xfs: pass shutdown method into xfs_trans_ail_delete_bulk
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_extfree_item.h"
30
31
32 kmem_zone_t *xfs_efi_zone;
33 kmem_zone_t *xfs_efd_zone;
34
35 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
36 {
37 return container_of(lip, struct xfs_efi_log_item, efi_item);
38 }
39
40 void
41 xfs_efi_item_free(
42 struct xfs_efi_log_item *efip)
43 {
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kmem_free(efip);
46 else
47 kmem_zone_free(xfs_efi_zone, efip);
48 }
49
50 /*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the
55 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
56 * the EFI.
57 */
58 STATIC void
59 __xfs_efi_release(
60 struct xfs_efi_log_item *efip)
61 {
62 struct xfs_ail *ailp = efip->efi_item.li_ailp;
63
64 if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
65 spin_lock(&ailp->xa_lock);
66 /* xfs_trans_ail_delete() drops the AIL lock. */
67 xfs_trans_ail_delete(ailp, &efip->efi_item,
68 SHUTDOWN_LOG_IO_ERROR);
69 xfs_efi_item_free(efip);
70 }
71 }
72
73 /*
74 * This returns the number of iovecs needed to log the given efi item.
75 * We only need 1 iovec for an efi item. It just logs the efi_log_format
76 * structure.
77 */
78 STATIC uint
79 xfs_efi_item_size(
80 struct xfs_log_item *lip)
81 {
82 return 1;
83 }
84
85 /*
86 * This is called to fill in the vector of log iovecs for the
87 * given efi log item. We use only 1 iovec, and we point that
88 * at the efi_log_format structure embedded in the efi item.
89 * It is at this point that we assert that all of the extent
90 * slots in the efi item have been filled.
91 */
92 STATIC void
93 xfs_efi_item_format(
94 struct xfs_log_item *lip,
95 struct xfs_log_iovec *log_vector)
96 {
97 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
98 uint size;
99
100 ASSERT(atomic_read(&efip->efi_next_extent) ==
101 efip->efi_format.efi_nextents);
102
103 efip->efi_format.efi_type = XFS_LI_EFI;
104
105 size = sizeof(xfs_efi_log_format_t);
106 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
107 efip->efi_format.efi_size = 1;
108
109 log_vector->i_addr = &efip->efi_format;
110 log_vector->i_len = size;
111 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
112 ASSERT(size >= sizeof(xfs_efi_log_format_t));
113 }
114
115
116 /*
117 * Pinning has no meaning for an efi item, so just return.
118 */
119 STATIC void
120 xfs_efi_item_pin(
121 struct xfs_log_item *lip)
122 {
123 }
124
125 /*
126 * While EFIs cannot really be pinned, the unpin operation is the last place at
127 * which the EFI is manipulated during a transaction. If we are being asked to
128 * remove the EFI it's because the transaction has been cancelled and by
129 * definition that means the EFI cannot be in the AIL so remove it from the
130 * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
131 * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
132 */
133 STATIC void
134 xfs_efi_item_unpin(
135 struct xfs_log_item *lip,
136 int remove)
137 {
138 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
139
140 if (remove) {
141 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
142 if (lip->li_desc)
143 xfs_trans_del_item(lip);
144 xfs_efi_item_free(efip);
145 return;
146 }
147 __xfs_efi_release(efip);
148 }
149
150 /*
151 * Efi items have no locking or pushing. However, since EFIs are pulled from
152 * the AIL when their corresponding EFDs are committed to disk, their situation
153 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
154 * will eventually flush the log. This should help in getting the EFI out of
155 * the AIL.
156 */
157 STATIC uint
158 xfs_efi_item_push(
159 struct xfs_log_item *lip,
160 struct list_head *buffer_list)
161 {
162 return XFS_ITEM_PINNED;
163 }
164
165 STATIC void
166 xfs_efi_item_unlock(
167 struct xfs_log_item *lip)
168 {
169 if (lip->li_flags & XFS_LI_ABORTED)
170 xfs_efi_item_free(EFI_ITEM(lip));
171 }
172
173 /*
174 * The EFI is logged only once and cannot be moved in the log, so simply return
175 * the lsn at which it's been logged. For bulk transaction committed
176 * processing, the EFI may be processed but not yet unpinned prior to the EFD
177 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
178 * when processing the EFD.
179 */
180 STATIC xfs_lsn_t
181 xfs_efi_item_committed(
182 struct xfs_log_item *lip,
183 xfs_lsn_t lsn)
184 {
185 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
186
187 set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
188 return lsn;
189 }
190
191 /*
192 * The EFI dependency tracking op doesn't do squat. It can't because
193 * it doesn't know where the free extent is coming from. The dependency
194 * tracking has to be handled by the "enclosing" metadata object. For
195 * example, for inodes, the inode is locked throughout the extent freeing
196 * so the dependency should be recorded there.
197 */
198 STATIC void
199 xfs_efi_item_committing(
200 struct xfs_log_item *lip,
201 xfs_lsn_t lsn)
202 {
203 }
204
205 /*
206 * This is the ops vector shared by all efi log items.
207 */
208 static const struct xfs_item_ops xfs_efi_item_ops = {
209 .iop_size = xfs_efi_item_size,
210 .iop_format = xfs_efi_item_format,
211 .iop_pin = xfs_efi_item_pin,
212 .iop_unpin = xfs_efi_item_unpin,
213 .iop_unlock = xfs_efi_item_unlock,
214 .iop_committed = xfs_efi_item_committed,
215 .iop_push = xfs_efi_item_push,
216 .iop_committing = xfs_efi_item_committing
217 };
218
219
220 /*
221 * Allocate and initialize an efi item with the given number of extents.
222 */
223 struct xfs_efi_log_item *
224 xfs_efi_init(
225 struct xfs_mount *mp,
226 uint nextents)
227
228 {
229 struct xfs_efi_log_item *efip;
230 uint size;
231
232 ASSERT(nextents > 0);
233 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
234 size = (uint)(sizeof(xfs_efi_log_item_t) +
235 ((nextents - 1) * sizeof(xfs_extent_t)));
236 efip = kmem_zalloc(size, KM_SLEEP);
237 } else {
238 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
239 }
240
241 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
242 efip->efi_format.efi_nextents = nextents;
243 efip->efi_format.efi_id = (__psint_t)(void*)efip;
244 atomic_set(&efip->efi_next_extent, 0);
245
246 return efip;
247 }
248
249 /*
250 * Copy an EFI format buffer from the given buf, and into the destination
251 * EFI format structure.
252 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
253 * one of which will be the native format for this kernel.
254 * It will handle the conversion of formats if necessary.
255 */
256 int
257 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
258 {
259 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
260 uint i;
261 uint len = sizeof(xfs_efi_log_format_t) +
262 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
263 uint len32 = sizeof(xfs_efi_log_format_32_t) +
264 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
265 uint len64 = sizeof(xfs_efi_log_format_64_t) +
266 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
267
268 if (buf->i_len == len) {
269 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
270 return 0;
271 } else if (buf->i_len == len32) {
272 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
273
274 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
275 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
276 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
277 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
278 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
279 dst_efi_fmt->efi_extents[i].ext_start =
280 src_efi_fmt_32->efi_extents[i].ext_start;
281 dst_efi_fmt->efi_extents[i].ext_len =
282 src_efi_fmt_32->efi_extents[i].ext_len;
283 }
284 return 0;
285 } else if (buf->i_len == len64) {
286 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
287
288 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
289 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
290 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
291 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
292 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
293 dst_efi_fmt->efi_extents[i].ext_start =
294 src_efi_fmt_64->efi_extents[i].ext_start;
295 dst_efi_fmt->efi_extents[i].ext_len =
296 src_efi_fmt_64->efi_extents[i].ext_len;
297 }
298 return 0;
299 }
300 return EFSCORRUPTED;
301 }
302
303 /*
304 * This is called by the efd item code below to release references to the given
305 * efi item. Each efd calls this with the number of extents that it has
306 * logged, and when the sum of these reaches the total number of extents logged
307 * by this efi item we can free the efi item.
308 */
309 void
310 xfs_efi_release(xfs_efi_log_item_t *efip,
311 uint nextents)
312 {
313 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
314 if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
315 __xfs_efi_release(efip);
316 }
317
318 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
319 {
320 return container_of(lip, struct xfs_efd_log_item, efd_item);
321 }
322
323 STATIC void
324 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
325 {
326 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
327 kmem_free(efdp);
328 else
329 kmem_zone_free(xfs_efd_zone, efdp);
330 }
331
332 /*
333 * This returns the number of iovecs needed to log the given efd item.
334 * We only need 1 iovec for an efd item. It just logs the efd_log_format
335 * structure.
336 */
337 STATIC uint
338 xfs_efd_item_size(
339 struct xfs_log_item *lip)
340 {
341 return 1;
342 }
343
344 /*
345 * This is called to fill in the vector of log iovecs for the
346 * given efd log item. We use only 1 iovec, and we point that
347 * at the efd_log_format structure embedded in the efd item.
348 * It is at this point that we assert that all of the extent
349 * slots in the efd item have been filled.
350 */
351 STATIC void
352 xfs_efd_item_format(
353 struct xfs_log_item *lip,
354 struct xfs_log_iovec *log_vector)
355 {
356 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
357 uint size;
358
359 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
360
361 efdp->efd_format.efd_type = XFS_LI_EFD;
362
363 size = sizeof(xfs_efd_log_format_t);
364 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
365 efdp->efd_format.efd_size = 1;
366
367 log_vector->i_addr = &efdp->efd_format;
368 log_vector->i_len = size;
369 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
370 ASSERT(size >= sizeof(xfs_efd_log_format_t));
371 }
372
373 /*
374 * Pinning has no meaning for an efd item, so just return.
375 */
376 STATIC void
377 xfs_efd_item_pin(
378 struct xfs_log_item *lip)
379 {
380 }
381
382 /*
383 * Since pinning has no meaning for an efd item, unpinning does
384 * not either.
385 */
386 STATIC void
387 xfs_efd_item_unpin(
388 struct xfs_log_item *lip,
389 int remove)
390 {
391 }
392
393 /*
394 * There isn't much you can do to push on an efd item. It is simply stuck
395 * waiting for the log to be flushed to disk.
396 */
397 STATIC uint
398 xfs_efd_item_push(
399 struct xfs_log_item *lip,
400 struct list_head *buffer_list)
401 {
402 return XFS_ITEM_PINNED;
403 }
404
405 STATIC void
406 xfs_efd_item_unlock(
407 struct xfs_log_item *lip)
408 {
409 if (lip->li_flags & XFS_LI_ABORTED)
410 xfs_efd_item_free(EFD_ITEM(lip));
411 }
412
413 /*
414 * When the efd item is committed to disk, all we need to do
415 * is delete our reference to our partner efi item and then
416 * free ourselves. Since we're freeing ourselves we must
417 * return -1 to keep the transaction code from further referencing
418 * this item.
419 */
420 STATIC xfs_lsn_t
421 xfs_efd_item_committed(
422 struct xfs_log_item *lip,
423 xfs_lsn_t lsn)
424 {
425 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
426
427 /*
428 * If we got a log I/O error, it's always the case that the LR with the
429 * EFI got unpinned and freed before the EFD got aborted.
430 */
431 if (!(lip->li_flags & XFS_LI_ABORTED))
432 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
433
434 xfs_efd_item_free(efdp);
435 return (xfs_lsn_t)-1;
436 }
437
438 /*
439 * The EFD dependency tracking op doesn't do squat. It can't because
440 * it doesn't know where the free extent is coming from. The dependency
441 * tracking has to be handled by the "enclosing" metadata object. For
442 * example, for inodes, the inode is locked throughout the extent freeing
443 * so the dependency should be recorded there.
444 */
445 STATIC void
446 xfs_efd_item_committing(
447 struct xfs_log_item *lip,
448 xfs_lsn_t lsn)
449 {
450 }
451
452 /*
453 * This is the ops vector shared by all efd log items.
454 */
455 static const struct xfs_item_ops xfs_efd_item_ops = {
456 .iop_size = xfs_efd_item_size,
457 .iop_format = xfs_efd_item_format,
458 .iop_pin = xfs_efd_item_pin,
459 .iop_unpin = xfs_efd_item_unpin,
460 .iop_unlock = xfs_efd_item_unlock,
461 .iop_committed = xfs_efd_item_committed,
462 .iop_push = xfs_efd_item_push,
463 .iop_committing = xfs_efd_item_committing
464 };
465
466 /*
467 * Allocate and initialize an efd item with the given number of extents.
468 */
469 struct xfs_efd_log_item *
470 xfs_efd_init(
471 struct xfs_mount *mp,
472 struct xfs_efi_log_item *efip,
473 uint nextents)
474
475 {
476 struct xfs_efd_log_item *efdp;
477 uint size;
478
479 ASSERT(nextents > 0);
480 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
481 size = (uint)(sizeof(xfs_efd_log_item_t) +
482 ((nextents - 1) * sizeof(xfs_extent_t)));
483 efdp = kmem_zalloc(size, KM_SLEEP);
484 } else {
485 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
486 }
487
488 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
489 efdp->efd_efip = efip;
490 efdp->efd_format.efd_nextents = nextents;
491 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
492
493 return efdp;
494 }