iextents_copy(
2870 xfs_inode_t *ip,
2871 xfs_bmbt_rec_t *dp,
2872 int whichfork)
2873 {
2874 int copied;
2875 int i;
2876 xfs_ifork_t *ifp;
2877 int nrecs;
2878 xfs_fsblock_t start_block;
2879
2880 ifp = XFS_IFORK_PTR(ip, whichfork);
2881 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2882 ASSERT(ifp->if_bytes > 0);
2883
2884 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2885 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2886 ASSERT(nrecs > 0);
2887
2888 /*
2889 * There are some delayed allocation extents in the
2890 * inode, so copy the extents one at a time and skip
2891 * the delayed ones. There must be at least one
2892 * non-delayed extent.
2893 */
2894 copied = 0;
2895 for (i = 0; i < nrecs; i++) {
2896 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2897 start_block = xfs_bmbt_get_startblock(ep);
2898 if (ISNULLSTARTBLOCK(start_block)) {
2899 /*
2900 * It's a delayed allocation extent, so skip it.
2901 */
2902 continue;
2903 }
2904
2905 /* Translate to on disk format */
2906 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2907 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2908 dp++;
2909 copied++;
2910 }
2911 ASSERT(copied != 0);
2912 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2913
2914 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2915 }
2916
2917 /*
2918 * Each of the following cases stores data into the same region
2919 * of the on-disk inode, so only one of them can be valid at
2920 * any given time. While it is possible to have conflicting formats
2921 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2922 * in EXTENTS format, this can only happen when the fork has
2923 * changed formats after being modified but before being flushed.
2924 * In these cases, the format always takes precedence, because the
2925 * format indicates the current state of the fork.
2926 */
2927 /*ARGSUSED*/
2928 STATIC int
2929 xfs_iflush_fork(
2930 xfs_inode_t *ip,
2931 xfs_dinode_t *dip,
2932 xfs_inode_log_item_t *iip,
2933 int whichfork,
2934 xfs_buf_t *bp)
2935 {
2936 char *cp;
2937 xfs_ifork_t *ifp;
2938 xfs_mount_t *mp;
2939 #ifdef XFS_TRANS_DEBUG
2940 int first;
2941 #endif
2942 static const short brootflag[2] =
2943 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2944 static const short dataflag[2] =
2945 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2946 static const short extflag[2] =
2947 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2948
2949 if (iip == NULL)
2950 return 0;
2951 ifp = XFS_IFORK_PTR(ip, whichfork);
2952 /*
2953 * This can happen if we gave up in iformat in an error path,
2954 * for the attribute fork.
2955 */
2956 if (ifp == NULL) {
2957 ASSERT(whichfork == XFS_ATTR_FORK);
2958 return 0;
2959 }
2960 cp = XFS_DFORK_PTR(dip, whichfork);
2961 mp = ip->i_mount;
2962 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2963 case XFS_DINODE_FMT_LOCAL:
2964 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2965 (ifp->if_bytes > 0)) {
2966 ASSERT(ifp->if_u1.if_data != NULL);
2967 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2968 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2969 }
2970 break;
2971
2972 case XFS_DINODE_FMT_EXTENTS:
2973 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2974 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2975 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2976 (ifp->if_bytes == 0));
2977 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2978 (ifp->if_bytes > 0));
2979 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2980 (ifp->if_bytes > 0)) {
2981 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2982 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2983 whichfork);
2984 }
2985 break;
2986
2987 case XFS_DINODE_FMT_BTREE:
2988 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2989 (ifp->if_broot_bytes > 0)) {
2990 ASSERT(ifp->if_broot != NULL);
2991 ASSERT(ifp->if_broot_bytes <=
2992 (XFS_IFORK_SIZE(ip, whichfork) +
2993 XFS_BROOT_SIZE_ADJ));
2994 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2995 (xfs_bmdr_block_t *)cp,
2996 XFS_DFORK_SIZE(dip, mp, whichfork));
2997 }
2998 break;
2999
3000 case XFS_DINODE_FMT_DEV:
3001 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3002 ASSERT(whichfork == XFS_DATA_FORK);
3003 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3004 }
3005 break;
3006
3007 case XFS_DINODE_FMT_UUID:
3008 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3009 ASSERT(whichfork == XFS_DATA_FORK);
3010 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3011 sizeof(uuid_t));
3012 }
3013 break;
3014
3015 default:
3016 ASSERT(0);
3017 break;
3018 }
3019
3020 return 0;
3021 }
3022
3023 /*
3024 * xfs_iflush() will write a modified inode's changes out to the
3025 * inode's on disk home. The caller must have the inode lock held
3026 * in at least shared mode and the inode flush semaphore must be
3027 * held as well. The inode lock will still be held upon return from
3028 * the call and the caller is free to unlock it.
3029 * The inode flush lock will be unlocked when the inode reaches the disk.
3030 * The flags indicate how the inode's buffer should be written out.
3031 */
3032 int
3033 xfs_iflush(
3034 xfs_inode_t *ip,
3035 uint flags)
3036 {
3037 xfs_inode_log_item_t *iip;
3038 xfs_buf_t *bp;
3039 xfs_dinode_t *dip;
3040 xfs_mount_t *mp;
3041 int error;
3042 /* REFERENCED */
3043 xfs_inode_t *iq;
3044 int clcount; /* count of inodes clustered */
3045 int bufwasdelwri;
3046 struct hlist_node *entry;
3047 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3048
3049 XFS_STATS_INC(xs_iflush_count);
3050
3051 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3052 ASSERT(issemalocked(&(ip->i_flock)));
3053 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3054 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3055
3056 iip = ip->i_itemp;
3057 mp = ip->i_mount;
3058
3059 /*
3060 * If the inode isn't dirty, then just release the inode
3061 * flush lock and do nothing.
3062 */
3063 if ((ip->i_update_core == 0) &&
3064 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3065 ASSERT((iip != NULL) ?
3066 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3067 xfs_ifunlock(ip);
3068 return 0;
3069 }
3070
3071 /*
3072 * We can't flush the inode until it is unpinned, so
3073 * wait for it. We know noone new can pin it, because
3074 * we are holding the inode lock shared and you need
3075 * to hold it exclusively to pin the inode.
3076 */
3077 xfs_iunpin_wait(ip);
3078
3079 /*
3080 * This may have been unpinned because the filesystem is shutting
3081 * down forcibly. If that's the case we must not write this inode
3082 * to disk, because the log record didn't make it to disk!
3083 */
3084 if (XFS_FORCED_SHUTDOWN(mp)) {
3085 ip->i_update_core = 0;
3086 if (iip)
3087 iip->ili_format.ilf_fields = 0;
3088 xfs_ifunlock(ip);
3089 return XFS_ERROR(EIO);
3090 }
3091
3092 /*
3093 * Get the buffer containing the on-disk inode.
3094 */
3095 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3096 if (error) {
3097 xfs_ifunlock(ip);
3098 return error;
3099 }
3100
3101 /*
3102 * Decide how buffer will be flushed out. This is done before
3103 * the call to xfs_iflush_int because this field is zeroed by it.
3104 */
3105 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3106 /*
3107 * Flush out the inode buffer according to the directions
3108 * of the caller. In the cases where the caller has given
3109 * us a choice choose the non-delwri case. This is because
3110 * the inode is in the AIL and we need to get it out soon.
3111 */
3112 switch (flags) {
3113 case XFS_IFLUSH_SYNC:
3114 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3115 flags = 0;
3116 break;
3117 case XFS_IFLUSH_ASYNC:
3118 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3119 flags = INT_ASYNC;
3120 break;
3121 case XFS_IFLUSH_DELWRI:
3122 flags = INT_DELWRI;
3123 break;
3124 default:
3125 ASSERT(0);
3126 flags = 0;
3127 break;
3128 }
3129 } else {
3130 switch (flags) {
3131 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3132 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3133 case XFS_IFLUSH_DELWRI:
3134 flags = INT_DELWRI;
3135 break;
3136 case XFS_IFLUSH_ASYNC:
3137 flags = INT_ASYNC;
3138 break;
3139 case XFS_IFLUSH_SYNC:
3140 flags = 0;
3141 break;
3142 default:
3143 ASSERT(0);
3144 flags = 0;
3145 break;
3146 }
3147 }
3148
3149 /*
3150 * First flush out the inode that xfs_iflush was called with.
3151 */
3152 error = xfs_iflush_int(ip, bp);
3153 if (error) {
3154 goto corrupt_out;
3155 }
3156
3157 /*
3158 * inode clustering:
3159 * see if other inodes can be gathered into this write
3160 */
3161 spin_lock(&ip->i_cluster->icl_lock);
3162 ip->i_cluster->icl_buf = bp;
3163
3164 clcount = 0;
3165 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3166 if (iq == ip)
3167 continue;
3168
3169 /*
3170 * Do an un-protected check to see if the inode is dirty and
3171 * is a candidate for flushing. These checks will be repeated
3172 * later after the appropriate locks are acquired.
3173 */
3174 iip = iq->i_itemp;
3175 if ((iq->i_update_core == 0) &&
3176 ((iip == NULL) ||
3177 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3178 xfs_ipincount(iq) == 0) {
3179 continue;
3180 }
3181
3182 /*
3183 * Try to get locks. If any are unavailable,
3184 * then this inode cannot be flushed and is skipped.
3185 */
3186
3187 /* get inode locks (just i_lock) */
3188 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3189 /* get inode flush lock */
3190 if (xfs_iflock_nowait(iq)) {
3191 /* check if pinned */
3192 if (xfs_ipincount(iq) == 0) {
3193 /* arriving here means that
3194 * this inode can be flushed.
3195 * first re-check that it's
3196 * dirty
3197 */
3198 iip = iq->i_itemp;
3199 if ((iq->i_update_core != 0)||
3200 ((iip != NULL) &&
3201 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3202 clcount++;
3203 error = xfs_iflush_int(iq, bp);
3204 if (error) {
3205 xfs_iunlock(iq,
3206 XFS_ILOCK_SHARED);
3207 goto cluster_corrupt_out;
3208 }
3209 } else {
3210 xfs_ifunlock(iq);
3211 }
3212 } else {
3213 xfs_ifunlock(iq);
3214 }
3215 }
3216 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3217 }
3218 }
3219 spin_unlock(&ip->i_cluster->icl_lock);
3220
3221 if (clcount) {
3222 XFS_STATS_INC(xs_icluster_flushcnt);
3223 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3224 }
3225
3226 /*
3227 * If the buffer is pinned then push on the log so we won't
3228 * get stuck waiting in the write for too long.
3229 */
3230 if (XFS_BUF_ISPINNED(bp)){
3231 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3232 }
3233
3234 if (flags & INT_DELWRI) {
3235 xfs_bdwrite(mp, bp);
3236 } else if (flags & INT_ASYNC) {
3237 xfs_bawrite(mp, bp);
3238 } else {
3239 error = xfs_bwrite(mp, bp);
3240 }
3241 return error;
3242
3243 corrupt_out:
3244 xfs_buf_relse(bp);
3245 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3246 xfs_iflush_abort(ip);
3247 /*
3248 * Unlocks the flush lock
3249 */
3250 return XFS_ERROR(EFSCORRUPTED);
3251
3252 cluster_corrupt_out:
3253 /* Corruption detected in the clustering loop. Invalidate the
3254 * inode buffer and shut down the filesystem.
3255 */
3256 spin_unlock(&ip->i_cluster->icl_lock);
3257
3258 /*
3259 * Clean up the buffer. If it was B_DELWRI, just release it --
3260 * brelse can handle it with no problems. If not, shut down the
3261 * filesystem before releasing the buffer.
3262 */
3263 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3264 xfs_buf_relse(bp);
3265 }
3266
3267 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3268
3269 if(!bufwasdelwri) {
3270 /*
3271 * Just like incore_relse: if we have b_iodone functions,
3272 * mark the buffer as an error and call them. Otherwise
3273 * mark it as stale and brelse.
3274 */
3275 if (XFS_BUF_IODONE_FUNC(bp)) {
3276 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3277 XFS_BUF_UNDONE(bp);
3278 XFS_BUF_STALE(bp);
3279 XFS_BUF_SHUT(bp);
3280 XFS_BUF_ERROR(bp,EIO);
3281 xfs_biodone(bp);
3282 } else {
3283 XFS_BUF_STALE(bp);
3284 xfs_buf_relse(bp);
3285 }
3286 }
3287
3288 xfs_iflush_abort(iq);
3289 /*
3290 * Unlocks the flush lock
3291 */
3292 return XFS_ERROR(EFSCORRUPTED);
3293 }
3294
3295
3296 STATIC int
3297 xfs_iflush_int(
3298 xfs_inode_t *ip,
3299 xfs_buf_t *bp)
3300 {
3301 xfs_inode_log_item_t *iip;
3302 xfs_dinode_t *dip;
3303 xfs_mount_t *mp;
3304 #ifdef XFS_TRANS_DEBUG
3305 int first;
3306 #endif
3307
3308 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3309 ASSERT(issemalocked(&(ip->i_flock)));
3310 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3311 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3312
3313 iip = ip->i_itemp;
3314 mp = ip->i_mount;
3315
3316
3317 /*
3318 * If the inode isn't dirty, then just release the inode
3319 * flush lock and do nothing.
3320 */
3321 if ((ip->i_update_core == 0) &&
3322 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3323 xfs_ifunlock(ip);
3324 return 0;
3325 }
3326
3327 /* set *dip = inode's place in the buffer */
3328 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3329
3330 /*
3331 * Clear i_update_core before copying out the data.
3332 * This is for coordination with our timestamp updates
3333 * that don't hold the inode lock. They will always
3334 * update the timestamps BEFORE setting i_update_core,
3335 * so if we clear i_update_core after they set it we
3336 * are guaranteed to see their updates to the timestamps.
3337 * I believe that this depends on strongly ordered memory
3338 * semantics, but we have that. We use the SYNCHRONIZE
3339 * macro to make sure that the compiler does not reorder
3340 * the i_update_core access below the data copy below.
3341 */
3342 ip->i_update_core = 0;
3343 SYNCHRONIZE();
3344
3345 /*
3346 * Make sure to get the latest atime from the Linux inode.
3347 */
3348 xfs_synchronize_atime(ip);
3349
3350 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3351 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3352 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3353 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3354 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3355 goto corrupt_out;
3356 }
3357 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3358 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3359 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3360 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3361 ip->i_ino, ip, ip->i_d.di_magic);
3362 goto corrupt_out;
3363 }
3364 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3365 if (XFS_TEST_ERROR(
3366 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3367 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3368 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3369 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3370 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3371 ip->i_ino, ip);
3372 goto corrupt_out;
3373 }
3374 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3375 if (XFS_TEST_ERROR(
3376 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3377 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3378 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3379 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3382 ip->i_ino, ip);
3383 goto corrupt_out;
3384 }
3385 }
3386 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3387 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3388 XFS_RANDOM_IFLUSH_5)) {
3389 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3390 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3391 ip->i_ino,
3392 ip->i_d.di_nextents + ip->i_d.di_anextents,
3393 ip->i_d.di_nblocks,
3394 ip);
3395 goto corrupt_out;
3396 }
3397 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3398 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3399 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3400 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3401 ip->i_ino, ip->i_d.di_forkoff, ip);
3402 goto corrupt_out;
3403 }
3404 /*
3405 * bump the flush iteration count, used to detect flushes which
3406 * postdate a log record during recovery.
3407 */
3408
3409 ip->i_d.di_flushiter++;
3410
3411 /*
3412 * Copy the dirty parts of the inode into the on-disk
3413 * inode. We always copy out the core of the inode,
3414 * because if the inode is dirty at all the core must
3415 * be.
3416 */
3417 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3418
3419 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3420 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3421 ip->i_d.di_flushiter = 0;
3422
3423 /*
3424 * If this is really an old format inode and the superblock version
3425 * has not been updated to support only new format inodes, then
3426 * convert back to the old inode format. If the superblock version
3427 * has been updated, then make the conversion permanent.
3428 */
3429 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3430 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3431 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3432 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3433 /*
3434 * Convert it back.
3435 */
3436 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3437 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3438 } else {
3439 /*
3440 * The superblock version has already been bumped,
3441 * so just make the conversion to the new inode
3442 * format permanent.
3443 */
3444 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3445 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3446 ip->i_d.di_onlink = 0;
3447 dip->di_core.di_onlink = 0;
3448 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3449 memset(&(dip->di_core.di_pad[0]), 0,
3450 sizeof(dip->di_core.di_pad));
3451 ASSERT(ip->i_d.di_projid == 0);
3452 }
3453 }
3454
3455 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3456 goto corrupt_out;
3457 }
3458
3459 if (XFS_IFORK_Q(ip)) {
3460 /*
3461 * The only error from xfs_iflush_fork is on the data fork.
3462 */
3463 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3464 }
3465 xfs_inobp_check(mp, bp);
3466
3467 /*
3468 * We've recorded everything logged in the inode, so we'd
3469 * like to clear the ilf_fields bits so we don't log and
3470 * flush things unnecessarily. However, we can't stop
3471 * logging all this information until the data we've copied
3472 * into the disk buffer is written to disk. If we did we might
3473 * overwrite the copy of the inode in the log with all the
3474 * data after re-logging only part of it, and in the face of
3475 * a crash we wouldn't have all the data we need to recover.
3476 *
3477 * What we do is move the bits to the ili_last_fields field.
3478 * When logging the inode, these bits are moved back to the
3479 * ilf_fields field. In the xfs_iflush_done() routine we
3480 * clear ili_last_fields, since we know that the information
3481 * those bits represent is permanently on disk. As long as
3482 * the flush completes before the inode is logged again, then
3483 * both ilf_fields and ili_last_fields will be cleared.
3484 *
3485 * We can play with the ilf_fields bits here, because the inode
3486 * lock must be held exclusively in order to set bits there
3487 * and the flush lock protects the ili_last_fields bits.
3488 * Set ili_logged so the flush done
3489 * routine can tell whether or not to look in the AIL.
3490 * Also, store the current LSN of the inode so that we can tell
3491 * whether the item has moved in the AIL from xfs_iflush_done().
3492 * In order to read the lsn we need the AIL lock, because
3493 * it is a 64 bit value that cannot be read atomically.
3494 */
3495 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3496 iip->ili_last_fields = iip->ili_format.ilf_fields;
3497 iip->ili_format.ilf_fields = 0;
3498 iip->ili_logged = 1;
3499
3500 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3501 spin_lock(&mp->m_ail_lock);
3502 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3503 spin_unlock(&mp->m_ail_lock);
3504
3505 /*
3506 * Attach the function xfs_iflush_done to the inode's
3507 * buffer. This will remove the inode from the AIL
3508 * and unlock the inode's flush lock when the inode is
3509 * completely written to disk.
3510 */
3511 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3512 xfs_iflush_done, (xfs_log_item_t *)iip);
3513
3514 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3515 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3516 } else {
3517 /*
3518 * We're flushing an inode which is not in the AIL and has
3519 * not been logged but has i_update_core set. For this
3520 * case we can use a B_DELWRI flush and immediately drop
3521 * the inode flush lock because we can avoid the whole
3522 * AIL state thing. It's OK to drop the flush lock now,
3523 * because we've already locked the buffer and to do anything
3524 * you really need both.
3525 */
3526 if (iip != NULL) {
3527 ASSERT(iip->ili_logged == 0);
3528 ASSERT(iip->ili_last_fields == 0);
3529 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3530 }
3531 xfs_ifunlock(ip);
3532 }
3533
3534 return 0;
3535
3536 corrupt_out:
3537 return XFS_ERROR(EFSCORRUPTED);
3538 }
3539
3540
3541 /*
3542 * Flush all inactive inodes in mp.
3543 */
3544 void
3545 xfs_iflush_all(
3546 xfs_mount_t *mp)
3547 {
3548 xfs_inode_t *ip;
3549 bhv_vnode_t *vp;
3550
3551 again:
3552 XFS_MOUNT_ILOCK(mp);
3553 ip = mp->m_inodes;
3554 if (ip == NULL)
3555 goto out;
3556
3557 do {
3558 /* Make sure we skip markers inserted by sync */
3559 if (ip->i_mount == NULL) {
3560 ip = ip->i_mnext;
3561 continue;
3562 }
3563
3564 vp = XFS_ITOV_NULL(ip);
3565 if (!vp) {
3566 XFS_MOUNT_IUNLOCK(mp);
3567 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3568 goto again;
3569 }
3570
3571 ASSERT(vn_count(vp) == 0);
3572
3573 ip = ip->i_mnext;
3574 } while (ip != mp->m_inodes);
3575 out:
3576 XFS_MOUNT_IUNLOCK(mp);
3577 }
3578
3579 /*
3580 * xfs_iaccess: check accessibility of inode for mode.
3581 */
3582 int
3583 xfs_iaccess(
3584 xfs_inode_t *ip,
3585 mode_t mode,
3586 cred_t *cr)
3587 {
3588 int error;
3589 mode_t orgmode = mode;
3590 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3591
3592 if (mode & S_IWUSR) {
3593 umode_t imode = inode->i_mode;
3594
3595 if (IS_RDONLY(inode) &&
3596 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3597 return XFS_ERROR(EROFS);
3598
3599 if (IS_IMMUTABLE(inode))
3600 return XFS_ERROR(EACCES);
3601 }
3602
3603 /*
3604 * If there's an Access Control List it's used instead of
3605 * the mode bits.
3606 */
3607 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3608 return error ? XFS_ERROR(error) : 0;
3609
3610 if (current_fsuid(cr) != ip->i_d.di_uid) {
3611 mode >>= 3;
3612 if (!in_group_p((gid_t)ip->i_d.di_gid))
3613 mode >>= 3;
3614 }
3615
3616 /*
3617 * If the DACs are ok we don't need any capability check.
3618 */
3619 if ((ip->i_d.di_mode & mode) == mode)
3620 return 0;
3621 /*
3622 * Read/write DACs are always overridable.
3623 * Executable DACs are overridable if at least one exec bit is set.
3624 */
3625 if (!(orgmode & S_IXUSR) ||
3626 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3627 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3628 return 0;
3629
3630 if ((orgmode == S_IRUSR) ||
3631 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3632 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3633 return 0;
3634 #ifdef NOISE
3635 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3636 #endif /* NOISE */
3637 return XFS_ERROR(EACCES);
3638 }
3639 return XFS_ERROR(EACCES);
3640 }
3641
3642 /*
3643 * xfs_iroundup: round up argument to next power of two
3644 */
3645 uint
3646 xfs_iroundup(
3647 uint v)
3648 {
3649 int i;
3650 uint m;
3651
3652 if ((v & (v - 1)) == 0)
3653 return v;
3654 ASSERT((v & 0x80000000) == 0);
3655 if ((v & (v + 1)) == 0)
3656 return v + 1;
3657 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3658 if (v & m)
3659 continue;
3660 v |= m;
3661 if ((v & (v + 1)) == 0)
3662 return v + 1;
3663 }
3664 ASSERT(0);
3665 return( 0 );
3666 }
3667
3668 #ifdef XFS_ILOCK_TRACE
3669 ktrace_t *xfs_ilock_trace_buf;
3670
3671 void
3672 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3673 {
3674 ktrace_enter(ip->i_lock_trace,
3675 (void *)ip,
3676 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3677 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3678 (void *)ra, /* caller of ilock */
3679 (void *)(unsigned long)current_cpu(),
3680 (void *)(unsigned long)current_pid(),
3681 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3682 }
3683 #endif
3684
3685 /*
3686 * Return a pointer to the extent record at file index idx.
3687 */
3688 xfs_bmbt_rec_host_t *
3689 xfs_iext_get_ext(
3690 xfs_ifork_t *ifp, /* inode fork pointer */
3691 xfs_extnum_t idx) /* index of target extent */
3692 {
3693 ASSERT(idx >= 0);
3694 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3695 return ifp->if_u1.if_ext_irec->er_extbuf;
3696 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3697 xfs_ext_irec_t *erp; /* irec pointer */
3698 int erp_idx = 0; /* irec index */
3699 xfs_extnum_t page_idx = idx; /* ext index in target list */
3700
3701 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3702 return &erp->er_extbuf[page_idx];
3703 } else if (ifp->if_bytes) {
3704 return &ifp->if_u1.if_extents[idx];
3705 } else {
3706 return NULL;
3707 }
3708 }
3709
3710 /*
3711 * Insert new item(s) into the extent records for incore inode
3712 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3713 */
3714 void
3715 xfs_iext_insert(
3716 xfs_ifork_t *ifp, /* inode fork pointer */
3717 xfs_extnum_t idx, /* starting index of new items */
3718 xfs_extnum_t count, /* number of inserted items */
3719 xfs_bmbt_irec_t *new) /* items to insert */
3720 {
3721 xfs_extnum_t i; /* extent record index */
3722
3723 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3724 xfs_iext_add(ifp, idx, count);
3725 for (i = idx; i < idx + count; i++, new++)
3726 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3727 }
3728
3729 /*
3730 * This is called when the amount of space required for incore file
3731 * extents needs to be increased. The ext_diff parameter stores the
3732 * number of new extents being added and the idx parameter contains
3733 * the extent index where the new extents will be added. If the new
3734 * extents are being appended, then we just need to (re)allocate and
3735 * initialize the space. Otherwise, if the new extents are being
3736 * inserted into the middle of the existing entries, a bit more work
3737 * is required to make room for the new extents to be inserted. The
3738 * caller is responsible for filling in the new extent entries upon
3739 * return.
3740 */
3741 void
3742 xfs_iext_add(
3743 xfs_ifork_t *ifp, /* inode fork pointer */
3744 xfs_extnum_t idx, /* index to begin adding exts */
3745 int ext_diff) /* number of extents to add */
3746 {
3747 int byte_diff; /* new bytes being added */
3748 int new_size; /* size of extents after adding */
3749 xfs_extnum_t nextents; /* number of extents in file */
3750
3751 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3752 ASSERT((idx >= 0) && (idx <= nextents));
3753 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3754 new_size = ifp->if_bytes + byte_diff;
3755 /*
3756 * If the new number of extents (nextents + ext_diff)
3757 * fits inside the inode, then continue to use the inline
3758 * extent buffer.
3759 */
3760 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3761 if (idx < nextents) {
3762 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3763 &ifp->if_u2.if_inline_ext[idx],
3764 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3765 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3766 }
3767 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3768 ifp->if_real_bytes = 0;
3769 ifp->if_lastex = nextents + ext_diff;
3770 }
3771 /*
3772 * Otherwise use a linear (direct) extent list.
3773 * If the extents are currently inside the inode,
3774 * xfs_iext_realloc_direct will switch us from
3775 * inline to direct extent allocation mode.
3776 */
3777 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3778 xfs_iext_realloc_direct(ifp, new_size);
3779 if (idx < nextents) {
3780 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3781 &ifp->if_u1.if_extents[idx],
3782 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3783 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3784 }
3785 }
3786 /* Indirection array */
3787 else {
3788 xfs_ext_irec_t *erp;
3789 int erp_idx = 0;
3790 int page_idx = idx;
3791
3792 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3793 if (ifp->if_flags & XFS_IFEXTIREC) {
3794 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3795 } else {
3796 xfs_iext_irec_init(ifp);
3797 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3798 erp = ifp->if_u1.if_ext_irec;
3799 }
3800 /* Extents fit in target extent page */
3801 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3802 if (page_idx < erp->er_extcount) {
3803 memmove(&erp->er_extbuf[page_idx + ext_diff],
3804 &erp->er_extbuf[page_idx],
3805 (erp->er_extcount - page_idx) *
3806 sizeof(xfs_bmbt_rec_t));
3807 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3808 }
3809 erp->er_extcount += ext_diff;
3810 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3811 }
3812 /* Insert a new extent page */
3813 else if (erp) {
3814 xfs_iext_add_indirect_multi(ifp,
3815 erp_idx, page_idx, ext_diff);
3816 }
3817 /*
3818 * If extent(s) are being appended to the last page in
3819 * the indirection array and the new extent(s) don't fit
3820 * in the page, then erp is NULL and erp_idx is set to
3821 * the next index needed in the indirection array.
3822 */
3823 else {
3824 int count = ext_diff;
3825
3826 while (count) {
3827 erp = xfs_iext_irec_new(ifp, erp_idx);
3828 erp->er_extcount = count;
3829 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3830 if (count) {
3831 erp_idx++;
3832 }
3833 }
3834 }
3835 }
3836 ifp->if_bytes = new_size;
3837 }
3838
3839 /*
3840 * This is called when incore extents are being added to the indirection
3841 * array and the new extents do not fit in the target extent list. The
3842 * erp_idx parameter contains the irec index for the target extent list
3843 * in the indirection array, and the idx parameter contains the extent
3844 * index within the list. The number of extents being added is stored
3845 * in the count parameter.
3846 *
3847 * |-------| |-------|
3848 * | | | | idx - number of extents before idx
3849 * | idx | | count |
3850 * | | | | count - number of extents being inserted at idx
3851 * |-------| |-------|
3852 * | count | | nex2 | nex2 - number of extents after idx + count
3853 * |-------| |-------|
3854 */
3855 void
3856 xfs_iext_add_indirect_multi(
3857 xfs_ifork_t *ifp, /* inode fork pointer */
3858 int erp_idx, /* target extent irec index */
3859 xfs_extnum_t idx, /* index within target list */
3860 int count) /* new extents being added */
3861 {
3862 int byte_diff; /* new bytes being added */
3863 xfs_ext_irec_t *erp; /* pointer to irec entry */
3864 xfs_extnum_t ext_diff; /* number of extents to add */
3865 xfs_extnum_t ext_cnt; /* new extents still needed */
3866 xfs_extnum_t nex2; /* extents after idx + count */
3867 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3868 int nlists; /* number of irec's (lists) */
3869
3870 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3871 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3872 nex2 = erp->er_extcount - idx;
3873 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3874
3875 /*
3876 * Save second part of target extent list
3877 * (all extents past */
3878 if (nex2) {
3879 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3880 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3881 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3882 erp->er_extcount -= nex2;
3883 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3884 memset(&erp->er_extbuf[idx], 0, byte_diff);
3885 }
3886
3887 /*
3888 * Add the new extents to the end of the target
3889 * list, then allocate new irec record(s) and
3890 * extent buffer(s) as needed to store the rest
3891 * of the new extents.
3892 */
3893 ext_cnt = count;
3894 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3895 if (ext_diff) {
3896 erp->er_extcount += ext_diff;
3897 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3898 ext_cnt -= ext_diff;
3899 }
3900 while (ext_cnt) {
3901 erp_idx++;
3902 erp = xfs_iext_irec_new(ifp, erp_idx);
3903 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3904 erp->er_extcount = ext_diff;
3905 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3906 ext_cnt -= ext_diff;
3907 }
3908
3909 /* Add nex2 extents back to indirection array */
3910 if (nex2) {
3911 xfs_extnum_t ext_avail;
3912 int i;
3913
3914 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3915 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3916 i = 0;
3917 /*
3918 * If nex2 extents fit in the current page, append
3919 * nex2_ep after the new extents.
3920 */
3921 if (nex2 <= ext_avail) {
3922 i = erp->er_extcount;
3923 }
3924 /*
3925 * Otherwise, check if space is available in the
3926 * next page.
3927 */
3928 else if ((erp_idx < nlists - 1) &&
3929 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3930 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3931 erp_idx++;
3932 erp++;
3933 /* Create a hole for nex2 extents */
3934 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3935 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3936 }
3937 /*
3938 * Final choice, create a new extent page for
3939 * nex2 extents.
3940 */
3941 else {
3942 erp_idx++;
3943 erp = xfs_iext_irec_new(ifp, erp_idx);
3944 }
3945 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3946 kmem_free(nex2_ep, byte_diff);
3947 erp->er_extcount += nex2;
3948 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3949 }
3950 }
3951
3952 /*
3953 * This is called when the amount of space required for incore file
3954 * extents needs to be decreased. The ext_diff parameter stores the
3955 * number of extents to be removed and the idx parameter contains
3956 * the extent index where the extents will be removed from.
3957 *
3958 * If the amount of space needed has decreased below the linear
3959 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3960 * extent array. Otherwise, use kmem_realloc() to adjust the
3961 * size to what is needed.
3962 */
3963 void
3964 xfs_iext_remove(
3965 xfs_ifork_t *ifp, /* inode fork pointer */
3966 xfs_extnum_t idx, /* index to begin removing exts */
3967 int ext_diff) /* number of extents to remove */
3968 {
3969 xfs_extnum_t nextents; /* number of extents in file */
3970 int new_size; /* size of extents after removal */
3971
3972 ASSERT(ext_diff > 0);
3973 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3974 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3975
3976 if (new_size == 0) {
3977 xfs_iext_destroy(ifp);
3978 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3979 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3980 } else if (ifp->if_real_bytes) {
3981 xfs_iext_remove_direct(ifp, idx, ext_diff);
3982 } else {
3983 xfs_iext_remove_inline(ifp, idx, ext_diff);
3984 }
3985 ifp->if_bytes = new_size;
3986 }
3987
3988 /*
3989 * This removes ext_diff extents from the inline buffer, beginning
3990 * at extent index idx.
3991 */
3992 void
3993 xfs_iext_remove_inline(
3994 xfs_ifork_t *ifp, /* inode fork pointer */
3995 xfs_extnum_t idx, /* index to begin removing exts */
3996 int ext_diff) /* number of extents to remove */
3997 {
3998 int nextents; /* number of extents in file */
3999
4000 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4001 ASSERT(idx < XFS_INLINE_EXTS);
4002 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4003 ASSERT(((nextents - ext_diff) > 0) &&
4004 (nextents - ext_diff) < XFS_INLINE_EXTS);
4005
4006 if (idx + ext_diff < nextents) {
4007 memmove(&ifp->if_u2.if_inline_ext[idx],
4008 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4009 (nextents - (idx + ext_diff)) *
4010 sizeof(xfs_bmbt_rec_t));
4011 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4012 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4013 } else {
4014 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4015 ext_diff * sizeof(xfs_bmbt_rec_t));
4016 }
4017 }
4018
4019 /*
4020 * This removes ext_diff extents from a linear (direct) extent list,
4021 * beginning at extent index idx. If the extents are being removed
4022 * from the end of the list (ie. truncate) then we just need to re-
4023 * allocate the list to remove the extra space. Otherwise, if the
4024 * extents are being removed from the middle of the existing extent
4025 * entries, then we first need to move the extent records beginning
4026 * at idx + ext_diff up in the list to overwrite the records being
4027 * removed, then remove the extra space via kmem_realloc.
4028 */
4029 void
4030 xfs_iext_remove_direct(
4031 xfs_ifork_t *ifp, /* inode fork pointer */
4032 xfs_extnum_t idx, /* index to begin removing exts */
4033 int ext_diff) /* number of extents to remove */
4034 {
4035 xfs_extnum_t nextents; /* number of extents in file */
4036 int new_size; /* size of extents after removal */
4037
4038 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4039 new_size = ifp->if_bytes -
4040 (ext_diff * sizeof(xfs_bmbt_rec_t));
4041 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4042
4043 if (new_size == 0) {
4044 xfs_iext_destroy(ifp);
4045 return;
4046 }
4047 /* Move extents up in the list (if needed) */
4048 if (idx + ext_diff < nextents) {
4049 memmove(&ifp->if_u1.if_extents[idx],
4050 &ifp->if_u1.if_extents[idx + ext_diff],
4051 (nextents - (idx + ext_diff)) *
4052 sizeof(xfs_bmbt_rec_t));
4053 }
4054 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4055 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4056 /*
4057 * Reallocate the direct extent list. If the extents
4058 * will fit inside the inode then xfs_iext_realloc_direct
4059 * will switch from direct to inline extent allocation
4060 * mode for us.
4061 */
4062 xfs_iext_realloc_direct(ifp, new_size);
4063 ifp->if_bytes = new_size;
4064 }
4065
4066 /*
4067 * This is called when incore extents are being removed from the
4068 * indirection array and the extents being removed span multiple extent
4069 * buffers. The idx parameter contains the file extent index where we
4070 * want to begin removing extents, and the count parameter contains
4071 * how many extents need to be removed.
4072 *
4073 * |-------| |-------|
4074 * | nex1 | | | nex1 - number of extents before idx
4075 * |-------| | count |
4076 * | | | | count - number of extents being removed at idx
4077 * | count | |-------|
4078 * | | | nex2 | nex2 - number of extents after idx + count
4079 * |-------| |-------|
4080 */
4081 void
4082 xfs_iext_remove_indirect(
4083 xfs_ifork_t *ifp, /* inode fork pointer */
4084 xfs_extnum_t idx, /* index to begin removing extents */
4085 int count) /* number of extents to remove */
4086 {
4087 xfs_ext_irec_t *erp; /* indirection array pointer */
4088 int erp_idx = 0; /* indirection array index */
4089 xfs_extnum_t ext_cnt; /* extents left to remove */
4090 xfs_extnum_t ext_diff; /* extents to remove in current list */
4091 xfs_extnum_t nex1; /* number of extents before idx */
4092 xfs_extnum_t nex2; /* extents after idx + count */
4093 int nlists; /* entries in indirection array */
4094 int page_idx = idx; /* index in target extent list */
4095
4096 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4097 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4098 ASSERT(erp != NULL);
4099 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4100 nex1 = page_idx;
4101 ext_cnt = count;
4102 while (ext_cnt) {
4103 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4104 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4105 /*
4106 * Check for deletion of entire list;
4107 * xfs_iext_irec_remove() updates extent offsets.
4108 */
4109 if (ext_diff == erp->er_extcount) {
4110 xfs_iext_irec_remove(ifp, erp_idx);
4111 ext_cnt -= ext_diff;
4112 nex1 = 0;
4113 if (ext_cnt) {
4114 ASSERT(erp_idx < ifp->if_real_bytes /
4115 XFS_IEXT_BUFSZ);
4116 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4117 nex1 = 0;
4118 continue;
4119 } else {
4120 break;
4121 }
4122 }
4123 /* Move extents up (if needed) */
4124 if (nex2) {
4125 memmove(&erp->er_extbuf[nex1],
4126 &erp->er_extbuf[nex1 + ext_diff],
4127 nex2 * sizeof(xfs_bmbt_rec_t));
4128 }
4129 /* Zero out rest of page */
4130 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4131 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4132 /* Update remaining counters */
4133 erp->er_extcount -= ext_diff;
4134 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4135 ext_cnt -= ext_diff;
4136 nex1 = 0;
4137 erp_idx++;
4138 erp++;
4139 }
4140 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4141 xfs_iext_irec_compact(ifp);
4142 }
4143
4144 /*
4145 * Create, destroy, or resize a linear (direct) block of extents.
4146 */
4147 void
4148 xfs_iext_realloc_direct(
4149 xfs_ifork_t *ifp, /* inode fork pointer */
4150 int new_size) /* new size of extents */
4151 {
4152 int rnew_size; /* real new size of extents */
4153
4154 rnew_size = new_size;
4155
4156 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4157 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4158 (new_size != ifp->if_real_bytes)));
4159
4160 /* Free extent records */
4161 if (new_size == 0) {
4162 xfs_iext_destroy(ifp);
4163 }
4164 /* Resize direct extent list and zero any new bytes */
4165 else if (ifp->if_real_bytes) {
4166 /* Check if extents will fit inside the inode */
4167 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4168 xfs_iext_direct_to_inline(ifp, new_size /
4169 (uint)sizeof(xfs_bmbt_rec_t));
4170 ifp->if_bytes = new_size;
4171 return;
4172 }
4173 if (!is_power_of_2(new_size)){
4174 rnew_size = xfs_iroundup(new_size);
4175 }
4176 if (rnew_size != ifp->if_real_bytes) {
4177 ifp->if_u1.if_extents =
4178 kmem_realloc(ifp->if_u1.if_extents,
4179 rnew_size,
4180 ifp->if_real_bytes,
4181 KM_SLEEP);
4182 }
4183 if (rnew_size > ifp->if_real_bytes) {
4184 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4185 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4186 rnew_size - ifp->if_real_bytes);
4187 }
4188 }
4189 /*
4190 * Switch from the inline extent buffer to a direct
4191 * extent list. Be sure to include the inline extent
4192 * bytes in new_size.
4193 */
4194 else {
4195 new_size += ifp->if_bytes;
4196 if (!is_power_of_2(new_size)) {
4197 rnew_size = xfs_iroundup(new_size);
4198 }
4199 xfs_iext_inline_to_direct(ifp, rnew_size);
4200 }
4201 ifp->if_real_bytes = rnew_size;
4202 ifp->if_bytes = new_size;
4203 }
4204
4205 /*
4206 * Switch from linear (direct) extent records to inline buffer.
4207 */
4208 void
4209 xfs_iext_direct_to_inline(
4210 xfs_ifork_t *ifp, /* inode fork pointer */
4211 xfs_extnum_t nextents) /* number of extents in file */
4212 {
4213 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4214 ASSERT(nextents <= XFS_INLINE_EXTS);
4215 /*
4216 * The inline buffer was zeroed when we switched
4217 * from inline to direct extent allocation mode,
4218 * so we don't need to clear it here.
4219 */
4220 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4221 nextents * sizeof(xfs_bmbt_rec_t));
4222 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4223 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4224 ifp->if_real_bytes = 0;
4225 }
4226
4227 /*
4228 * Switch from inline buffer to linear (direct) extent records.
4229 * new_size should already be rounded up to the next power of 2
4230 * by the caller (when appropriate), so use new_size as it is.
4231 * However, since new_size may be rounded up, we can't update
4232 * if_bytes here. It is the caller's responsibility to update
4233 * if_bytes upon return.
4234 */
4235 void
4236 xfs_iext_inline_to_direct(
4237 xfs_ifork_t *ifp, /* inode fork pointer */
4238 int new_size) /* number of extents in file */
4239 {
4240 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4241 memset(ifp->if_u1.if_extents, 0, new_size);
4242 if (ifp->if_bytes) {
4243 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4244 ifp->if_bytes);
4245 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4246 sizeof(xfs_bmbt_rec_t));
4247 }
4248 ifp->if_real_bytes = new_size;
4249 }
4250
4251 /*
4252 * Resize an extent indirection array to new_size bytes.
4253 */
4254 void
4255 xfs_iext_realloc_indirect(
4256 xfs_ifork_t *ifp, /* inode fork pointer */
4257 int new_size) /* new indirection array size */
4258 {
4259 int nlists; /* number of irec's (ex lists) */
4260 int size; /* current indirection array size */
4261
4262 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4263 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4264 size = nlists * sizeof(xfs_ext_irec_t);
4265 ASSERT(ifp->if_real_bytes);
4266 ASSERT((new_size >= 0) && (new_size != size));
4267 if (new_size == 0) {
4268 xfs_iext_destroy(ifp);
4269 } else {
4270 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4271 kmem_realloc(ifp->if_u1.if_ext_irec,
4272 new_size, size, KM_SLEEP);
4273 }
4274 }
4275
4276 /*
4277 * Switch from indirection array to linear (direct) extent allocations.
4278 */
4279 void
4280 xfs_iext_indirect_to_direct(
4281 xfs_ifork_t *ifp) /* inode fork pointer */
4282 {
4283 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4284 xfs_extnum_t nextents; /* number of extents in file */
4285 int size; /* size of file extents */
4286
4287 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4288 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4289 ASSERT(nextents <= XFS_LINEAR_EXTS);
4290 size = nextents * sizeof(xfs_bmbt_rec_t);
4291
4292 xfs_iext_irec_compact_full(ifp);
4293 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4294
4295 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4296 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4297 ifp->if_flags &= ~XFS_IFEXTIREC;
4298 ifp->if_u1.if_extents = ep;
4299 ifp->if_bytes = size;
4300 if (nextents < XFS_LINEAR_EXTS) {
4301 xfs_iext_realloc_direct(ifp, size);
4302 }
4303 }
4304
4305 /*
4306 * Free incore file extents.
4307 */
4308 void
4309 xfs_iext_destroy(
4310 xfs_ifork_t *ifp) /* inode fork pointer */
4311 {
4312 if (ifp->if_flags & XFS_IFEXTIREC) {
4313 int erp_idx;
4314 int nlists;
4315
4316 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4317 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4318 xfs_iext_irec_remove(ifp, erp_idx);
4319 }
4320 ifp->if_flags &= ~XFS_IFEXTIREC;
4321 } else if (ifp->if_real_bytes) {
4322 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4323 } else if (ifp->if_bytes) {
4324 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4325 sizeof(xfs_bmbt_rec_t));
4326 }
4327 ifp->if_u1.if_extents = NULL;
4328 ifp->if_real_bytes = 0;
4329 ifp->if_bytes = 0;
4330 }
4331
4332 /*
4333 * Return a pointer to the extent record for file system block bno.
4334 */
4335 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4336 xfs_iext_bno_to_ext(
4337 xfs_ifork_t *ifp, /* inode fork pointer */
4338 xfs_fileoff_t bno, /* block number to search for */
4339 xfs_extnum_t *idxp) /* index of target extent */
4340 {
4341 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4342 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4343 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4344 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4345 int high; /* upper boundary in search */
4346 xfs_extnum_t idx = 0; /* index of target extent */
4347 int low; /* lower boundary in search */
4348 xfs_extnum_t nextents; /* number of file extents */
4349 xfs_fileoff_t startoff = 0; /* start offset of extent */
4350
4351 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4352 if (nextents == 0) {
4353 *idxp = 0;
4354 return NULL;
4355 }
4356 low = 0;
4357 if (ifp->if_flags & XFS_IFEXTIREC) {
4358 /* Find target extent list */
4359 int erp_idx = 0;
4360 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4361 base = erp->er_extbuf;
4362 high = erp->er_extcount - 1;
4363 } else {
4364 base = ifp->if_u1.if_extents;
4365 high = nextents - 1;
4366 }
4367 /* Binary search extent records */
4368 while (low <= high) {
4369 idx = (low + high) >> 1;
4370 ep = base + idx;
4371 startoff = xfs_bmbt_get_startoff(ep);
4372 blockcount = xfs_bmbt_get_blockcount(ep);
4373 if (bno < startoff) {
4374 high = idx - 1;
4375 } else if (bno >= startoff + blockcount) {
4376 low = idx + 1;
4377 } else {
4378 /* Convert back to file-based extent index */
4379 if (ifp->if_flags & XFS_IFEXTIREC) {
4380 idx += erp->er_extoff;
4381 }
4382 *idxp = idx;
4383 return ep;
4384 }
4385 }
4386 /* Convert back to file-based extent index */
4387 if (ifp->if_flags & XFS_IFEXTIREC) {
4388 idx += erp->er_extoff;
4389 }
4390 if (bno >= startoff + blockcount) {
4391 if (++idx == nextents) {
4392 ep = NULL;
4393 } else {
4394 ep = xfs_iext_get_ext(ifp, idx);
4395 }
4396 }
4397 *idxp = idx;
4398 return ep;
4399 }
4400
4401 /*
4402 * Return a pointer to the indirection array entry containing the
4403 * extent record for filesystem block bno. Store the index of the
4404 * target irec in *erp_idxp.
4405 */
4406 xfs_ext_irec_t * /* pointer to found extent record */
4407 xfs_iext_bno_to_irec(
4408 xfs_ifork_t *ifp, /* inode fork pointer */
4409 xfs_fileoff_t bno, /* block number to search for */
4410 int *erp_idxp) /* irec index of target ext list */
4411 {
4412 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4413 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4414 int erp_idx; /* indirection array index */
4415 int nlists; /* number of extent irec's (lists) */
4416 int high; /* binary search upper limit */
4417 int low; /* binary search lower limit */
4418
4419 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4420 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4421 erp_idx = 0;
4422 low = 0;
4423 high = nlists - 1;
4424 while (low <= high) {
4425 erp_idx = (low + high) >> 1;
4426 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4427 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4428 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4429 high = erp_idx - 1;
4430 } else if (erp_next && bno >=
4431 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4432 low = erp_idx + 1;
4433 } else {
4434 break;
4435 }
4436 }
4437 *erp_idxp = erp_idx;
4438 return erp;
4439 }
4440
4441 /*
4442 * Return a pointer to the indirection array entry containing the
4443 * extent record at file extent index *idxp. Store the index of the
4444 * target irec in *erp_idxp and store the page index of the target
4445 * extent record in *idxp.
4446 */
4447 xfs_ext_irec_t *
4448 xfs_iext_idx_to_irec(
4449 xfs_ifork_t *ifp, /* inode fork pointer */
4450 xfs_extnum_t *idxp, /* extent index (file -> page) */
4451 int *erp_idxp, /* pointer to target irec */
4452 int realloc) /* new bytes were just added */
4453 {
4454 xfs_ext_irec_t *prev; /* pointer to previous irec */
4455 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4456 int erp_idx; /* indirection array index */
4457 int nlists; /* number of irec's (ex lists) */
4458 int high; /* binary search upper limit */
4459 int low; /* binary search lower limit */
4460 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4461
4462 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4463 ASSERT(page_idx >= 0 && page_idx <=
4464 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4465 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4466 erp_idx = 0;
4467 low = 0;
4468 high = nlists - 1;
4469
4470 /* Binary search extent irec's */
4471 while (low <= high) {
4472 erp_idx = (low + high) >> 1;
4473 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4474 prev = erp_idx > 0 ? erp - 1 : NULL;
4475 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4476 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4477 high = erp_idx - 1;
4478 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4479 (page_idx == erp->er_extoff + erp->er_extcount &&
4480 !realloc)) {
4481 low = erp_idx + 1;
4482 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4483 erp->er_extcount == XFS_LINEAR_EXTS) {
4484 ASSERT(realloc);
4485 page_idx = 0;
4486 erp_idx++;
4487 erp = erp_idx < nlists ? erp + 1 : NULL;
4488 break;
4489 } else {
4490 page_idx -= erp->er_extoff;
4491 break;
4492 }
4493 }
4494 *idxp = page_idx;
4495 *erp_idxp = erp_idx;
4496 return(erp);
4497 }
4498
4499 /*
4500 * Allocate and initialize an indirection array once the space needed
4501 * for incore extents increases above XFS_IEXT_BUFSZ.
4502 */
4503 void
4504 xfs_iext_irec_init(
4505 xfs_ifork_t *ifp) /* inode fork pointer */
4506 {
4507 xfs_ext_irec_t *erp; /* indirection array pointer */
4508 xfs_extnum_t nextents; /* number of extents in file */
4509
4510 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4511 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4512 ASSERT(nextents <= XFS_LINEAR_EXTS);
4513
4514 erp = (xfs_ext_irec_t *)
4515 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4516
4517 if (nextents == 0) {
4518 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4519 } else if (!ifp->if_real_bytes) {
4520 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4521 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4522 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4523 }
4524 erp->er_extbuf = ifp->if_u1.if_extents;
4525 erp->er_extcount = nextents;
4526 erp->er_extoff = 0;
4527
4528 ifp->if_flags |= XFS_IFEXTIREC;
4529 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4530 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4531 ifp->if_u1.if_ext_irec = erp;
4532
4533 return;
4534 }
4535
4536 /*
4537 * Allocate and initialize a new entry in the indirection array.
4538 */
4539 xfs_ext_irec_t *
4540 xfs_iext_irec_new(
4541 xfs_ifork_t *ifp, /* inode fork pointer */
4542 int erp_idx) /* index for new irec */
4543 {
4544 xfs_ext_irec_t *erp; /* indirection array pointer */
4545 int i; /* loop counter */
4546 int nlists; /* number of irec's (ex lists) */
4547
4548 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4549 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4550
4551 /* Resize indirection array */
4552 xfs_iext_realloc_indirect(ifp, ++nlists *
4553 sizeof(xfs_ext_irec_t));
4554 /*
4555 * Move records down in the array so the
4556 * new page can use erp_idx.
4557 */
4558 erp = ifp->if_u1.if_ext_irec;
4559 for (i = nlists - 1; i > erp_idx; i--) {
4560 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4561 }
4562 ASSERT(i == erp_idx);
4563
4564 /* Initialize new extent record */
4565 erp = ifp->if_u1.if_ext_irec;
4566 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4567 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4568 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4569 erp[erp_idx].er_extcount = 0;
4570 erp[erp_idx].er_extoff = erp_idx > 0 ?
4571 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4572 return (&erp[erp_idx]);
4573 }
4574
4575 /*
4576 * Remove a record from the indirection array.
4577 */
4578 void
4579 xfs_iext_irec_remove(
4580 xfs_ifork_t *ifp, /* inode fork pointer */
4581 int erp_idx) /* irec index to remove */
4582 {
4583 xfs_ext_irec_t *erp; /* indirection array pointer */
4584 int i; /* loop counter */
4585 int nlists; /* number of irec's (ex lists) */
4586
4587 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4588 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4589 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4590 if (erp->er_extbuf) {
4591 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4592 -erp->er_extcount);
4593 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4594 }
4595 /* Compact extent records */
4596 erp = ifp->if_u1.if_ext_irec;
4597 for (i = erp_idx; i < nlists - 1; i++) {
4598 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4599 }
4600 /*
4601 * Manually free the last extent record from the indirection
4602 * array. A call to xfs_iext_realloc_indirect() with a size
4603 * of zero would result in a call to xfs_iext_destroy() which
4604 * would in turn call this function again, creating a nasty
4605 * infinite loop.
4606 */
4607 if (--nlists) {
4608 xfs_iext_realloc_indirect(ifp,
4609 nlists * sizeof(xfs_ext_irec_t));
4610 } else {
4611 kmem_free(ifp->if_u1.if_ext_irec,
4612 sizeof(xfs_ext_irec_t));
4613 }
4614 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4615 }
4616
4617 /*
4618 * This is called to clean up large amounts of unused memory allocated
4619 * by the indirection array. Before compacting anything though, verify
4620 * that the indirection array is still needed and switch back to the
4621 * linear extent list (or even the inline buffer) if possible. The
4622 * compaction policy is as follows:
4623 *
4624 * Full Compaction: Extents fit into a single page (or inline buffer)
4625 * Full Compaction: Extents occupy less than 10% of allocated space
4626 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4627 * No Compaction: Extents occupy at least 50% of allocated space
4628 */
4629 void
4630 xfs_iext_irec_compact(
4631 xfs_ifork_t *ifp) /* inode fork pointer */
4632 {
4633 xfs_extnum_t nextents; /* number of extents in file */
4634 int nlists; /* number of irec's (ex lists) */
4635
4636 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4637 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4638 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4639
4640 if (nextents == 0) {
4641 xfs_iext_destroy(ifp);
4642 } else if (nextents <= XFS_INLINE_EXTS) {
4643 xfs_iext_indirect_to_direct(ifp);
4644 xfs_iext_direct_to_inline(ifp, nextents);
4645 } else if (nextents <= XFS_LINEAR_EXTS) {
4646 xfs_iext_indirect_to_direct(ifp);
4647 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4648 xfs_iext_irec_compact_full(ifp);
4649 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4650 xfs_iext_irec_compact_pages(ifp);
4651 }
4652 }
4653
4654 /*
4655 * Combine extents from neighboring extent pages.
4656 */
4657 void
4658 xfs_iext_irec_compact_pages(
4659 xfs_ifork_t *ifp) /* inode fork pointer */
4660 {
4661 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4662 int erp_idx = 0; /* indirection array index */
4663 int nlists; /* number of irec's (ex lists) */
4664
4665 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4666 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4667 while (erp_idx < nlists - 1) {
4668 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4669 erp_next = erp + 1;
4670 if (erp_next->er_extcount <=
4671 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4672 memmove(&erp->er_extbuf[erp->er_extcount],
4673 erp_next->er_extbuf, erp_next->er_extcount *
4674 sizeof(xfs_bmbt_rec_t));
4675 erp->er_extcount += erp_next->er_extcount;
4676 /*
4677 * Free page before removing extent record
4678 * so er_extoffs don't get modified in
4679 * xfs_iext_irec_remove.
4680 */
4681 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4682 erp_next->er_extbuf = NULL;
4683 xfs_iext_irec_remove(ifp, erp_idx + 1);
4684 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4685 } else {
4686 erp_idx++;
4687 }
4688 }
4689 }
4690
4691 /*
4692 * Fully compact the extent records managed by the indirection array.
4693 */
4694 void
4695 xfs_iext_irec_compact_full(
4696 xfs_ifork_t *ifp) /* inode fork pointer */
4697 {
4698 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4699 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4700 int erp_idx = 0; /* extent irec index */
4701 int ext_avail; /* empty entries in ex list */
4702 int ext_diff; /* number of exts to add */
4703 int nlists; /* number of irec's (ex lists) */
4704
4705 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4706 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4707 erp = ifp->if_u1.if_ext_irec;
4708 ep = &erp->er_extbuf[erp->er_extcount];
4709 erp_next = erp + 1;
4710 ep_next = erp_next->er_extbuf;
4711 while (erp_idx < nlists - 1) {
4712 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4713 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4714 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4715 erp->er_extcount += ext_diff;
4716 erp_next->er_extcount -= ext_diff;
4717 /* Remove next page */
4718 if (erp_next->er_extcount == 0) {
4719 /*
4720 * Free page before removing extent record
4721 * so er_extoffs don't get modified in
4722 * xfs_iext_irec_remove.
4723 */
4724 kmem_free(erp_next->er_extbuf,
4725 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4726 erp_next->er_extbuf = NULL;
4727 xfs_iext_irec_remove(ifp, erp_idx + 1);
4728 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4729 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4730 /* Update next page */
4731 } else {
4732 /* Move rest of page up to become next new page */
4733 memmove(erp_next->er_extbuf, ep_next,
4734 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4735 ep_next = erp_next->er_extbuf;
4736 memset(&ep_next[erp_next->er_extcount], 0,
4737 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4738 sizeof(xfs_bmbt_rec_t));
4739 }
4740 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4741 erp_idx++;
4742 if (erp_idx < nlists)
4743 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4744 else
4745 break;
4746 }
4747 ep = &erp->er_extbuf[erp->er_extcount];
4748 erp_next = erp + 1;
4749 ep_next = erp_next->er_extbuf;
4750 }
4751 }
4752
4753 /*
4754 * This is called to update the er_extoff field in the indirection
4755 * array when extents have been added or removed from one of the
4756 * extent lists. erp_idx contains the irec index to begin updating
4757 * at and ext_diff contains the number of extents that were added
4758 * or removed.
4759 */
4760 void
4761 xfs_iext_irec_update_extoffs(
4762 xfs_ifork_t *ifp, /* inode fork pointer */
4763 int erp_idx, /* irec index to update */
4764 int ext_diff) /* number of new extents */
4765 {
4766 int i; /* loop counter */
4767 int nlists; /* number of irec's (ex lists */
4768
4769 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4770 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4771 for (i = erp_idx; i < nlists; i++) {
4772 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4773 }
4774 }