Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_inode.c
1 /*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_sb.h"
41 #include "xfs_ag.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_imap.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
59 #include "xfs_bmap.h"
60 #include "xfs_buf_item.h"
61 #include "xfs_rw.h"
62 #include "xfs_error.h"
63 #include "xfs_bit.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
67 #include "xfs_mac.h"
68 #include "xfs_acl.h"
69
70
71 kmem_zone_t *xfs_ifork_zone;
72 kmem_zone_t *xfs_inode_zone;
73 kmem_zone_t *xfs_chashlist_zone;
74
75 /*
76 * Used in xfs_itruncate(). This is the maximum number of extents
77 * freed from a file in a single transaction.
78 */
79 #define XFS_ITRUNC_MAX_EXTENTS 2
80
81 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
82 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
83 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
84 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
85
86
87 #ifdef DEBUG
88 /*
89 * Make sure that the extents in the given memory buffer
90 * are valid.
91 */
92 STATIC void
93 xfs_validate_extents(
94 xfs_bmbt_rec_t *ep,
95 int nrecs,
96 int disk,
97 xfs_exntfmt_t fmt)
98 {
99 xfs_bmbt_irec_t irec;
100 xfs_bmbt_rec_t rec;
101 int i;
102
103 for (i = 0; i < nrecs; i++) {
104 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
105 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
106 if (disk)
107 xfs_bmbt_disk_get_all(&rec, &irec);
108 else
109 xfs_bmbt_get_all(&rec, &irec);
110 if (fmt == XFS_EXTFMT_NOSTATE)
111 ASSERT(irec.br_state == XFS_EXT_NORM);
112 ep++;
113 }
114 }
115 #else /* DEBUG */
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
117 #endif /* DEBUG */
118
119 /*
120 * Check that none of the inode's in the buffer have a next
121 * unlinked field of 0.
122 */
123 #if defined(DEBUG)
124 void
125 xfs_inobp_check(
126 xfs_mount_t *mp,
127 xfs_buf_t *bp)
128 {
129 int i;
130 int j;
131 xfs_dinode_t *dip;
132
133 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
134
135 for (i = 0; i < j; i++) {
136 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
137 i * mp->m_sb.sb_inodesize);
138 if (!dip->di_next_unlinked) {
139 xfs_fs_cmn_err(CE_ALERT, mp,
140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
141 bp);
142 ASSERT(dip->di_next_unlinked);
143 }
144 }
145 }
146 #endif
147
148 /*
149 * called from bwrite on xfs inode buffers
150 */
151 void
152 xfs_inobp_bwcheck(xfs_buf_t *bp)
153 {
154 xfs_mount_t *mp;
155 int i;
156 int j;
157 xfs_dinode_t *dip;
158
159 ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL);
160
161 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
162
163
164 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
165
166 for (i = 0; i < j; i++) {
167 dip = (xfs_dinode_t *) xfs_buf_offset(bp,
168 i * mp->m_sb.sb_inodesize);
169 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
170 cmn_err(CE_WARN,
171 "Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x",
172 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
173 (__uint64_t)(__psunsigned_t) bp,
174 (__int64_t) XFS_BUF_ADDR(bp),
175 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
176 xfs_fs_cmn_err(CE_WARN, mp,
177 "corrupt, unmount and run xfs_repair");
178 }
179 if (!dip->di_next_unlinked) {
180 cmn_err(CE_WARN,
181 "Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x",
182 (__uint64_t)(__psunsigned_t) bp,
183 (__int64_t) XFS_BUF_ADDR(bp),
184 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
185 xfs_fs_cmn_err(CE_WARN, mp,
186 "corrupt, unmount and run xfs_repair");
187 }
188 }
189
190 return;
191 }
192
193 /*
194 * This routine is called to map an inode number within a file
195 * system to the buffer containing the on-disk version of the
196 * inode. It returns a pointer to the buffer containing the
197 * on-disk inode in the bpp parameter, and in the dip parameter
198 * it returns a pointer to the on-disk inode within that buffer.
199 *
200 * If a non-zero error is returned, then the contents of bpp and
201 * dipp are undefined.
202 *
203 * Use xfs_imap() to determine the size and location of the
204 * buffer to read from disk.
205 */
206 int
207 xfs_inotobp(
208 xfs_mount_t *mp,
209 xfs_trans_t *tp,
210 xfs_ino_t ino,
211 xfs_dinode_t **dipp,
212 xfs_buf_t **bpp,
213 int *offset)
214 {
215 int di_ok;
216 xfs_imap_t imap;
217 xfs_buf_t *bp;
218 int error;
219 xfs_dinode_t *dip;
220
221 /*
222 * Call the space managment code to find the location of the
223 * inode on disk.
224 */
225 imap.im_blkno = 0;
226 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
227 if (error != 0) {
228 cmn_err(CE_WARN,
229 "xfs_inotobp: xfs_imap() returned an "
230 "error %d on %s. Returning error.", error, mp->m_fsname);
231 return error;
232 }
233
234 /*
235 * If the inode number maps to a block outside the bounds of the
236 * file system then return NULL rather than calling read_buf
237 * and panicing when we get an error from the driver.
238 */
239 if ((imap.im_blkno + imap.im_len) >
240 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
241 cmn_err(CE_WARN,
242 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
243 "of the file system %s. Returning EINVAL.",
244 imap.im_blkno, imap.im_len,mp->m_fsname);
245 return XFS_ERROR(EINVAL);
246 }
247
248 /*
249 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
250 * default to just a read_buf() call.
251 */
252 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
253 (int)imap.im_len, XFS_BUF_LOCK, &bp);
254
255 if (error) {
256 cmn_err(CE_WARN,
257 "xfs_inotobp: xfs_trans_read_buf() returned an "
258 "error %d on %s. Returning error.", error, mp->m_fsname);
259 return error;
260 }
261 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
262 di_ok =
263 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
264 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
265 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
266 XFS_RANDOM_ITOBP_INOTOBP))) {
267 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
268 xfs_trans_brelse(tp, bp);
269 cmn_err(CE_WARN,
270 "xfs_inotobp: XFS_TEST_ERROR() returned an "
271 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
272 return XFS_ERROR(EFSCORRUPTED);
273 }
274
275 xfs_inobp_check(mp, bp);
276
277 /*
278 * Set *dipp to point to the on-disk inode in the buffer.
279 */
280 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
281 *bpp = bp;
282 *offset = imap.im_boffset;
283 return 0;
284 }
285
286
287 /*
288 * This routine is called to map an inode to the buffer containing
289 * the on-disk version of the inode. It returns a pointer to the
290 * buffer containing the on-disk inode in the bpp parameter, and in
291 * the dip parameter it returns a pointer to the on-disk inode within
292 * that buffer.
293 *
294 * If a non-zero error is returned, then the contents of bpp and
295 * dipp are undefined.
296 *
297 * If the inode is new and has not yet been initialized, use xfs_imap()
298 * to determine the size and location of the buffer to read from disk.
299 * If the inode has already been mapped to its buffer and read in once,
300 * then use the mapping information stored in the inode rather than
301 * calling xfs_imap(). This allows us to avoid the overhead of looking
302 * at the inode btree for small block file systems (see xfs_dilocate()).
303 * We can tell whether the inode has been mapped in before by comparing
304 * its disk block address to 0. Only uninitialized inodes will have
305 * 0 for the disk block address.
306 */
307 int
308 xfs_itobp(
309 xfs_mount_t *mp,
310 xfs_trans_t *tp,
311 xfs_inode_t *ip,
312 xfs_dinode_t **dipp,
313 xfs_buf_t **bpp,
314 xfs_daddr_t bno)
315 {
316 xfs_buf_t *bp;
317 int error;
318 xfs_imap_t imap;
319 #ifdef __KERNEL__
320 int i;
321 int ni;
322 #endif
323
324 if (ip->i_blkno == (xfs_daddr_t)0) {
325 /*
326 * Call the space management code to find the location of the
327 * inode on disk.
328 */
329 imap.im_blkno = bno;
330 error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP);
331 if (error != 0) {
332 return error;
333 }
334
335 /*
336 * If the inode number maps to a block outside the bounds
337 * of the file system then return NULL rather than calling
338 * read_buf and panicing when we get an error from the
339 * driver.
340 */
341 if ((imap.im_blkno + imap.im_len) >
342 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
343 #ifdef DEBUG
344 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
345 "(imap.im_blkno (0x%llx) "
346 "+ imap.im_len (0x%llx)) > "
347 " XFS_FSB_TO_BB(mp, "
348 "mp->m_sb.sb_dblocks) (0x%llx)",
349 (unsigned long long) imap.im_blkno,
350 (unsigned long long) imap.im_len,
351 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
352 #endif /* DEBUG */
353 return XFS_ERROR(EINVAL);
354 }
355
356 /*
357 * Fill in the fields in the inode that will be used to
358 * map the inode to its buffer from now on.
359 */
360 ip->i_blkno = imap.im_blkno;
361 ip->i_len = imap.im_len;
362 ip->i_boffset = imap.im_boffset;
363 } else {
364 /*
365 * We've already mapped the inode once, so just use the
366 * mapping that we saved the first time.
367 */
368 imap.im_blkno = ip->i_blkno;
369 imap.im_len = ip->i_len;
370 imap.im_boffset = ip->i_boffset;
371 }
372 ASSERT(bno == 0 || bno == imap.im_blkno);
373
374 /*
375 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
376 * default to just a read_buf() call.
377 */
378 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
379 (int)imap.im_len, XFS_BUF_LOCK, &bp);
380
381 if (error) {
382 #ifdef DEBUG
383 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
384 "xfs_trans_read_buf() returned error %d, "
385 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
386 error, (unsigned long long) imap.im_blkno,
387 (unsigned long long) imap.im_len);
388 #endif /* DEBUG */
389 return error;
390 }
391 #ifdef __KERNEL__
392 /*
393 * Validate the magic number and version of every inode in the buffer
394 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
395 */
396 #ifdef DEBUG
397 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
398 #else
399 ni = 1;
400 #endif
401 for (i = 0; i < ni; i++) {
402 int di_ok;
403 xfs_dinode_t *dip;
404
405 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
406 (i << mp->m_sb.sb_inodelog));
407 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
408 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
409 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
410 XFS_RANDOM_ITOBP_INOTOBP))) {
411 #ifdef DEBUG
412 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
413 mp->m_ddev_targp,
414 (unsigned long long)imap.im_blkno, i,
415 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
416 #endif
417 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
418 mp, dip);
419 xfs_trans_brelse(tp, bp);
420 return XFS_ERROR(EFSCORRUPTED);
421 }
422 }
423 #endif /* __KERNEL__ */
424
425 xfs_inobp_check(mp, bp);
426
427 /*
428 * Mark the buffer as an inode buffer now that it looks good
429 */
430 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
431
432 /*
433 * Set *dipp to point to the on-disk inode in the buffer.
434 */
435 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
436 *bpp = bp;
437 return 0;
438 }
439
440 /*
441 * Move inode type and inode format specific information from the
442 * on-disk inode to the in-core inode. For fifos, devs, and sockets
443 * this means set if_rdev to the proper value. For files, directories,
444 * and symlinks this means to bring in the in-line data or extent
445 * pointers. For a file in B-tree format, only the root is immediately
446 * brought in-core. The rest will be in-lined in if_extents when it
447 * is first referenced (see xfs_iread_extents()).
448 */
449 STATIC int
450 xfs_iformat(
451 xfs_inode_t *ip,
452 xfs_dinode_t *dip)
453 {
454 xfs_attr_shortform_t *atp;
455 int size;
456 int error;
457 xfs_fsize_t di_size;
458 ip->i_df.if_ext_max =
459 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
460 error = 0;
461
462 if (unlikely(
463 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
464 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
465 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
466 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
468 " Unmount and run xfs_repair.",
469 (unsigned long long)ip->i_ino,
470 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
471 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
472 (unsigned long long)
473 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
474 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
475 ip->i_mount, dip);
476 return XFS_ERROR(EFSCORRUPTED);
477 }
478
479 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
480 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
481 "corrupt dinode %Lu, forkoff = 0x%x."
482 " Unmount and run xfs_repair.",
483 (unsigned long long)ip->i_ino,
484 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
485 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
486 ip->i_mount, dip);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489
490 switch (ip->i_d.di_mode & S_IFMT) {
491 case S_IFIFO:
492 case S_IFCHR:
493 case S_IFBLK:
494 case S_IFSOCK:
495 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
496 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
499 }
500 ip->i_d.di_size = 0;
501 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
502 break;
503
504 case S_IFREG:
505 case S_IFLNK:
506 case S_IFDIR:
507 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
508 case XFS_DINODE_FMT_LOCAL:
509 /*
510 * no local regular files yet
511 */
512 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
513 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
514 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
515 (unsigned long long) ip->i_ino);
516 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
517 XFS_ERRLEVEL_LOW,
518 ip->i_mount, dip);
519 return XFS_ERROR(EFSCORRUPTED);
520 }
521
522 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
523 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
524 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
525 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
526 (unsigned long long) ip->i_ino,
527 (long long) di_size);
528 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
529 XFS_ERRLEVEL_LOW,
530 ip->i_mount, dip);
531 return XFS_ERROR(EFSCORRUPTED);
532 }
533
534 size = (int)di_size;
535 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
536 break;
537 case XFS_DINODE_FMT_EXTENTS:
538 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
539 break;
540 case XFS_DINODE_FMT_BTREE:
541 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
542 break;
543 default:
544 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
545 ip->i_mount);
546 return XFS_ERROR(EFSCORRUPTED);
547 }
548 break;
549
550 default:
551 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
552 return XFS_ERROR(EFSCORRUPTED);
553 }
554 if (error) {
555 return error;
556 }
557 if (!XFS_DFORK_Q(dip))
558 return 0;
559 ASSERT(ip->i_afp == NULL);
560 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
561 ip->i_afp->if_ext_max =
562 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
563 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
564 case XFS_DINODE_FMT_LOCAL:
565 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
566 size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT);
567 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
568 break;
569 case XFS_DINODE_FMT_EXTENTS:
570 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
571 break;
572 case XFS_DINODE_FMT_BTREE:
573 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
574 break;
575 default:
576 error = XFS_ERROR(EFSCORRUPTED);
577 break;
578 }
579 if (error) {
580 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
581 ip->i_afp = NULL;
582 xfs_idestroy_fork(ip, XFS_DATA_FORK);
583 }
584 return error;
585 }
586
587 /*
588 * The file is in-lined in the on-disk inode.
589 * If it fits into if_inline_data, then copy
590 * it there, otherwise allocate a buffer for it
591 * and copy the data there. Either way, set
592 * if_data to point at the data.
593 * If we allocate a buffer for the data, make
594 * sure that its size is a multiple of 4 and
595 * record the real size in i_real_bytes.
596 */
597 STATIC int
598 xfs_iformat_local(
599 xfs_inode_t *ip,
600 xfs_dinode_t *dip,
601 int whichfork,
602 int size)
603 {
604 xfs_ifork_t *ifp;
605 int real_size;
606
607 /*
608 * If the size is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
615 (unsigned long long) ip->i_ino, size,
616 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
617 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
618 ip->i_mount, dip);
619 return XFS_ERROR(EFSCORRUPTED);
620 }
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 real_size = 0;
623 if (size == 0)
624 ifp->if_u1.if_data = NULL;
625 else if (size <= sizeof(ifp->if_u2.if_inline_data))
626 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
627 else {
628 real_size = roundup(size, 4);
629 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
630 }
631 ifp->if_bytes = size;
632 ifp->if_real_bytes = real_size;
633 if (size)
634 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
635 ifp->if_flags &= ~XFS_IFEXTENTS;
636 ifp->if_flags |= XFS_IFINLINE;
637 return 0;
638 }
639
640 /*
641 * The file consists of a set of extents all
642 * of which fit into the on-disk inode.
643 * If there are few enough extents to fit into
644 * the if_inline_ext, then copy them there.
645 * Otherwise allocate a buffer for them and copy
646 * them into it. Either way, set if_extents
647 * to point at the extents.
648 */
649 STATIC int
650 xfs_iformat_extents(
651 xfs_inode_t *ip,
652 xfs_dinode_t *dip,
653 int whichfork)
654 {
655 xfs_bmbt_rec_t *ep, *dp;
656 xfs_ifork_t *ifp;
657 int nex;
658 int real_size;
659 int size;
660 int i;
661
662 ifp = XFS_IFORK_PTR(ip, whichfork);
663 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
664 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
665
666 /*
667 * If the number of extents is unreasonable, then something
668 * is wrong and we just bail out rather than crash in
669 * kmem_alloc() or memcpy() below.
670 */
671 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
672 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
673 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
674 (unsigned long long) ip->i_ino, nex);
675 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
676 ip->i_mount, dip);
677 return XFS_ERROR(EFSCORRUPTED);
678 }
679
680 real_size = 0;
681 if (nex == 0)
682 ifp->if_u1.if_extents = NULL;
683 else if (nex <= XFS_INLINE_EXTS)
684 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
685 else {
686 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
687 ASSERT(ifp->if_u1.if_extents != NULL);
688 real_size = size;
689 }
690 ifp->if_bytes = size;
691 ifp->if_real_bytes = real_size;
692 if (size) {
693 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
694 xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip));
695 ep = ifp->if_u1.if_extents;
696 for (i = 0; i < nex; i++, ep++, dp++) {
697 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
698 ARCH_CONVERT);
699 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
700 ARCH_CONVERT);
701 }
702 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
703 whichfork);
704 if (whichfork != XFS_DATA_FORK ||
705 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
706 if (unlikely(xfs_check_nostate_extents(
707 ifp->if_u1.if_extents, nex))) {
708 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
709 XFS_ERRLEVEL_LOW,
710 ip->i_mount);
711 return XFS_ERROR(EFSCORRUPTED);
712 }
713 }
714 ifp->if_flags |= XFS_IFEXTENTS;
715 return 0;
716 }
717
718 /*
719 * The file has too many extents to fit into
720 * the inode, so they are in B-tree format.
721 * Allocate a buffer for the root of the B-tree
722 * and copy the root into it. The i_extents
723 * field will remain NULL until all of the
724 * extents are read in (when they are needed).
725 */
726 STATIC int
727 xfs_iformat_btree(
728 xfs_inode_t *ip,
729 xfs_dinode_t *dip,
730 int whichfork)
731 {
732 xfs_bmdr_block_t *dfp;
733 xfs_ifork_t *ifp;
734 /* REFERENCED */
735 int nrecs;
736 int size;
737
738 ifp = XFS_IFORK_PTR(ip, whichfork);
739 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
740 size = XFS_BMAP_BROOT_SPACE(dfp);
741 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
742
743 /*
744 * blow out if -- fork has less extents than can fit in
745 * fork (fork shouldn't be a btree format), root btree
746 * block has more records than can fit into the fork,
747 * or the number of extents is greater than the number of
748 * blocks.
749 */
750 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
751 || XFS_BMDR_SPACE_CALC(nrecs) >
752 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
753 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
754 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
755 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
756 (unsigned long long) ip->i_ino);
757 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
758 ip->i_mount);
759 return XFS_ERROR(EFSCORRUPTED);
760 }
761
762 ifp->if_broot_bytes = size;
763 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
764 ASSERT(ifp->if_broot != NULL);
765 /*
766 * Copy and convert from the on-disk structure
767 * to the in-memory structure.
768 */
769 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
770 ifp->if_broot, size);
771 ifp->if_flags &= ~XFS_IFEXTENTS;
772 ifp->if_flags |= XFS_IFBROOT;
773
774 return 0;
775 }
776
777 /*
778 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
779 * and native format
780 *
781 * buf = on-disk representation
782 * dip = native representation
783 * dir = direction - +ve -> disk to native
784 * -ve -> native to disk
785 */
786 void
787 xfs_xlate_dinode_core(
788 xfs_caddr_t buf,
789 xfs_dinode_core_t *dip,
790 int dir)
791 {
792 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
793 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
794 xfs_arch_t arch = ARCH_CONVERT;
795
796 ASSERT(dir);
797
798 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
799 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
800 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
801 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
802 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
803 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
804 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
805 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
806 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
807
808 if (dir > 0) {
809 memcpy(mem_core->di_pad, buf_core->di_pad,
810 sizeof(buf_core->di_pad));
811 } else {
812 memcpy(buf_core->di_pad, mem_core->di_pad,
813 sizeof(buf_core->di_pad));
814 }
815
816 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
817
818 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
819 dir, arch);
820 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
821 dir, arch);
822 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
823 dir, arch);
824 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
825 dir, arch);
826 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
827 dir, arch);
828 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
829 dir, arch);
830 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
831 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
832 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
833 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
834 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
835 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
836 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
837 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
838 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
839 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
840 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
841 }
842
843 STATIC uint
844 _xfs_dic2xflags(
845 xfs_dinode_core_t *dic,
846 __uint16_t di_flags)
847 {
848 uint flags = 0;
849
850 if (di_flags & XFS_DIFLAG_ANY) {
851 if (di_flags & XFS_DIFLAG_REALTIME)
852 flags |= XFS_XFLAG_REALTIME;
853 if (di_flags & XFS_DIFLAG_PREALLOC)
854 flags |= XFS_XFLAG_PREALLOC;
855 if (di_flags & XFS_DIFLAG_IMMUTABLE)
856 flags |= XFS_XFLAG_IMMUTABLE;
857 if (di_flags & XFS_DIFLAG_APPEND)
858 flags |= XFS_XFLAG_APPEND;
859 if (di_flags & XFS_DIFLAG_SYNC)
860 flags |= XFS_XFLAG_SYNC;
861 if (di_flags & XFS_DIFLAG_NOATIME)
862 flags |= XFS_XFLAG_NOATIME;
863 if (di_flags & XFS_DIFLAG_NODUMP)
864 flags |= XFS_XFLAG_NODUMP;
865 if (di_flags & XFS_DIFLAG_RTINHERIT)
866 flags |= XFS_XFLAG_RTINHERIT;
867 if (di_flags & XFS_DIFLAG_PROJINHERIT)
868 flags |= XFS_XFLAG_PROJINHERIT;
869 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
870 flags |= XFS_XFLAG_NOSYMLINKS;
871 }
872
873 return flags;
874 }
875
876 uint
877 xfs_ip2xflags(
878 xfs_inode_t *ip)
879 {
880 xfs_dinode_core_t *dic = &ip->i_d;
881
882 return _xfs_dic2xflags(dic, dic->di_flags) |
883 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
884 }
885
886 uint
887 xfs_dic2xflags(
888 xfs_dinode_core_t *dic)
889 {
890 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
891 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
892 }
893
894 /*
895 * Given a mount structure and an inode number, return a pointer
896 * to a newly allocated in-core inode coresponding to the given
897 * inode number.
898 *
899 * Initialize the inode's attributes and extent pointers if it
900 * already has them (it will not if the inode has no links).
901 */
902 int
903 xfs_iread(
904 xfs_mount_t *mp,
905 xfs_trans_t *tp,
906 xfs_ino_t ino,
907 xfs_inode_t **ipp,
908 xfs_daddr_t bno)
909 {
910 xfs_buf_t *bp;
911 xfs_dinode_t *dip;
912 xfs_inode_t *ip;
913 int error;
914
915 ASSERT(xfs_inode_zone != NULL);
916
917 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
918 ip->i_ino = ino;
919 ip->i_mount = mp;
920
921 /*
922 * Get pointer's to the on-disk inode and the buffer containing it.
923 * If the inode number refers to a block outside the file system
924 * then xfs_itobp() will return NULL. In this case we should
925 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
926 * know that this is a new incore inode.
927 */
928 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno);
929
930 if (error != 0) {
931 kmem_zone_free(xfs_inode_zone, ip);
932 return error;
933 }
934
935 /*
936 * Initialize inode's trace buffers.
937 * Do this before xfs_iformat in case it adds entries.
938 */
939 #ifdef XFS_BMAP_TRACE
940 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
941 #endif
942 #ifdef XFS_BMBT_TRACE
943 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
944 #endif
945 #ifdef XFS_RW_TRACE
946 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
947 #endif
948 #ifdef XFS_ILOCK_TRACE
949 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
950 #endif
951 #ifdef XFS_DIR2_TRACE
952 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
953 #endif
954
955 /*
956 * If we got something that isn't an inode it means someone
957 * (nfs or dmi) has a stale handle.
958 */
959 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
960 kmem_zone_free(xfs_inode_zone, ip);
961 xfs_trans_brelse(tp, bp);
962 #ifdef DEBUG
963 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
964 "dip->di_core.di_magic (0x%x) != "
965 "XFS_DINODE_MAGIC (0x%x)",
966 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
967 XFS_DINODE_MAGIC);
968 #endif /* DEBUG */
969 return XFS_ERROR(EINVAL);
970 }
971
972 /*
973 * If the on-disk inode is already linked to a directory
974 * entry, copy all of the inode into the in-core inode.
975 * xfs_iformat() handles copying in the inode format
976 * specific information.
977 * Otherwise, just get the truly permanent information.
978 */
979 if (dip->di_core.di_mode) {
980 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
981 &(ip->i_d), 1);
982 error = xfs_iformat(ip, dip);
983 if (error) {
984 kmem_zone_free(xfs_inode_zone, ip);
985 xfs_trans_brelse(tp, bp);
986 #ifdef DEBUG
987 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
988 "xfs_iformat() returned error %d",
989 error);
990 #endif /* DEBUG */
991 return error;
992 }
993 } else {
994 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
995 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
996 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
997 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
998 /*
999 * Make sure to pull in the mode here as well in
1000 * case the inode is released without being used.
1001 * This ensures that xfs_inactive() will see that
1002 * the inode is already free and not try to mess
1003 * with the uninitialized part of it.
1004 */
1005 ip->i_d.di_mode = 0;
1006 /*
1007 * Initialize the per-fork minima and maxima for a new
1008 * inode here. xfs_iformat will do it for old inodes.
1009 */
1010 ip->i_df.if_ext_max =
1011 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1012 }
1013
1014 INIT_LIST_HEAD(&ip->i_reclaim);
1015
1016 /*
1017 * The inode format changed when we moved the link count and
1018 * made it 32 bits long. If this is an old format inode,
1019 * convert it in memory to look like a new one. If it gets
1020 * flushed to disk we will convert back before flushing or
1021 * logging it. We zero out the new projid field and the old link
1022 * count field. We'll handle clearing the pad field (the remains
1023 * of the old uuid field) when we actually convert the inode to
1024 * the new format. We don't change the version number so that we
1025 * can distinguish this from a real new format inode.
1026 */
1027 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1028 ip->i_d.di_nlink = ip->i_d.di_onlink;
1029 ip->i_d.di_onlink = 0;
1030 ip->i_d.di_projid = 0;
1031 }
1032
1033 ip->i_delayed_blks = 0;
1034
1035 /*
1036 * Mark the buffer containing the inode as something to keep
1037 * around for a while. This helps to keep recently accessed
1038 * meta-data in-core longer.
1039 */
1040 XFS_BUF_SET_REF(bp, XFS_INO_REF);
1041
1042 /*
1043 * Use xfs_trans_brelse() to release the buffer containing the
1044 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1045 * in xfs_itobp() above. If tp is NULL, this is just a normal
1046 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1047 * will only release the buffer if it is not dirty within the
1048 * transaction. It will be OK to release the buffer in this case,
1049 * because inodes on disk are never destroyed and we will be
1050 * locking the new in-core inode before putting it in the hash
1051 * table where other processes can find it. Thus we don't have
1052 * to worry about the inode being changed just because we released
1053 * the buffer.
1054 */
1055 xfs_trans_brelse(tp, bp);
1056 *ipp = ip;
1057 return 0;
1058 }
1059
1060 /*
1061 * Read in extents from a btree-format inode.
1062 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1063 */
1064 int
1065 xfs_iread_extents(
1066 xfs_trans_t *tp,
1067 xfs_inode_t *ip,
1068 int whichfork)
1069 {
1070 int error;
1071 xfs_ifork_t *ifp;
1072 size_t size;
1073
1074 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1075 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1076 ip->i_mount);
1077 return XFS_ERROR(EFSCORRUPTED);
1078 }
1079 size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t);
1080 ifp = XFS_IFORK_PTR(ip, whichfork);
1081 /*
1082 * We know that the size is valid (it's checked in iformat_btree)
1083 */
1084 ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP);
1085 ASSERT(ifp->if_u1.if_extents != NULL);
1086 ifp->if_lastex = NULLEXTNUM;
1087 ifp->if_bytes = ifp->if_real_bytes = (int)size;
1088 ifp->if_flags |= XFS_IFEXTENTS;
1089 error = xfs_bmap_read_extents(tp, ip, whichfork);
1090 if (error) {
1091 kmem_free(ifp->if_u1.if_extents, size);
1092 ifp->if_u1.if_extents = NULL;
1093 ifp->if_bytes = ifp->if_real_bytes = 0;
1094 ifp->if_flags &= ~XFS_IFEXTENTS;
1095 return error;
1096 }
1097 xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents,
1098 XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip));
1099 return 0;
1100 }
1101
1102 /*
1103 * Allocate an inode on disk and return a copy of its in-core version.
1104 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1105 * appropriately within the inode. The uid and gid for the inode are
1106 * set according to the contents of the given cred structure.
1107 *
1108 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1109 * has a free inode available, call xfs_iget()
1110 * to obtain the in-core version of the allocated inode. Finally,
1111 * fill in the inode and log its initial contents. In this case,
1112 * ialloc_context would be set to NULL and call_again set to false.
1113 *
1114 * If xfs_dialloc() does not have an available inode,
1115 * it will replenish its supply by doing an allocation. Since we can
1116 * only do one allocation within a transaction without deadlocks, we
1117 * must commit the current transaction before returning the inode itself.
1118 * In this case, therefore, we will set call_again to true and return.
1119 * The caller should then commit the current transaction, start a new
1120 * transaction, and call xfs_ialloc() again to actually get the inode.
1121 *
1122 * To ensure that some other process does not grab the inode that
1123 * was allocated during the first call to xfs_ialloc(), this routine
1124 * also returns the [locked] bp pointing to the head of the freelist
1125 * as ialloc_context. The caller should hold this buffer across
1126 * the commit and pass it back into this routine on the second call.
1127 */
1128 int
1129 xfs_ialloc(
1130 xfs_trans_t *tp,
1131 xfs_inode_t *pip,
1132 mode_t mode,
1133 nlink_t nlink,
1134 xfs_dev_t rdev,
1135 cred_t *cr,
1136 xfs_prid_t prid,
1137 int okalloc,
1138 xfs_buf_t **ialloc_context,
1139 boolean_t *call_again,
1140 xfs_inode_t **ipp)
1141 {
1142 xfs_ino_t ino;
1143 xfs_inode_t *ip;
1144 vnode_t *vp;
1145 uint flags;
1146 int error;
1147
1148 /*
1149 * Call the space management code to pick
1150 * the on-disk inode to be allocated.
1151 */
1152 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1153 ialloc_context, call_again, &ino);
1154 if (error != 0) {
1155 return error;
1156 }
1157 if (*call_again || ino == NULLFSINO) {
1158 *ipp = NULL;
1159 return 0;
1160 }
1161 ASSERT(*ialloc_context == NULL);
1162
1163 /*
1164 * Get the in-core inode with the lock held exclusively.
1165 * This is because we're setting fields here we need
1166 * to prevent others from looking at until we're done.
1167 */
1168 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1169 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1170 if (error != 0) {
1171 return error;
1172 }
1173 ASSERT(ip != NULL);
1174
1175 vp = XFS_ITOV(ip);
1176 vp->v_type = IFTOVT(mode);
1177 ip->i_d.di_mode = (__uint16_t)mode;
1178 ip->i_d.di_onlink = 0;
1179 ip->i_d.di_nlink = nlink;
1180 ASSERT(ip->i_d.di_nlink == nlink);
1181 ip->i_d.di_uid = current_fsuid(cr);
1182 ip->i_d.di_gid = current_fsgid(cr);
1183 ip->i_d.di_projid = prid;
1184 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1185
1186 /*
1187 * If the superblock version is up to where we support new format
1188 * inodes and this is currently an old format inode, then change
1189 * the inode version number now. This way we only do the conversion
1190 * here rather than here and in the flush/logging code.
1191 */
1192 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1193 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1194 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1195 /*
1196 * We've already zeroed the old link count, the projid field,
1197 * and the pad field.
1198 */
1199 }
1200
1201 /*
1202 * Project ids won't be stored on disk if we are using a version 1 inode.
1203 */
1204 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1205 xfs_bump_ino_vers2(tp, ip);
1206
1207 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1208 ip->i_d.di_gid = pip->i_d.di_gid;
1209 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1210 ip->i_d.di_mode |= S_ISGID;
1211 }
1212 }
1213
1214 /*
1215 * If the group ID of the new file does not match the effective group
1216 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1217 * (and only if the irix_sgid_inherit compatibility variable is set).
1218 */
1219 if ((irix_sgid_inherit) &&
1220 (ip->i_d.di_mode & S_ISGID) &&
1221 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1222 ip->i_d.di_mode &= ~S_ISGID;
1223 }
1224
1225 ip->i_d.di_size = 0;
1226 ip->i_d.di_nextents = 0;
1227 ASSERT(ip->i_d.di_nblocks == 0);
1228 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1229 /*
1230 * di_gen will have been taken care of in xfs_iread.
1231 */
1232 ip->i_d.di_extsize = 0;
1233 ip->i_d.di_dmevmask = 0;
1234 ip->i_d.di_dmstate = 0;
1235 ip->i_d.di_flags = 0;
1236 flags = XFS_ILOG_CORE;
1237 switch (mode & S_IFMT) {
1238 case S_IFIFO:
1239 case S_IFCHR:
1240 case S_IFBLK:
1241 case S_IFSOCK:
1242 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1243 ip->i_df.if_u2.if_rdev = rdev;
1244 ip->i_df.if_flags = 0;
1245 flags |= XFS_ILOG_DEV;
1246 break;
1247 case S_IFREG:
1248 case S_IFDIR:
1249 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1250 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1251 if ((mode & S_IFMT) == S_IFDIR) {
1252 ip->i_d.di_flags |= XFS_DIFLAG_RTINHERIT;
1253 } else {
1254 ip->i_d.di_flags |= XFS_DIFLAG_REALTIME;
1255 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1256 }
1257 }
1258 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1259 xfs_inherit_noatime)
1260 ip->i_d.di_flags |= XFS_DIFLAG_NOATIME;
1261 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1262 xfs_inherit_nodump)
1263 ip->i_d.di_flags |= XFS_DIFLAG_NODUMP;
1264 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1265 xfs_inherit_sync)
1266 ip->i_d.di_flags |= XFS_DIFLAG_SYNC;
1267 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1268 xfs_inherit_nosymlinks)
1269 ip->i_d.di_flags |= XFS_DIFLAG_NOSYMLINKS;
1270 }
1271 /* FALLTHROUGH */
1272 case S_IFLNK:
1273 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1274 ip->i_df.if_flags = XFS_IFEXTENTS;
1275 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1276 ip->i_df.if_u1.if_extents = NULL;
1277 break;
1278 default:
1279 ASSERT(0);
1280 }
1281 /*
1282 * Attribute fork settings for new inode.
1283 */
1284 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1285 ip->i_d.di_anextents = 0;
1286
1287 /*
1288 * Log the new values stuffed into the inode.
1289 */
1290 xfs_trans_log_inode(tp, ip, flags);
1291
1292 /* now that we have a v_type we can set Linux inode ops (& unlock) */
1293 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1294
1295 *ipp = ip;
1296 return 0;
1297 }
1298
1299 /*
1300 * Check to make sure that there are no blocks allocated to the
1301 * file beyond the size of the file. We don't check this for
1302 * files with fixed size extents or real time extents, but we
1303 * at least do it for regular files.
1304 */
1305 #ifdef DEBUG
1306 void
1307 xfs_isize_check(
1308 xfs_mount_t *mp,
1309 xfs_inode_t *ip,
1310 xfs_fsize_t isize)
1311 {
1312 xfs_fileoff_t map_first;
1313 int nimaps;
1314 xfs_bmbt_irec_t imaps[2];
1315
1316 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1317 return;
1318
1319 if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME )
1320 return;
1321
1322 nimaps = 2;
1323 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1324 /*
1325 * The filesystem could be shutting down, so bmapi may return
1326 * an error.
1327 */
1328 if (xfs_bmapi(NULL, ip, map_first,
1329 (XFS_B_TO_FSB(mp,
1330 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1331 map_first),
1332 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1333 NULL))
1334 return;
1335 ASSERT(nimaps == 1);
1336 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1337 }
1338 #endif /* DEBUG */
1339
1340 /*
1341 * Calculate the last possible buffered byte in a file. This must
1342 * include data that was buffered beyond the EOF by the write code.
1343 * This also needs to deal with overflowing the xfs_fsize_t type
1344 * which can happen for sizes near the limit.
1345 *
1346 * We also need to take into account any blocks beyond the EOF. It
1347 * may be the case that they were buffered by a write which failed.
1348 * In that case the pages will still be in memory, but the inode size
1349 * will never have been updated.
1350 */
1351 xfs_fsize_t
1352 xfs_file_last_byte(
1353 xfs_inode_t *ip)
1354 {
1355 xfs_mount_t *mp;
1356 xfs_fsize_t last_byte;
1357 xfs_fileoff_t last_block;
1358 xfs_fileoff_t size_last_block;
1359 int error;
1360
1361 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1362
1363 mp = ip->i_mount;
1364 /*
1365 * Only check for blocks beyond the EOF if the extents have
1366 * been read in. This eliminates the need for the inode lock,
1367 * and it also saves us from looking when it really isn't
1368 * necessary.
1369 */
1370 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1371 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1372 XFS_DATA_FORK);
1373 if (error) {
1374 last_block = 0;
1375 }
1376 } else {
1377 last_block = 0;
1378 }
1379 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1380 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1381
1382 last_byte = XFS_FSB_TO_B(mp, last_block);
1383 if (last_byte < 0) {
1384 return XFS_MAXIOFFSET(mp);
1385 }
1386 last_byte += (1 << mp->m_writeio_log);
1387 if (last_byte < 0) {
1388 return XFS_MAXIOFFSET(mp);
1389 }
1390 return last_byte;
1391 }
1392
1393 #if defined(XFS_RW_TRACE)
1394 STATIC void
1395 xfs_itrunc_trace(
1396 int tag,
1397 xfs_inode_t *ip,
1398 int flag,
1399 xfs_fsize_t new_size,
1400 xfs_off_t toss_start,
1401 xfs_off_t toss_finish)
1402 {
1403 if (ip->i_rwtrace == NULL) {
1404 return;
1405 }
1406
1407 ktrace_enter(ip->i_rwtrace,
1408 (void*)((long)tag),
1409 (void*)ip,
1410 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1411 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1412 (void*)((long)flag),
1413 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1414 (void*)(unsigned long)(new_size & 0xffffffff),
1415 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1416 (void*)(unsigned long)(toss_start & 0xffffffff),
1417 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1418 (void*)(unsigned long)(toss_finish & 0xffffffff),
1419 (void*)(unsigned long)current_cpu(),
1420 (void*)0,
1421 (void*)0,
1422 (void*)0,
1423 (void*)0);
1424 }
1425 #else
1426 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1427 #endif
1428
1429 /*
1430 * Start the truncation of the file to new_size. The new size
1431 * must be smaller than the current size. This routine will
1432 * clear the buffer and page caches of file data in the removed
1433 * range, and xfs_itruncate_finish() will remove the underlying
1434 * disk blocks.
1435 *
1436 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1437 * must NOT have the inode lock held at all. This is because we're
1438 * calling into the buffer/page cache code and we can't hold the
1439 * inode lock when we do so.
1440 *
1441 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1442 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1443 * in the case that the caller is locking things out of order and
1444 * may not be able to call xfs_itruncate_finish() with the inode lock
1445 * held without dropping the I/O lock. If the caller must drop the
1446 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1447 * must be called again with all the same restrictions as the initial
1448 * call.
1449 */
1450 void
1451 xfs_itruncate_start(
1452 xfs_inode_t *ip,
1453 uint flags,
1454 xfs_fsize_t new_size)
1455 {
1456 xfs_fsize_t last_byte;
1457 xfs_off_t toss_start;
1458 xfs_mount_t *mp;
1459 vnode_t *vp;
1460
1461 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1462 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1463 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1464 (flags == XFS_ITRUNC_MAYBE));
1465
1466 mp = ip->i_mount;
1467 vp = XFS_ITOV(ip);
1468 /*
1469 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1470 * overlapping the region being removed. We have to use
1471 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1472 * caller may not be able to finish the truncate without
1473 * dropping the inode's I/O lock. Make sure
1474 * to catch any pages brought in by buffers overlapping
1475 * the EOF by searching out beyond the isize by our
1476 * block size. We round new_size up to a block boundary
1477 * so that we don't toss things on the same block as
1478 * new_size but before it.
1479 *
1480 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1481 * call remapf() over the same region if the file is mapped.
1482 * This frees up mapped file references to the pages in the
1483 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1484 * that we get the latest mapped changes flushed out.
1485 */
1486 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1487 toss_start = XFS_FSB_TO_B(mp, toss_start);
1488 if (toss_start < 0) {
1489 /*
1490 * The place to start tossing is beyond our maximum
1491 * file size, so there is no way that the data extended
1492 * out there.
1493 */
1494 return;
1495 }
1496 last_byte = xfs_file_last_byte(ip);
1497 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1498 last_byte);
1499 if (last_byte > toss_start) {
1500 if (flags & XFS_ITRUNC_DEFINITE) {
1501 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1502 } else {
1503 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1504 }
1505 }
1506
1507 #ifdef DEBUG
1508 if (new_size == 0) {
1509 ASSERT(VN_CACHED(vp) == 0);
1510 }
1511 #endif
1512 }
1513
1514 /*
1515 * Shrink the file to the given new_size. The new
1516 * size must be smaller than the current size.
1517 * This will free up the underlying blocks
1518 * in the removed range after a call to xfs_itruncate_start()
1519 * or xfs_atruncate_start().
1520 *
1521 * The transaction passed to this routine must have made
1522 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1523 * This routine may commit the given transaction and
1524 * start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here.
1526 * Some transaction will be returned to the caller to be
1527 * committed. The incoming transaction must already include
1528 * the inode, and both inode locks must be held exclusively.
1529 * The inode must also be "held" within the transaction. On
1530 * return the inode will be "held" within the returned transaction.
1531 * This routine does NOT require any disk space to be reserved
1532 * for it within the transaction.
1533 *
1534 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1535 * and it indicates the fork which is to be truncated. For the
1536 * attribute fork we only support truncation to size 0.
1537 *
1538 * We use the sync parameter to indicate whether or not the first
1539 * transaction we perform might have to be synchronous. For the attr fork,
1540 * it needs to be so if the unlink of the inode is not yet known to be
1541 * permanent in the log. This keeps us from freeing and reusing the
1542 * blocks of the attribute fork before the unlink of the inode becomes
1543 * permanent.
1544 *
1545 * For the data fork, we normally have to run synchronously if we're
1546 * being called out of the inactive path or we're being called
1547 * out of the create path where we're truncating an existing file.
1548 * Either way, the truncate needs to be sync so blocks don't reappear
1549 * in the file with altered data in case of a crash. wsync filesystems
1550 * can run the first case async because anything that shrinks the inode
1551 * has to run sync so by the time we're called here from inactive, the
1552 * inode size is permanently set to 0.
1553 *
1554 * Calls from the truncate path always need to be sync unless we're
1555 * in a wsync filesystem and the file has already been unlinked.
1556 *
1557 * The caller is responsible for correctly setting the sync parameter.
1558 * It gets too hard for us to guess here which path we're being called
1559 * out of just based on inode state.
1560 */
1561 int
1562 xfs_itruncate_finish(
1563 xfs_trans_t **tp,
1564 xfs_inode_t *ip,
1565 xfs_fsize_t new_size,
1566 int fork,
1567 int sync)
1568 {
1569 xfs_fsblock_t first_block;
1570 xfs_fileoff_t first_unmap_block;
1571 xfs_fileoff_t last_block;
1572 xfs_filblks_t unmap_len=0;
1573 xfs_mount_t *mp;
1574 xfs_trans_t *ntp;
1575 int done;
1576 int committed;
1577 xfs_bmap_free_t free_list;
1578 int error;
1579
1580 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1581 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1582 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1583 ASSERT(*tp != NULL);
1584 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1585 ASSERT(ip->i_transp == *tp);
1586 ASSERT(ip->i_itemp != NULL);
1587 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1588
1589
1590 ntp = *tp;
1591 mp = (ntp)->t_mountp;
1592 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1593
1594 /*
1595 * We only support truncating the entire attribute fork.
1596 */
1597 if (fork == XFS_ATTR_FORK) {
1598 new_size = 0LL;
1599 }
1600 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1601 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1602 /*
1603 * The first thing we do is set the size to new_size permanently
1604 * on disk. This way we don't have to worry about anyone ever
1605 * being able to look at the data being freed even in the face
1606 * of a crash. What we're getting around here is the case where
1607 * we free a block, it is allocated to another file, it is written
1608 * to, and then we crash. If the new data gets written to the
1609 * file but the log buffers containing the free and reallocation
1610 * don't, then we'd end up with garbage in the blocks being freed.
1611 * As long as we make the new_size permanent before actually
1612 * freeing any blocks it doesn't matter if they get writtten to.
1613 *
1614 * The callers must signal into us whether or not the size
1615 * setting here must be synchronous. There are a few cases
1616 * where it doesn't have to be synchronous. Those cases
1617 * occur if the file is unlinked and we know the unlink is
1618 * permanent or if the blocks being truncated are guaranteed
1619 * to be beyond the inode eof (regardless of the link count)
1620 * and the eof value is permanent. Both of these cases occur
1621 * only on wsync-mounted filesystems. In those cases, we're
1622 * guaranteed that no user will ever see the data in the blocks
1623 * that are being truncated so the truncate can run async.
1624 * In the free beyond eof case, the file may wind up with
1625 * more blocks allocated to it than it needs if we crash
1626 * and that won't get fixed until the next time the file
1627 * is re-opened and closed but that's ok as that shouldn't
1628 * be too many blocks.
1629 *
1630 * However, we can't just make all wsync xactions run async
1631 * because there's one call out of the create path that needs
1632 * to run sync where it's truncating an existing file to size
1633 * 0 whose size is > 0.
1634 *
1635 * It's probably possible to come up with a test in this
1636 * routine that would correctly distinguish all the above
1637 * cases from the values of the function parameters and the
1638 * inode state but for sanity's sake, I've decided to let the
1639 * layers above just tell us. It's simpler to correctly figure
1640 * out in the layer above exactly under what conditions we
1641 * can run async and I think it's easier for others read and
1642 * follow the logic in case something has to be changed.
1643 * cscope is your friend -- rcc.
1644 *
1645 * The attribute fork is much simpler.
1646 *
1647 * For the attribute fork we allow the caller to tell us whether
1648 * the unlink of the inode that led to this call is yet permanent
1649 * in the on disk log. If it is not and we will be freeing extents
1650 * in this inode then we make the first transaction synchronous
1651 * to make sure that the unlink is permanent by the time we free
1652 * the blocks.
1653 */
1654 if (fork == XFS_DATA_FORK) {
1655 if (ip->i_d.di_nextents > 0) {
1656 ip->i_d.di_size = new_size;
1657 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1658 }
1659 } else if (sync) {
1660 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1661 if (ip->i_d.di_anextents > 0)
1662 xfs_trans_set_sync(ntp);
1663 }
1664 ASSERT(fork == XFS_DATA_FORK ||
1665 (fork == XFS_ATTR_FORK &&
1666 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1667 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1668
1669 /*
1670 * Since it is possible for space to become allocated beyond
1671 * the end of the file (in a crash where the space is allocated
1672 * but the inode size is not yet updated), simply remove any
1673 * blocks which show up between the new EOF and the maximum
1674 * possible file size. If the first block to be removed is
1675 * beyond the maximum file size (ie it is the same as last_block),
1676 * then there is nothing to do.
1677 */
1678 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1679 ASSERT(first_unmap_block <= last_block);
1680 done = 0;
1681 if (last_block == first_unmap_block) {
1682 done = 1;
1683 } else {
1684 unmap_len = last_block - first_unmap_block + 1;
1685 }
1686 while (!done) {
1687 /*
1688 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1689 * will tell us whether it freed the entire range or
1690 * not. If this is a synchronous mount (wsync),
1691 * then we can tell bunmapi to keep all the
1692 * transactions asynchronous since the unlink
1693 * transaction that made this inode inactive has
1694 * already hit the disk. There's no danger of
1695 * the freed blocks being reused, there being a
1696 * crash, and the reused blocks suddenly reappearing
1697 * in this file with garbage in them once recovery
1698 * runs.
1699 */
1700 XFS_BMAP_INIT(&free_list, &first_block);
1701 error = xfs_bunmapi(ntp, ip, first_unmap_block,
1702 unmap_len,
1703 XFS_BMAPI_AFLAG(fork) |
1704 (sync ? 0 : XFS_BMAPI_ASYNC),
1705 XFS_ITRUNC_MAX_EXTENTS,
1706 &first_block, &free_list, &done);
1707 if (error) {
1708 /*
1709 * If the bunmapi call encounters an error,
1710 * return to the caller where the transaction
1711 * can be properly aborted. We just need to
1712 * make sure we're not holding any resources
1713 * that we were not when we came in.
1714 */
1715 xfs_bmap_cancel(&free_list);
1716 return error;
1717 }
1718
1719 /*
1720 * Duplicate the transaction that has the permanent
1721 * reservation and commit the old transaction.
1722 */
1723 error = xfs_bmap_finish(tp, &free_list, first_block,
1724 &committed);
1725 ntp = *tp;
1726 if (error) {
1727 /*
1728 * If the bmap finish call encounters an error,
1729 * return to the caller where the transaction
1730 * can be properly aborted. We just need to
1731 * make sure we're not holding any resources
1732 * that we were not when we came in.
1733 *
1734 * Aborting from this point might lose some
1735 * blocks in the file system, but oh well.
1736 */
1737 xfs_bmap_cancel(&free_list);
1738 if (committed) {
1739 /*
1740 * If the passed in transaction committed
1741 * in xfs_bmap_finish(), then we want to
1742 * add the inode to this one before returning.
1743 * This keeps things simple for the higher
1744 * level code, because it always knows that
1745 * the inode is locked and held in the
1746 * transaction that returns to it whether
1747 * errors occur or not. We don't mark the
1748 * inode dirty so that this transaction can
1749 * be easily aborted if possible.
1750 */
1751 xfs_trans_ijoin(ntp, ip,
1752 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1753 xfs_trans_ihold(ntp, ip);
1754 }
1755 return error;
1756 }
1757
1758 if (committed) {
1759 /*
1760 * The first xact was committed,
1761 * so add the inode to the new one.
1762 * Mark it dirty so it will be logged
1763 * and moved forward in the log as
1764 * part of every commit.
1765 */
1766 xfs_trans_ijoin(ntp, ip,
1767 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1768 xfs_trans_ihold(ntp, ip);
1769 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1770 }
1771 ntp = xfs_trans_dup(ntp);
1772 (void) xfs_trans_commit(*tp, 0, NULL);
1773 *tp = ntp;
1774 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1775 XFS_TRANS_PERM_LOG_RES,
1776 XFS_ITRUNCATE_LOG_COUNT);
1777 /*
1778 * Add the inode being truncated to the next chained
1779 * transaction.
1780 */
1781 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1782 xfs_trans_ihold(ntp, ip);
1783 if (error)
1784 return (error);
1785 }
1786 /*
1787 * Only update the size in the case of the data fork, but
1788 * always re-log the inode so that our permanent transaction
1789 * can keep on rolling it forward in the log.
1790 */
1791 if (fork == XFS_DATA_FORK) {
1792 xfs_isize_check(mp, ip, new_size);
1793 ip->i_d.di_size = new_size;
1794 }
1795 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1796 ASSERT((new_size != 0) ||
1797 (fork == XFS_ATTR_FORK) ||
1798 (ip->i_delayed_blks == 0));
1799 ASSERT((new_size != 0) ||
1800 (fork == XFS_ATTR_FORK) ||
1801 (ip->i_d.di_nextents == 0));
1802 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1803 return 0;
1804 }
1805
1806
1807 /*
1808 * xfs_igrow_start
1809 *
1810 * Do the first part of growing a file: zero any data in the last
1811 * block that is beyond the old EOF. We need to do this before
1812 * the inode is joined to the transaction to modify the i_size.
1813 * That way we can drop the inode lock and call into the buffer
1814 * cache to get the buffer mapping the EOF.
1815 */
1816 int
1817 xfs_igrow_start(
1818 xfs_inode_t *ip,
1819 xfs_fsize_t new_size,
1820 cred_t *credp)
1821 {
1822 xfs_fsize_t isize;
1823 int error;
1824
1825 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1826 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1827 ASSERT(new_size > ip->i_d.di_size);
1828
1829 error = 0;
1830 isize = ip->i_d.di_size;
1831 /*
1832 * Zero any pages that may have been created by
1833 * xfs_write_file() beyond the end of the file
1834 * and any blocks between the old and new file sizes.
1835 */
1836 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize,
1837 new_size);
1838 return error;
1839 }
1840
1841 /*
1842 * xfs_igrow_finish
1843 *
1844 * This routine is called to extend the size of a file.
1845 * The inode must have both the iolock and the ilock locked
1846 * for update and it must be a part of the current transaction.
1847 * The xfs_igrow_start() function must have been called previously.
1848 * If the change_flag is not zero, the inode change timestamp will
1849 * be updated.
1850 */
1851 void
1852 xfs_igrow_finish(
1853 xfs_trans_t *tp,
1854 xfs_inode_t *ip,
1855 xfs_fsize_t new_size,
1856 int change_flag)
1857 {
1858 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1859 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1860 ASSERT(ip->i_transp == tp);
1861 ASSERT(new_size > ip->i_d.di_size);
1862
1863 /*
1864 * Update the file size. Update the inode change timestamp
1865 * if change_flag set.
1866 */
1867 ip->i_d.di_size = new_size;
1868 if (change_flag)
1869 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1870 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1871
1872 }
1873
1874
1875 /*
1876 * This is called when the inode's link count goes to 0.
1877 * We place the on-disk inode on a list in the AGI. It
1878 * will be pulled from this list when the inode is freed.
1879 */
1880 int
1881 xfs_iunlink(
1882 xfs_trans_t *tp,
1883 xfs_inode_t *ip)
1884 {
1885 xfs_mount_t *mp;
1886 xfs_agi_t *agi;
1887 xfs_dinode_t *dip;
1888 xfs_buf_t *agibp;
1889 xfs_buf_t *ibp;
1890 xfs_agnumber_t agno;
1891 xfs_daddr_t agdaddr;
1892 xfs_agino_t agino;
1893 short bucket_index;
1894 int offset;
1895 int error;
1896 int agi_ok;
1897
1898 ASSERT(ip->i_d.di_nlink == 0);
1899 ASSERT(ip->i_d.di_mode != 0);
1900 ASSERT(ip->i_transp == tp);
1901
1902 mp = tp->t_mountp;
1903
1904 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1905 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1906
1907 /*
1908 * Get the agi buffer first. It ensures lock ordering
1909 * on the list.
1910 */
1911 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1912 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1913 if (error) {
1914 return error;
1915 }
1916 /*
1917 * Validate the magic number of the agi block.
1918 */
1919 agi = XFS_BUF_TO_AGI(agibp);
1920 agi_ok =
1921 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
1922 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
1923 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1924 XFS_RANDOM_IUNLINK))) {
1925 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1926 xfs_trans_brelse(tp, agibp);
1927 return XFS_ERROR(EFSCORRUPTED);
1928 }
1929 /*
1930 * Get the index into the agi hash table for the
1931 * list this inode will go on.
1932 */
1933 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1934 ASSERT(agino != 0);
1935 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1936 ASSERT(agi->agi_unlinked[bucket_index]);
1937 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino);
1938
1939 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) {
1940 /*
1941 * There is already another inode in the bucket we need
1942 * to add ourselves to. Add us at the front of the list.
1943 * Here we put the head pointer into our next pointer,
1944 * and then we fall through to point the head at us.
1945 */
1946 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1947 if (error) {
1948 return error;
1949 }
1950 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1951 ASSERT(dip->di_next_unlinked);
1952 /* both on-disk, don't endian flip twice */
1953 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1954 offset = ip->i_boffset +
1955 offsetof(xfs_dinode_t, di_next_unlinked);
1956 xfs_trans_inode_buf(tp, ibp);
1957 xfs_trans_log_buf(tp, ibp, offset,
1958 (offset + sizeof(xfs_agino_t) - 1));
1959 xfs_inobp_check(mp, ibp);
1960 }
1961
1962 /*
1963 * Point the bucket head pointer at the inode being inserted.
1964 */
1965 ASSERT(agino != 0);
1966 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino);
1967 offset = offsetof(xfs_agi_t, agi_unlinked) +
1968 (sizeof(xfs_agino_t) * bucket_index);
1969 xfs_trans_log_buf(tp, agibp, offset,
1970 (offset + sizeof(xfs_agino_t) - 1));
1971 return 0;
1972 }
1973
1974 /*
1975 * Pull the on-disk inode from the AGI unlinked list.
1976 */
1977 STATIC int
1978 xfs_iunlink_remove(
1979 xfs_trans_t *tp,
1980 xfs_inode_t *ip)
1981 {
1982 xfs_ino_t next_ino;
1983 xfs_mount_t *mp;
1984 xfs_agi_t *agi;
1985 xfs_dinode_t *dip;
1986 xfs_buf_t *agibp;
1987 xfs_buf_t *ibp;
1988 xfs_agnumber_t agno;
1989 xfs_daddr_t agdaddr;
1990 xfs_agino_t agino;
1991 xfs_agino_t next_agino;
1992 xfs_buf_t *last_ibp;
1993 xfs_dinode_t *last_dip;
1994 short bucket_index;
1995 int offset, last_offset;
1996 int error;
1997 int agi_ok;
1998
1999 /*
2000 * First pull the on-disk inode from the AGI unlinked list.
2001 */
2002 mp = tp->t_mountp;
2003
2004 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2005 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2006
2007 /*
2008 * Get the agi buffer first. It ensures lock ordering
2009 * on the list.
2010 */
2011 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2012 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2013 if (error) {
2014 cmn_err(CE_WARN,
2015 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2016 error, mp->m_fsname);
2017 return error;
2018 }
2019 /*
2020 * Validate the magic number of the agi block.
2021 */
2022 agi = XFS_BUF_TO_AGI(agibp);
2023 agi_ok =
2024 INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC &&
2025 XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT));
2026 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2027 XFS_RANDOM_IUNLINK_REMOVE))) {
2028 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2029 mp, agi);
2030 xfs_trans_brelse(tp, agibp);
2031 cmn_err(CE_WARN,
2032 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2033 mp->m_fsname);
2034 return XFS_ERROR(EFSCORRUPTED);
2035 }
2036 /*
2037 * Get the index into the agi hash table for the
2038 * list this inode will go on.
2039 */
2040 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2041 ASSERT(agino != 0);
2042 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2043 ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO);
2044 ASSERT(agi->agi_unlinked[bucket_index]);
2045
2046 if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) {
2047 /*
2048 * We're at the head of the list. Get the inode's
2049 * on-disk buffer to see if there is anyone after us
2050 * on the list. Only modify our next pointer if it
2051 * is not already NULLAGINO. This saves us the overhead
2052 * of dealing with the buffer when there is no need to
2053 * change it.
2054 */
2055 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2056 if (error) {
2057 cmn_err(CE_WARN,
2058 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2059 error, mp->m_fsname);
2060 return error;
2061 }
2062 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2063 ASSERT(next_agino != 0);
2064 if (next_agino != NULLAGINO) {
2065 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2066 offset = ip->i_boffset +
2067 offsetof(xfs_dinode_t, di_next_unlinked);
2068 xfs_trans_inode_buf(tp, ibp);
2069 xfs_trans_log_buf(tp, ibp, offset,
2070 (offset + sizeof(xfs_agino_t) - 1));
2071 xfs_inobp_check(mp, ibp);
2072 } else {
2073 xfs_trans_brelse(tp, ibp);
2074 }
2075 /*
2076 * Point the bucket head pointer at the next inode.
2077 */
2078 ASSERT(next_agino != 0);
2079 ASSERT(next_agino != agino);
2080 INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino);
2081 offset = offsetof(xfs_agi_t, agi_unlinked) +
2082 (sizeof(xfs_agino_t) * bucket_index);
2083 xfs_trans_log_buf(tp, agibp, offset,
2084 (offset + sizeof(xfs_agino_t) - 1));
2085 } else {
2086 /*
2087 * We need to search the list for the inode being freed.
2088 */
2089 next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT);
2090 last_ibp = NULL;
2091 while (next_agino != agino) {
2092 /*
2093 * If the last inode wasn't the one pointing to
2094 * us, then release its buffer since we're not
2095 * going to do anything with it.
2096 */
2097 if (last_ibp != NULL) {
2098 xfs_trans_brelse(tp, last_ibp);
2099 }
2100 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2101 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2102 &last_ibp, &last_offset);
2103 if (error) {
2104 cmn_err(CE_WARN,
2105 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2106 error, mp->m_fsname);
2107 return error;
2108 }
2109 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2110 ASSERT(next_agino != NULLAGINO);
2111 ASSERT(next_agino != 0);
2112 }
2113 /*
2114 * Now last_ibp points to the buffer previous to us on
2115 * the unlinked list. Pull us from the list.
2116 */
2117 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
2118 if (error) {
2119 cmn_err(CE_WARN,
2120 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2121 error, mp->m_fsname);
2122 return error;
2123 }
2124 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2125 ASSERT(next_agino != 0);
2126 ASSERT(next_agino != agino);
2127 if (next_agino != NULLAGINO) {
2128 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2129 offset = ip->i_boffset +
2130 offsetof(xfs_dinode_t, di_next_unlinked);
2131 xfs_trans_inode_buf(tp, ibp);
2132 xfs_trans_log_buf(tp, ibp, offset,
2133 (offset + sizeof(xfs_agino_t) - 1));
2134 xfs_inobp_check(mp, ibp);
2135 } else {
2136 xfs_trans_brelse(tp, ibp);
2137 }
2138 /*
2139 * Point the previous inode on the list to the next inode.
2140 */
2141 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2142 ASSERT(next_agino != 0);
2143 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2144 xfs_trans_inode_buf(tp, last_ibp);
2145 xfs_trans_log_buf(tp, last_ibp, offset,
2146 (offset + sizeof(xfs_agino_t) - 1));
2147 xfs_inobp_check(mp, last_ibp);
2148 }
2149 return 0;
2150 }
2151
2152 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2153 {
2154 return (((ip->i_itemp == NULL) ||
2155 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2156 (ip->i_update_core == 0));
2157 }
2158
2159 void
2160 xfs_ifree_cluster(
2161 xfs_inode_t *free_ip,
2162 xfs_trans_t *tp,
2163 xfs_ino_t inum)
2164 {
2165 xfs_mount_t *mp = free_ip->i_mount;
2166 int blks_per_cluster;
2167 int nbufs;
2168 int ninodes;
2169 int i, j, found, pre_flushed;
2170 xfs_daddr_t blkno;
2171 xfs_buf_t *bp;
2172 xfs_ihash_t *ih;
2173 xfs_inode_t *ip, **ip_found;
2174 xfs_inode_log_item_t *iip;
2175 xfs_log_item_t *lip;
2176 SPLDECL(s);
2177
2178 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2179 blks_per_cluster = 1;
2180 ninodes = mp->m_sb.sb_inopblock;
2181 nbufs = XFS_IALLOC_BLOCKS(mp);
2182 } else {
2183 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2184 mp->m_sb.sb_blocksize;
2185 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2186 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2187 }
2188
2189 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2190
2191 for (j = 0; j < nbufs; j++, inum += ninodes) {
2192 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2193 XFS_INO_TO_AGBNO(mp, inum));
2194
2195
2196 /*
2197 * Look for each inode in memory and attempt to lock it,
2198 * we can be racing with flush and tail pushing here.
2199 * any inode we get the locks on, add to an array of
2200 * inode items to process later.
2201 *
2202 * The get the buffer lock, we could beat a flush
2203 * or tail pushing thread to the lock here, in which
2204 * case they will go looking for the inode buffer
2205 * and fail, we need some other form of interlock
2206 * here.
2207 */
2208 found = 0;
2209 for (i = 0; i < ninodes; i++) {
2210 ih = XFS_IHASH(mp, inum + i);
2211 read_lock(&ih->ih_lock);
2212 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2213 if (ip->i_ino == inum + i)
2214 break;
2215 }
2216
2217 /* Inode not in memory or we found it already,
2218 * nothing to do
2219 */
2220 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2221 read_unlock(&ih->ih_lock);
2222 continue;
2223 }
2224
2225 if (xfs_inode_clean(ip)) {
2226 read_unlock(&ih->ih_lock);
2227 continue;
2228 }
2229
2230 /* If we can get the locks then add it to the
2231 * list, otherwise by the time we get the bp lock
2232 * below it will already be attached to the
2233 * inode buffer.
2234 */
2235
2236 /* This inode will already be locked - by us, lets
2237 * keep it that way.
2238 */
2239
2240 if (ip == free_ip) {
2241 if (xfs_iflock_nowait(ip)) {
2242 ip->i_flags |= XFS_ISTALE;
2243
2244 if (xfs_inode_clean(ip)) {
2245 xfs_ifunlock(ip);
2246 } else {
2247 ip_found[found++] = ip;
2248 }
2249 }
2250 read_unlock(&ih->ih_lock);
2251 continue;
2252 }
2253
2254 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2255 if (xfs_iflock_nowait(ip)) {
2256 ip->i_flags |= XFS_ISTALE;
2257
2258 if (xfs_inode_clean(ip)) {
2259 xfs_ifunlock(ip);
2260 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2261 } else {
2262 ip_found[found++] = ip;
2263 }
2264 } else {
2265 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2266 }
2267 }
2268
2269 read_unlock(&ih->ih_lock);
2270 }
2271
2272 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2273 mp->m_bsize * blks_per_cluster,
2274 XFS_BUF_LOCK);
2275
2276 pre_flushed = 0;
2277 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2278 while (lip) {
2279 if (lip->li_type == XFS_LI_INODE) {
2280 iip = (xfs_inode_log_item_t *)lip;
2281 ASSERT(iip->ili_logged == 1);
2282 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2283 AIL_LOCK(mp,s);
2284 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2285 AIL_UNLOCK(mp, s);
2286 iip->ili_inode->i_flags |= XFS_ISTALE;
2287 pre_flushed++;
2288 }
2289 lip = lip->li_bio_list;
2290 }
2291
2292 for (i = 0; i < found; i++) {
2293 ip = ip_found[i];
2294 iip = ip->i_itemp;
2295
2296 if (!iip) {
2297 ip->i_update_core = 0;
2298 xfs_ifunlock(ip);
2299 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2300 continue;
2301 }
2302
2303 iip->ili_last_fields = iip->ili_format.ilf_fields;
2304 iip->ili_format.ilf_fields = 0;
2305 iip->ili_logged = 1;
2306 AIL_LOCK(mp,s);
2307 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2308 AIL_UNLOCK(mp, s);
2309
2310 xfs_buf_attach_iodone(bp,
2311 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2312 xfs_istale_done, (xfs_log_item_t *)iip);
2313 if (ip != free_ip) {
2314 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2315 }
2316 }
2317
2318 if (found || pre_flushed)
2319 xfs_trans_stale_inode_buf(tp, bp);
2320 xfs_trans_binval(tp, bp);
2321 }
2322
2323 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2324 }
2325
2326 /*
2327 * This is called to return an inode to the inode free list.
2328 * The inode should already be truncated to 0 length and have
2329 * no pages associated with it. This routine also assumes that
2330 * the inode is already a part of the transaction.
2331 *
2332 * The on-disk copy of the inode will have been added to the list
2333 * of unlinked inodes in the AGI. We need to remove the inode from
2334 * that list atomically with respect to freeing it here.
2335 */
2336 int
2337 xfs_ifree(
2338 xfs_trans_t *tp,
2339 xfs_inode_t *ip,
2340 xfs_bmap_free_t *flist)
2341 {
2342 int error;
2343 int delete;
2344 xfs_ino_t first_ino;
2345
2346 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2347 ASSERT(ip->i_transp == tp);
2348 ASSERT(ip->i_d.di_nlink == 0);
2349 ASSERT(ip->i_d.di_nextents == 0);
2350 ASSERT(ip->i_d.di_anextents == 0);
2351 ASSERT((ip->i_d.di_size == 0) ||
2352 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2353 ASSERT(ip->i_d.di_nblocks == 0);
2354
2355 /*
2356 * Pull the on-disk inode from the AGI unlinked list.
2357 */
2358 error = xfs_iunlink_remove(tp, ip);
2359 if (error != 0) {
2360 return error;
2361 }
2362
2363 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2364 if (error != 0) {
2365 return error;
2366 }
2367 ip->i_d.di_mode = 0; /* mark incore inode as free */
2368 ip->i_d.di_flags = 0;
2369 ip->i_d.di_dmevmask = 0;
2370 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2371 ip->i_df.if_ext_max =
2372 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2373 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2374 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2375 /*
2376 * Bump the generation count so no one will be confused
2377 * by reincarnations of this inode.
2378 */
2379 ip->i_d.di_gen++;
2380 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2381
2382 if (delete) {
2383 xfs_ifree_cluster(ip, tp, first_ino);
2384 }
2385
2386 return 0;
2387 }
2388
2389 /*
2390 * Reallocate the space for if_broot based on the number of records
2391 * being added or deleted as indicated in rec_diff. Move the records
2392 * and pointers in if_broot to fit the new size. When shrinking this
2393 * will eliminate holes between the records and pointers created by
2394 * the caller. When growing this will create holes to be filled in
2395 * by the caller.
2396 *
2397 * The caller must not request to add more records than would fit in
2398 * the on-disk inode root. If the if_broot is currently NULL, then
2399 * if we adding records one will be allocated. The caller must also
2400 * not request that the number of records go below zero, although
2401 * it can go to zero.
2402 *
2403 * ip -- the inode whose if_broot area is changing
2404 * ext_diff -- the change in the number of records, positive or negative,
2405 * requested for the if_broot array.
2406 */
2407 void
2408 xfs_iroot_realloc(
2409 xfs_inode_t *ip,
2410 int rec_diff,
2411 int whichfork)
2412 {
2413 int cur_max;
2414 xfs_ifork_t *ifp;
2415 xfs_bmbt_block_t *new_broot;
2416 int new_max;
2417 size_t new_size;
2418 char *np;
2419 char *op;
2420
2421 /*
2422 * Handle the degenerate case quietly.
2423 */
2424 if (rec_diff == 0) {
2425 return;
2426 }
2427
2428 ifp = XFS_IFORK_PTR(ip, whichfork);
2429 if (rec_diff > 0) {
2430 /*
2431 * If there wasn't any memory allocated before, just
2432 * allocate it now and get out.
2433 */
2434 if (ifp->if_broot_bytes == 0) {
2435 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2436 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2437 KM_SLEEP);
2438 ifp->if_broot_bytes = (int)new_size;
2439 return;
2440 }
2441
2442 /*
2443 * If there is already an existing if_broot, then we need
2444 * to realloc() it and shift the pointers to their new
2445 * location. The records don't change location because
2446 * they are kept butted up against the btree block header.
2447 */
2448 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2449 new_max = cur_max + rec_diff;
2450 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2451 ifp->if_broot = (xfs_bmbt_block_t *)
2452 kmem_realloc(ifp->if_broot,
2453 new_size,
2454 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2455 KM_SLEEP);
2456 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2457 ifp->if_broot_bytes);
2458 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2459 (int)new_size);
2460 ifp->if_broot_bytes = (int)new_size;
2461 ASSERT(ifp->if_broot_bytes <=
2462 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2463 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2464 return;
2465 }
2466
2467 /*
2468 * rec_diff is less than 0. In this case, we are shrinking the
2469 * if_broot buffer. It must already exist. If we go to zero
2470 * records, just get rid of the root and clear the status bit.
2471 */
2472 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2473 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2474 new_max = cur_max + rec_diff;
2475 ASSERT(new_max >= 0);
2476 if (new_max > 0)
2477 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2478 else
2479 new_size = 0;
2480 if (new_size > 0) {
2481 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2482 /*
2483 * First copy over the btree block header.
2484 */
2485 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2486 } else {
2487 new_broot = NULL;
2488 ifp->if_flags &= ~XFS_IFBROOT;
2489 }
2490
2491 /*
2492 * Only copy the records and pointers if there are any.
2493 */
2494 if (new_max > 0) {
2495 /*
2496 * First copy the records.
2497 */
2498 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2499 ifp->if_broot_bytes);
2500 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2501 (int)new_size);
2502 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2503
2504 /*
2505 * Then copy the pointers.
2506 */
2507 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2508 ifp->if_broot_bytes);
2509 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2510 (int)new_size);
2511 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2512 }
2513 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2514 ifp->if_broot = new_broot;
2515 ifp->if_broot_bytes = (int)new_size;
2516 ASSERT(ifp->if_broot_bytes <=
2517 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2518 return;
2519 }
2520
2521
2522 /*
2523 * This is called when the amount of space needed for if_extents
2524 * is increased or decreased. The change in size is indicated by
2525 * the number of extents that need to be added or deleted in the
2526 * ext_diff parameter.
2527 *
2528 * If the amount of space needed has decreased below the size of the
2529 * inline buffer, then switch to using the inline buffer. Otherwise,
2530 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2531 * to what is needed.
2532 *
2533 * ip -- the inode whose if_extents area is changing
2534 * ext_diff -- the change in the number of extents, positive or negative,
2535 * requested for the if_extents array.
2536 */
2537 void
2538 xfs_iext_realloc(
2539 xfs_inode_t *ip,
2540 int ext_diff,
2541 int whichfork)
2542 {
2543 int byte_diff;
2544 xfs_ifork_t *ifp;
2545 int new_size;
2546 uint rnew_size;
2547
2548 if (ext_diff == 0) {
2549 return;
2550 }
2551
2552 ifp = XFS_IFORK_PTR(ip, whichfork);
2553 byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t);
2554 new_size = (int)ifp->if_bytes + byte_diff;
2555 ASSERT(new_size >= 0);
2556
2557 if (new_size == 0) {
2558 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2559 ASSERT(ifp->if_real_bytes != 0);
2560 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2561 }
2562 ifp->if_u1.if_extents = NULL;
2563 rnew_size = 0;
2564 } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) {
2565 /*
2566 * If the valid extents can fit in if_inline_ext,
2567 * copy them from the malloc'd vector and free it.
2568 */
2569 if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) {
2570 /*
2571 * For now, empty files are format EXTENTS,
2572 * so the if_extents pointer is null.
2573 */
2574 if (ifp->if_u1.if_extents) {
2575 memcpy(ifp->if_u2.if_inline_ext,
2576 ifp->if_u1.if_extents, new_size);
2577 kmem_free(ifp->if_u1.if_extents,
2578 ifp->if_real_bytes);
2579 }
2580 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2581 }
2582 rnew_size = 0;
2583 } else {
2584 rnew_size = new_size;
2585 if ((rnew_size & (rnew_size - 1)) != 0)
2586 rnew_size = xfs_iroundup(rnew_size);
2587 /*
2588 * Stuck with malloc/realloc.
2589 */
2590 if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) {
2591 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2592 kmem_alloc(rnew_size, KM_SLEEP);
2593 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
2594 sizeof(ifp->if_u2.if_inline_ext));
2595 } else if (rnew_size != ifp->if_real_bytes) {
2596 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
2597 kmem_realloc(ifp->if_u1.if_extents,
2598 rnew_size,
2599 ifp->if_real_bytes,
2600 KM_NOFS);
2601 }
2602 }
2603 ifp->if_real_bytes = rnew_size;
2604 ifp->if_bytes = new_size;
2605 }
2606
2607
2608 /*
2609 * This is called when the amount of space needed for if_data
2610 * is increased or decreased. The change in size is indicated by
2611 * the number of bytes that need to be added or deleted in the
2612 * byte_diff parameter.
2613 *
2614 * If the amount of space needed has decreased below the size of the
2615 * inline buffer, then switch to using the inline buffer. Otherwise,
2616 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2617 * to what is needed.
2618 *
2619 * ip -- the inode whose if_data area is changing
2620 * byte_diff -- the change in the number of bytes, positive or negative,
2621 * requested for the if_data array.
2622 */
2623 void
2624 xfs_idata_realloc(
2625 xfs_inode_t *ip,
2626 int byte_diff,
2627 int whichfork)
2628 {
2629 xfs_ifork_t *ifp;
2630 int new_size;
2631 int real_size;
2632
2633 if (byte_diff == 0) {
2634 return;
2635 }
2636
2637 ifp = XFS_IFORK_PTR(ip, whichfork);
2638 new_size = (int)ifp->if_bytes + byte_diff;
2639 ASSERT(new_size >= 0);
2640
2641 if (new_size == 0) {
2642 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2643 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2644 }
2645 ifp->if_u1.if_data = NULL;
2646 real_size = 0;
2647 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2648 /*
2649 * If the valid extents/data can fit in if_inline_ext/data,
2650 * copy them from the malloc'd vector and free it.
2651 */
2652 if (ifp->if_u1.if_data == NULL) {
2653 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2654 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2655 ASSERT(ifp->if_real_bytes != 0);
2656 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2657 new_size);
2658 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2659 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2660 }
2661 real_size = 0;
2662 } else {
2663 /*
2664 * Stuck with malloc/realloc.
2665 * For inline data, the underlying buffer must be
2666 * a multiple of 4 bytes in size so that it can be
2667 * logged and stay on word boundaries. We enforce
2668 * that here.
2669 */
2670 real_size = roundup(new_size, 4);
2671 if (ifp->if_u1.if_data == NULL) {
2672 ASSERT(ifp->if_real_bytes == 0);
2673 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2674 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2675 /*
2676 * Only do the realloc if the underlying size
2677 * is really changing.
2678 */
2679 if (ifp->if_real_bytes != real_size) {
2680 ifp->if_u1.if_data =
2681 kmem_realloc(ifp->if_u1.if_data,
2682 real_size,
2683 ifp->if_real_bytes,
2684 KM_SLEEP);
2685 }
2686 } else {
2687 ASSERT(ifp->if_real_bytes == 0);
2688 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2689 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2690 ifp->if_bytes);
2691 }
2692 }
2693 ifp->if_real_bytes = real_size;
2694 ifp->if_bytes = new_size;
2695 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2696 }
2697
2698
2699
2700
2701 /*
2702 * Map inode to disk block and offset.
2703 *
2704 * mp -- the mount point structure for the current file system
2705 * tp -- the current transaction
2706 * ino -- the inode number of the inode to be located
2707 * imap -- this structure is filled in with the information necessary
2708 * to retrieve the given inode from disk
2709 * flags -- flags to pass to xfs_dilocate indicating whether or not
2710 * lookups in the inode btree were OK or not
2711 */
2712 int
2713 xfs_imap(
2714 xfs_mount_t *mp,
2715 xfs_trans_t *tp,
2716 xfs_ino_t ino,
2717 xfs_imap_t *imap,
2718 uint flags)
2719 {
2720 xfs_fsblock_t fsbno;
2721 int len;
2722 int off;
2723 int error;
2724
2725 fsbno = imap->im_blkno ?
2726 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2727 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2728 if (error != 0) {
2729 return error;
2730 }
2731 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2732 imap->im_len = XFS_FSB_TO_BB(mp, len);
2733 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2734 imap->im_ioffset = (ushort)off;
2735 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2736 return 0;
2737 }
2738
2739 void
2740 xfs_idestroy_fork(
2741 xfs_inode_t *ip,
2742 int whichfork)
2743 {
2744 xfs_ifork_t *ifp;
2745
2746 ifp = XFS_IFORK_PTR(ip, whichfork);
2747 if (ifp->if_broot != NULL) {
2748 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2749 ifp->if_broot = NULL;
2750 }
2751
2752 /*
2753 * If the format is local, then we can't have an extents
2754 * array so just look for an inline data array. If we're
2755 * not local then we may or may not have an extents list,
2756 * so check and free it up if we do.
2757 */
2758 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2759 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2760 (ifp->if_u1.if_data != NULL)) {
2761 ASSERT(ifp->if_real_bytes != 0);
2762 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2763 ifp->if_u1.if_data = NULL;
2764 ifp->if_real_bytes = 0;
2765 }
2766 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2767 (ifp->if_u1.if_extents != NULL) &&
2768 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) {
2769 ASSERT(ifp->if_real_bytes != 0);
2770 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
2771 ifp->if_u1.if_extents = NULL;
2772 ifp->if_real_bytes = 0;
2773 }
2774 ASSERT(ifp->if_u1.if_extents == NULL ||
2775 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2776 ASSERT(ifp->if_real_bytes == 0);
2777 if (whichfork == XFS_ATTR_FORK) {
2778 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2779 ip->i_afp = NULL;
2780 }
2781 }
2782
2783 /*
2784 * This is called free all the memory associated with an inode.
2785 * It must free the inode itself and any buffers allocated for
2786 * if_extents/if_data and if_broot. It must also free the lock
2787 * associated with the inode.
2788 */
2789 void
2790 xfs_idestroy(
2791 xfs_inode_t *ip)
2792 {
2793
2794 switch (ip->i_d.di_mode & S_IFMT) {
2795 case S_IFREG:
2796 case S_IFDIR:
2797 case S_IFLNK:
2798 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2799 break;
2800 }
2801 if (ip->i_afp)
2802 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2803 mrfree(&ip->i_lock);
2804 mrfree(&ip->i_iolock);
2805 freesema(&ip->i_flock);
2806 #ifdef XFS_BMAP_TRACE
2807 ktrace_free(ip->i_xtrace);
2808 #endif
2809 #ifdef XFS_BMBT_TRACE
2810 ktrace_free(ip->i_btrace);
2811 #endif
2812 #ifdef XFS_RW_TRACE
2813 ktrace_free(ip->i_rwtrace);
2814 #endif
2815 #ifdef XFS_ILOCK_TRACE
2816 ktrace_free(ip->i_lock_trace);
2817 #endif
2818 #ifdef XFS_DIR2_TRACE
2819 ktrace_free(ip->i_dir_trace);
2820 #endif
2821 if (ip->i_itemp) {
2822 /* XXXdpd should be able to assert this but shutdown
2823 * is leaving the AIL behind. */
2824 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2825 XFS_FORCED_SHUTDOWN(ip->i_mount));
2826 xfs_inode_item_destroy(ip);
2827 }
2828 kmem_zone_free(xfs_inode_zone, ip);
2829 }
2830
2831
2832 /*
2833 * Increment the pin count of the given buffer.
2834 * This value is protected by ipinlock spinlock in the mount structure.
2835 */
2836 void
2837 xfs_ipin(
2838 xfs_inode_t *ip)
2839 {
2840 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2841
2842 atomic_inc(&ip->i_pincount);
2843 }
2844
2845 /*
2846 * Decrement the pin count of the given inode, and wake up
2847 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2848 * inode must have been previoulsy pinned with a call to xfs_ipin().
2849 */
2850 void
2851 xfs_iunpin(
2852 xfs_inode_t *ip)
2853 {
2854 ASSERT(atomic_read(&ip->i_pincount) > 0);
2855
2856 if (atomic_dec_and_test(&ip->i_pincount)) {
2857 vnode_t *vp = XFS_ITOV_NULL(ip);
2858
2859 /* make sync come back and flush this inode */
2860 if (vp) {
2861 struct inode *inode = LINVFS_GET_IP(vp);
2862
2863 if (!(inode->i_state & I_NEW))
2864 mark_inode_dirty_sync(inode);
2865 }
2866
2867 wake_up(&ip->i_ipin_wait);
2868 }
2869 }
2870
2871 /*
2872 * This is called to wait for the given inode to be unpinned.
2873 * It will sleep until this happens. The caller must have the
2874 * inode locked in at least shared mode so that the buffer cannot
2875 * be subsequently pinned once someone is waiting for it to be
2876 * unpinned.
2877 */
2878 void
2879 xfs_iunpin_wait(
2880 xfs_inode_t *ip)
2881 {
2882 xfs_inode_log_item_t *iip;
2883 xfs_lsn_t lsn;
2884
2885 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2886
2887 if (atomic_read(&ip->i_pincount) == 0) {
2888 return;
2889 }
2890
2891 iip = ip->i_itemp;
2892 if (iip && iip->ili_last_lsn) {
2893 lsn = iip->ili_last_lsn;
2894 } else {
2895 lsn = (xfs_lsn_t)0;
2896 }
2897
2898 /*
2899 * Give the log a push so we don't wait here too long.
2900 */
2901 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2902
2903 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2904 }
2905
2906
2907 /*
2908 * xfs_iextents_copy()
2909 *
2910 * This is called to copy the REAL extents (as opposed to the delayed
2911 * allocation extents) from the inode into the given buffer. It
2912 * returns the number of bytes copied into the buffer.
2913 *
2914 * If there are no delayed allocation extents, then we can just
2915 * memcpy() the extents into the buffer. Otherwise, we need to
2916 * examine each extent in turn and skip those which are delayed.
2917 */
2918 int
2919 xfs_iextents_copy(
2920 xfs_inode_t *ip,
2921 xfs_bmbt_rec_t *buffer,
2922 int whichfork)
2923 {
2924 int copied;
2925 xfs_bmbt_rec_t *dest_ep;
2926 xfs_bmbt_rec_t *ep;
2927 #ifdef XFS_BMAP_TRACE
2928 static char fname[] = "xfs_iextents_copy";
2929 #endif
2930 int i;
2931 xfs_ifork_t *ifp;
2932 int nrecs;
2933 xfs_fsblock_t start_block;
2934
2935 ifp = XFS_IFORK_PTR(ip, whichfork);
2936 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2937 ASSERT(ifp->if_bytes > 0);
2938
2939 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2940 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2941 ASSERT(nrecs > 0);
2942
2943 /*
2944 * There are some delayed allocation extents in the
2945 * inode, so copy the extents one at a time and skip
2946 * the delayed ones. There must be at least one
2947 * non-delayed extent.
2948 */
2949 ep = ifp->if_u1.if_extents;
2950 dest_ep = buffer;
2951 copied = 0;
2952 for (i = 0; i < nrecs; i++) {
2953 start_block = xfs_bmbt_get_startblock(ep);
2954 if (ISNULLSTARTBLOCK(start_block)) {
2955 /*
2956 * It's a delayed allocation extent, so skip it.
2957 */
2958 ep++;
2959 continue;
2960 }
2961
2962 /* Translate to on disk format */
2963 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2964 (__uint64_t*)&dest_ep->l0);
2965 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2966 (__uint64_t*)&dest_ep->l1);
2967 dest_ep++;
2968 ep++;
2969 copied++;
2970 }
2971 ASSERT(copied != 0);
2972 xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip));
2973
2974 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2975 }
2976
2977 /*
2978 * Each of the following cases stores data into the same region
2979 * of the on-disk inode, so only one of them can be valid at
2980 * any given time. While it is possible to have conflicting formats
2981 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2982 * in EXTENTS format, this can only happen when the fork has
2983 * changed formats after being modified but before being flushed.
2984 * In these cases, the format always takes precedence, because the
2985 * format indicates the current state of the fork.
2986 */
2987 /*ARGSUSED*/
2988 STATIC int
2989 xfs_iflush_fork(
2990 xfs_inode_t *ip,
2991 xfs_dinode_t *dip,
2992 xfs_inode_log_item_t *iip,
2993 int whichfork,
2994 xfs_buf_t *bp)
2995 {
2996 char *cp;
2997 xfs_ifork_t *ifp;
2998 xfs_mount_t *mp;
2999 #ifdef XFS_TRANS_DEBUG
3000 int first;
3001 #endif
3002 static const short brootflag[2] =
3003 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
3004 static const short dataflag[2] =
3005 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
3006 static const short extflag[2] =
3007 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
3008
3009 if (iip == NULL)
3010 return 0;
3011 ifp = XFS_IFORK_PTR(ip, whichfork);
3012 /*
3013 * This can happen if we gave up in iformat in an error path,
3014 * for the attribute fork.
3015 */
3016 if (ifp == NULL) {
3017 ASSERT(whichfork == XFS_ATTR_FORK);
3018 return 0;
3019 }
3020 cp = XFS_DFORK_PTR(dip, whichfork);
3021 mp = ip->i_mount;
3022 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
3023 case XFS_DINODE_FMT_LOCAL:
3024 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
3025 (ifp->if_bytes > 0)) {
3026 ASSERT(ifp->if_u1.if_data != NULL);
3027 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
3028 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
3029 }
3030 if (whichfork == XFS_DATA_FORK) {
3031 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
3032 XFS_ERROR_REPORT("xfs_iflush_fork",
3033 XFS_ERRLEVEL_LOW, mp);
3034 return XFS_ERROR(EFSCORRUPTED);
3035 }
3036 }
3037 break;
3038
3039 case XFS_DINODE_FMT_EXTENTS:
3040 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3041 !(iip->ili_format.ilf_fields & extflag[whichfork]));
3042 ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0));
3043 ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0));
3044 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3045 (ifp->if_bytes > 0)) {
3046 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3047 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3048 whichfork);
3049 }
3050 break;
3051
3052 case XFS_DINODE_FMT_BTREE:
3053 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3054 (ifp->if_broot_bytes > 0)) {
3055 ASSERT(ifp->if_broot != NULL);
3056 ASSERT(ifp->if_broot_bytes <=
3057 (XFS_IFORK_SIZE(ip, whichfork) +
3058 XFS_BROOT_SIZE_ADJ));
3059 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3060 (xfs_bmdr_block_t *)cp,
3061 XFS_DFORK_SIZE(dip, mp, whichfork));
3062 }
3063 break;
3064
3065 case XFS_DINODE_FMT_DEV:
3066 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3067 ASSERT(whichfork == XFS_DATA_FORK);
3068 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3069 }
3070 break;
3071
3072 case XFS_DINODE_FMT_UUID:
3073 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3074 ASSERT(whichfork == XFS_DATA_FORK);
3075 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3076 sizeof(uuid_t));
3077 }
3078 break;
3079
3080 default:
3081 ASSERT(0);
3082 break;
3083 }
3084
3085 return 0;
3086 }
3087
3088 /*
3089 * xfs_iflush() will write a modified inode's changes out to the
3090 * inode's on disk home. The caller must have the inode lock held
3091 * in at least shared mode and the inode flush semaphore must be
3092 * held as well. The inode lock will still be held upon return from
3093 * the call and the caller is free to unlock it.
3094 * The inode flush lock will be unlocked when the inode reaches the disk.
3095 * The flags indicate how the inode's buffer should be written out.
3096 */
3097 int
3098 xfs_iflush(
3099 xfs_inode_t *ip,
3100 uint flags)
3101 {
3102 xfs_inode_log_item_t *iip;
3103 xfs_buf_t *bp;
3104 xfs_dinode_t *dip;
3105 xfs_mount_t *mp;
3106 int error;
3107 /* REFERENCED */
3108 xfs_chash_t *ch;
3109 xfs_inode_t *iq;
3110 int clcount; /* count of inodes clustered */
3111 int bufwasdelwri;
3112 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3113 SPLDECL(s);
3114
3115 XFS_STATS_INC(xs_iflush_count);
3116
3117 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3118 ASSERT(valusema(&ip->i_flock) <= 0);
3119 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3120 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3121
3122 iip = ip->i_itemp;
3123 mp = ip->i_mount;
3124
3125 /*
3126 * If the inode isn't dirty, then just release the inode
3127 * flush lock and do nothing.
3128 */
3129 if ((ip->i_update_core == 0) &&
3130 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3131 ASSERT((iip != NULL) ?
3132 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3133 xfs_ifunlock(ip);
3134 return 0;
3135 }
3136
3137 /*
3138 * We can't flush the inode until it is unpinned, so
3139 * wait for it. We know noone new can pin it, because
3140 * we are holding the inode lock shared and you need
3141 * to hold it exclusively to pin the inode.
3142 */
3143 xfs_iunpin_wait(ip);
3144
3145 /*
3146 * This may have been unpinned because the filesystem is shutting
3147 * down forcibly. If that's the case we must not write this inode
3148 * to disk, because the log record didn't make it to disk!
3149 */
3150 if (XFS_FORCED_SHUTDOWN(mp)) {
3151 ip->i_update_core = 0;
3152 if (iip)
3153 iip->ili_format.ilf_fields = 0;
3154 xfs_ifunlock(ip);
3155 return XFS_ERROR(EIO);
3156 }
3157
3158 /*
3159 * Get the buffer containing the on-disk inode.
3160 */
3161 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0);
3162 if (error != 0) {
3163 xfs_ifunlock(ip);
3164 return error;
3165 }
3166
3167 /*
3168 * Decide how buffer will be flushed out. This is done before
3169 * the call to xfs_iflush_int because this field is zeroed by it.
3170 */
3171 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3172 /*
3173 * Flush out the inode buffer according to the directions
3174 * of the caller. In the cases where the caller has given
3175 * us a choice choose the non-delwri case. This is because
3176 * the inode is in the AIL and we need to get it out soon.
3177 */
3178 switch (flags) {
3179 case XFS_IFLUSH_SYNC:
3180 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3181 flags = 0;
3182 break;
3183 case XFS_IFLUSH_ASYNC:
3184 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3185 flags = INT_ASYNC;
3186 break;
3187 case XFS_IFLUSH_DELWRI:
3188 flags = INT_DELWRI;
3189 break;
3190 default:
3191 ASSERT(0);
3192 flags = 0;
3193 break;
3194 }
3195 } else {
3196 switch (flags) {
3197 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3198 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3199 case XFS_IFLUSH_DELWRI:
3200 flags = INT_DELWRI;
3201 break;
3202 case XFS_IFLUSH_ASYNC:
3203 flags = INT_ASYNC;
3204 break;
3205 case XFS_IFLUSH_SYNC:
3206 flags = 0;
3207 break;
3208 default:
3209 ASSERT(0);
3210 flags = 0;
3211 break;
3212 }
3213 }
3214
3215 /*
3216 * First flush out the inode that xfs_iflush was called with.
3217 */
3218 error = xfs_iflush_int(ip, bp);
3219 if (error) {
3220 goto corrupt_out;
3221 }
3222
3223 /*
3224 * inode clustering:
3225 * see if other inodes can be gathered into this write
3226 */
3227
3228 ip->i_chash->chl_buf = bp;
3229
3230 ch = XFS_CHASH(mp, ip->i_blkno);
3231 s = mutex_spinlock(&ch->ch_lock);
3232
3233 clcount = 0;
3234 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3235 /*
3236 * Do an un-protected check to see if the inode is dirty and
3237 * is a candidate for flushing. These checks will be repeated
3238 * later after the appropriate locks are acquired.
3239 */
3240 iip = iq->i_itemp;
3241 if ((iq->i_update_core == 0) &&
3242 ((iip == NULL) ||
3243 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3244 xfs_ipincount(iq) == 0) {
3245 continue;
3246 }
3247
3248 /*
3249 * Try to get locks. If any are unavailable,
3250 * then this inode cannot be flushed and is skipped.
3251 */
3252
3253 /* get inode locks (just i_lock) */
3254 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3255 /* get inode flush lock */
3256 if (xfs_iflock_nowait(iq)) {
3257 /* check if pinned */
3258 if (xfs_ipincount(iq) == 0) {
3259 /* arriving here means that
3260 * this inode can be flushed.
3261 * first re-check that it's
3262 * dirty
3263 */
3264 iip = iq->i_itemp;
3265 if ((iq->i_update_core != 0)||
3266 ((iip != NULL) &&
3267 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3268 clcount++;
3269 error = xfs_iflush_int(iq, bp);
3270 if (error) {
3271 xfs_iunlock(iq,
3272 XFS_ILOCK_SHARED);
3273 goto cluster_corrupt_out;
3274 }
3275 } else {
3276 xfs_ifunlock(iq);
3277 }
3278 } else {
3279 xfs_ifunlock(iq);
3280 }
3281 }
3282 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3283 }
3284 }
3285 mutex_spinunlock(&ch->ch_lock, s);
3286
3287 if (clcount) {
3288 XFS_STATS_INC(xs_icluster_flushcnt);
3289 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3290 }
3291
3292 /*
3293 * If the buffer is pinned then push on the log so we won't
3294 * get stuck waiting in the write for too long.
3295 */
3296 if (XFS_BUF_ISPINNED(bp)){
3297 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3298 }
3299
3300 if (flags & INT_DELWRI) {
3301 xfs_bdwrite(mp, bp);
3302 } else if (flags & INT_ASYNC) {
3303 xfs_bawrite(mp, bp);
3304 } else {
3305 error = xfs_bwrite(mp, bp);
3306 }
3307 return error;
3308
3309 corrupt_out:
3310 xfs_buf_relse(bp);
3311 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3312 xfs_iflush_abort(ip);
3313 /*
3314 * Unlocks the flush lock
3315 */
3316 return XFS_ERROR(EFSCORRUPTED);
3317
3318 cluster_corrupt_out:
3319 /* Corruption detected in the clustering loop. Invalidate the
3320 * inode buffer and shut down the filesystem.
3321 */
3322 mutex_spinunlock(&ch->ch_lock, s);
3323
3324 /*
3325 * Clean up the buffer. If it was B_DELWRI, just release it --
3326 * brelse can handle it with no problems. If not, shut down the
3327 * filesystem before releasing the buffer.
3328 */
3329 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3330 xfs_buf_relse(bp);
3331 }
3332
3333 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3334
3335 if(!bufwasdelwri) {
3336 /*
3337 * Just like incore_relse: if we have b_iodone functions,
3338 * mark the buffer as an error and call them. Otherwise
3339 * mark it as stale and brelse.
3340 */
3341 if (XFS_BUF_IODONE_FUNC(bp)) {
3342 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3343 XFS_BUF_UNDONE(bp);
3344 XFS_BUF_STALE(bp);
3345 XFS_BUF_SHUT(bp);
3346 XFS_BUF_ERROR(bp,EIO);
3347 xfs_biodone(bp);
3348 } else {
3349 XFS_BUF_STALE(bp);
3350 xfs_buf_relse(bp);
3351 }
3352 }
3353
3354 xfs_iflush_abort(iq);
3355 /*
3356 * Unlocks the flush lock
3357 */
3358 return XFS_ERROR(EFSCORRUPTED);
3359 }
3360
3361
3362 STATIC int
3363 xfs_iflush_int(
3364 xfs_inode_t *ip,
3365 xfs_buf_t *bp)
3366 {
3367 xfs_inode_log_item_t *iip;
3368 xfs_dinode_t *dip;
3369 xfs_mount_t *mp;
3370 #ifdef XFS_TRANS_DEBUG
3371 int first;
3372 #endif
3373 SPLDECL(s);
3374
3375 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3376 ASSERT(valusema(&ip->i_flock) <= 0);
3377 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3378 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3379
3380 iip = ip->i_itemp;
3381 mp = ip->i_mount;
3382
3383
3384 /*
3385 * If the inode isn't dirty, then just release the inode
3386 * flush lock and do nothing.
3387 */
3388 if ((ip->i_update_core == 0) &&
3389 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3390 xfs_ifunlock(ip);
3391 return 0;
3392 }
3393
3394 /* set *dip = inode's place in the buffer */
3395 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3396
3397 /*
3398 * Clear i_update_core before copying out the data.
3399 * This is for coordination with our timestamp updates
3400 * that don't hold the inode lock. They will always
3401 * update the timestamps BEFORE setting i_update_core,
3402 * so if we clear i_update_core after they set it we
3403 * are guaranteed to see their updates to the timestamps.
3404 * I believe that this depends on strongly ordered memory
3405 * semantics, but we have that. We use the SYNCHRONIZE
3406 * macro to make sure that the compiler does not reorder
3407 * the i_update_core access below the data copy below.
3408 */
3409 ip->i_update_core = 0;
3410 SYNCHRONIZE();
3411
3412 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3413 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3414 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3415 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3416 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3417 goto corrupt_out;
3418 }
3419 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3420 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3421 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3422 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3423 ip->i_ino, ip, ip->i_d.di_magic);
3424 goto corrupt_out;
3425 }
3426 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3427 if (XFS_TEST_ERROR(
3428 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3429 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3430 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3431 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3432 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3433 ip->i_ino, ip);
3434 goto corrupt_out;
3435 }
3436 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3437 if (XFS_TEST_ERROR(
3438 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3439 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3440 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3441 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3442 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3443 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3444 ip->i_ino, ip);
3445 goto corrupt_out;
3446 }
3447 }
3448 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3449 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3450 XFS_RANDOM_IFLUSH_5)) {
3451 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3452 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3453 ip->i_ino,
3454 ip->i_d.di_nextents + ip->i_d.di_anextents,
3455 ip->i_d.di_nblocks,
3456 ip);
3457 goto corrupt_out;
3458 }
3459 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3460 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3461 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3462 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3463 ip->i_ino, ip->i_d.di_forkoff, ip);
3464 goto corrupt_out;
3465 }
3466 /*
3467 * bump the flush iteration count, used to detect flushes which
3468 * postdate a log record during recovery.
3469 */
3470
3471 ip->i_d.di_flushiter++;
3472
3473 /*
3474 * Copy the dirty parts of the inode into the on-disk
3475 * inode. We always copy out the core of the inode,
3476 * because if the inode is dirty at all the core must
3477 * be.
3478 */
3479 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3480
3481 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3482 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3483 ip->i_d.di_flushiter = 0;
3484
3485 /*
3486 * If this is really an old format inode and the superblock version
3487 * has not been updated to support only new format inodes, then
3488 * convert back to the old inode format. If the superblock version
3489 * has been updated, then make the conversion permanent.
3490 */
3491 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3492 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3493 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3494 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3495 /*
3496 * Convert it back.
3497 */
3498 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3499 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3500 } else {
3501 /*
3502 * The superblock version has already been bumped,
3503 * so just make the conversion to the new inode
3504 * format permanent.
3505 */
3506 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3507 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3508 ip->i_d.di_onlink = 0;
3509 dip->di_core.di_onlink = 0;
3510 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3511 memset(&(dip->di_core.di_pad[0]), 0,
3512 sizeof(dip->di_core.di_pad));
3513 ASSERT(ip->i_d.di_projid == 0);
3514 }
3515 }
3516
3517 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3518 goto corrupt_out;
3519 }
3520
3521 if (XFS_IFORK_Q(ip)) {
3522 /*
3523 * The only error from xfs_iflush_fork is on the data fork.
3524 */
3525 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3526 }
3527 xfs_inobp_check(mp, bp);
3528
3529 /*
3530 * We've recorded everything logged in the inode, so we'd
3531 * like to clear the ilf_fields bits so we don't log and
3532 * flush things unnecessarily. However, we can't stop
3533 * logging all this information until the data we've copied
3534 * into the disk buffer is written to disk. If we did we might
3535 * overwrite the copy of the inode in the log with all the
3536 * data after re-logging only part of it, and in the face of
3537 * a crash we wouldn't have all the data we need to recover.
3538 *
3539 * What we do is move the bits to the ili_last_fields field.
3540 * When logging the inode, these bits are moved back to the
3541 * ilf_fields field. In the xfs_iflush_done() routine we
3542 * clear ili_last_fields, since we know that the information
3543 * those bits represent is permanently on disk. As long as
3544 * the flush completes before the inode is logged again, then
3545 * both ilf_fields and ili_last_fields will be cleared.
3546 *
3547 * We can play with the ilf_fields bits here, because the inode
3548 * lock must be held exclusively in order to set bits there
3549 * and the flush lock protects the ili_last_fields bits.
3550 * Set ili_logged so the flush done
3551 * routine can tell whether or not to look in the AIL.
3552 * Also, store the current LSN of the inode so that we can tell
3553 * whether the item has moved in the AIL from xfs_iflush_done().
3554 * In order to read the lsn we need the AIL lock, because
3555 * it is a 64 bit value that cannot be read atomically.
3556 */
3557 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3558 iip->ili_last_fields = iip->ili_format.ilf_fields;
3559 iip->ili_format.ilf_fields = 0;
3560 iip->ili_logged = 1;
3561
3562 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3563 AIL_LOCK(mp,s);
3564 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3565 AIL_UNLOCK(mp, s);
3566
3567 /*
3568 * Attach the function xfs_iflush_done to the inode's
3569 * buffer. This will remove the inode from the AIL
3570 * and unlock the inode's flush lock when the inode is
3571 * completely written to disk.
3572 */
3573 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3574 xfs_iflush_done, (xfs_log_item_t *)iip);
3575
3576 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3577 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3578 } else {
3579 /*
3580 * We're flushing an inode which is not in the AIL and has
3581 * not been logged but has i_update_core set. For this
3582 * case we can use a B_DELWRI flush and immediately drop
3583 * the inode flush lock because we can avoid the whole
3584 * AIL state thing. It's OK to drop the flush lock now,
3585 * because we've already locked the buffer and to do anything
3586 * you really need both.
3587 */
3588 if (iip != NULL) {
3589 ASSERT(iip->ili_logged == 0);
3590 ASSERT(iip->ili_last_fields == 0);
3591 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3592 }
3593 xfs_ifunlock(ip);
3594 }
3595
3596 return 0;
3597
3598 corrupt_out:
3599 return XFS_ERROR(EFSCORRUPTED);
3600 }
3601
3602
3603 /*
3604 * Flush all inactive inodes in mp. Return true if no user references
3605 * were found, false otherwise.
3606 */
3607 int
3608 xfs_iflush_all(
3609 xfs_mount_t *mp,
3610 int flag)
3611 {
3612 int busy;
3613 int done;
3614 int purged;
3615 xfs_inode_t *ip;
3616 vmap_t vmap;
3617 vnode_t *vp;
3618
3619 busy = done = 0;
3620 while (!done) {
3621 purged = 0;
3622 XFS_MOUNT_ILOCK(mp);
3623 ip = mp->m_inodes;
3624 if (ip == NULL) {
3625 break;
3626 }
3627 do {
3628 /* Make sure we skip markers inserted by sync */
3629 if (ip->i_mount == NULL) {
3630 ip = ip->i_mnext;
3631 continue;
3632 }
3633
3634 /*
3635 * It's up to our caller to purge the root
3636 * and quota vnodes later.
3637 */
3638 vp = XFS_ITOV_NULL(ip);
3639
3640 if (!vp) {
3641 XFS_MOUNT_IUNLOCK(mp);
3642 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3643 purged = 1;
3644 break;
3645 }
3646
3647 if (vn_count(vp) != 0) {
3648 if (vn_count(vp) == 1 &&
3649 (ip == mp->m_rootip ||
3650 (mp->m_quotainfo &&
3651 (ip->i_ino == mp->m_sb.sb_uquotino ||
3652 ip->i_ino == mp->m_sb.sb_gquotino)))) {
3653
3654 ip = ip->i_mnext;
3655 continue;
3656 }
3657 if (!(flag & XFS_FLUSH_ALL)) {
3658 busy = 1;
3659 done = 1;
3660 break;
3661 }
3662 /*
3663 * Ignore busy inodes but continue flushing
3664 * others.
3665 */
3666 ip = ip->i_mnext;
3667 continue;
3668 }
3669 /*
3670 * Sample vp mapping while holding mp locked on MP
3671 * systems, so we don't purge a reclaimed or
3672 * nonexistent vnode. We break from the loop
3673 * since we know that we modify
3674 * it by pulling ourselves from it in xfs_reclaim()
3675 * called via vn_purge() below. Set ip to the next
3676 * entry in the list anyway so we'll know below
3677 * whether we reached the end or not.
3678 */
3679 VMAP(vp, vmap);
3680 XFS_MOUNT_IUNLOCK(mp);
3681
3682 vn_purge(vp, &vmap);
3683
3684 purged = 1;
3685 break;
3686 } while (ip != mp->m_inodes);
3687 /*
3688 * We need to distinguish between when we exit the loop
3689 * after a purge and when we simply hit the end of the
3690 * list. We can't use the (ip == mp->m_inodes) test,
3691 * because when we purge an inode at the start of the list
3692 * the next inode on the list becomes mp->m_inodes. That
3693 * would cause such a test to bail out early. The purged
3694 * variable tells us how we got out of the loop.
3695 */
3696 if (!purged) {
3697 done = 1;
3698 }
3699 }
3700 XFS_MOUNT_IUNLOCK(mp);
3701 return !busy;
3702 }
3703
3704
3705 /*
3706 * xfs_iaccess: check accessibility of inode for mode.
3707 */
3708 int
3709 xfs_iaccess(
3710 xfs_inode_t *ip,
3711 mode_t mode,
3712 cred_t *cr)
3713 {
3714 int error;
3715 mode_t orgmode = mode;
3716 struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip));
3717
3718 if (mode & S_IWUSR) {
3719 umode_t imode = inode->i_mode;
3720
3721 if (IS_RDONLY(inode) &&
3722 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3723 return XFS_ERROR(EROFS);
3724
3725 if (IS_IMMUTABLE(inode))
3726 return XFS_ERROR(EACCES);
3727 }
3728
3729 /*
3730 * If there's an Access Control List it's used instead of
3731 * the mode bits.
3732 */
3733 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3734 return error ? XFS_ERROR(error) : 0;
3735
3736 if (current_fsuid(cr) != ip->i_d.di_uid) {
3737 mode >>= 3;
3738 if (!in_group_p((gid_t)ip->i_d.di_gid))
3739 mode >>= 3;
3740 }
3741
3742 /*
3743 * If the DACs are ok we don't need any capability check.
3744 */
3745 if ((ip->i_d.di_mode & mode) == mode)
3746 return 0;
3747 /*
3748 * Read/write DACs are always overridable.
3749 * Executable DACs are overridable if at least one exec bit is set.
3750 */
3751 if (!(orgmode & S_IXUSR) ||
3752 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3753 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3754 return 0;
3755
3756 if ((orgmode == S_IRUSR) ||
3757 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3758 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3759 return 0;
3760 #ifdef NOISE
3761 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3762 #endif /* NOISE */
3763 return XFS_ERROR(EACCES);
3764 }
3765 return XFS_ERROR(EACCES);
3766 }
3767
3768 /*
3769 * xfs_iroundup: round up argument to next power of two
3770 */
3771 uint
3772 xfs_iroundup(
3773 uint v)
3774 {
3775 int i;
3776 uint m;
3777
3778 if ((v & (v - 1)) == 0)
3779 return v;
3780 ASSERT((v & 0x80000000) == 0);
3781 if ((v & (v + 1)) == 0)
3782 return v + 1;
3783 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3784 if (v & m)
3785 continue;
3786 v |= m;
3787 if ((v & (v + 1)) == 0)
3788 return v + 1;
3789 }
3790 ASSERT(0);
3791 return( 0 );
3792 }
3793
3794 /*
3795 * Change the requested timestamp in the given inode.
3796 * We don't lock across timestamp updates, and we don't log them but
3797 * we do record the fact that there is dirty information in core.
3798 *
3799 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3800 * with XFS_ICHGTIME_ACC to be sure that access time
3801 * update will take. Calling first with XFS_ICHGTIME_ACC
3802 * and then XFS_ICHGTIME_MOD may fail to modify the access
3803 * timestamp if the filesystem is mounted noacctm.
3804 */
3805 void
3806 xfs_ichgtime(xfs_inode_t *ip,
3807 int flags)
3808 {
3809 timespec_t tv;
3810 vnode_t *vp = XFS_ITOV(ip);
3811 struct inode *inode = LINVFS_GET_IP(vp);
3812
3813 /*
3814 * We're not supposed to change timestamps in readonly-mounted
3815 * filesystems. Throw it away if anyone asks us.
3816 */
3817 if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY))
3818 return;
3819
3820 /*
3821 * Don't update access timestamps on reads if mounted "noatime"
3822 * Throw it away if anyone asks us.
3823 */
3824 if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) &&
3825 ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG))
3826 == XFS_ICHGTIME_ACC))
3827 return;
3828
3829 nanotime(&tv);
3830 if (flags & XFS_ICHGTIME_MOD) {
3831 VN_MTIMESET(vp, &tv);
3832 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
3833 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
3834 }
3835 if (flags & XFS_ICHGTIME_ACC) {
3836 VN_ATIMESET(vp, &tv);
3837 ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec;
3838 ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec;
3839 }
3840 if (flags & XFS_ICHGTIME_CHG) {
3841 VN_CTIMESET(vp, &tv);
3842 ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec;
3843 ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec;
3844 }
3845
3846 /*
3847 * We update the i_update_core field _after_ changing
3848 * the timestamps in order to coordinate properly with
3849 * xfs_iflush() so that we don't lose timestamp updates.
3850 * This keeps us from having to hold the inode lock
3851 * while doing this. We use the SYNCHRONIZE macro to
3852 * ensure that the compiler does not reorder the update
3853 * of i_update_core above the timestamp updates above.
3854 */
3855 SYNCHRONIZE();
3856 ip->i_update_core = 1;
3857 if (!(inode->i_state & I_LOCK))
3858 mark_inode_dirty_sync(inode);
3859 }
3860
3861 #ifdef XFS_ILOCK_TRACE
3862 ktrace_t *xfs_ilock_trace_buf;
3863
3864 void
3865 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3866 {
3867 ktrace_enter(ip->i_lock_trace,
3868 (void *)ip,
3869 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3870 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3871 (void *)ra, /* caller of ilock */
3872 (void *)(unsigned long)current_cpu(),
3873 (void *)(unsigned long)current_pid(),
3874 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3875 }
3876 #endif