xen/tmem: Fix compile warning.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_da_btree.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dir2_format.h"
32 #include "xfs_dir2_priv.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_bmap.h"
38 #include "xfs_attr.h"
39 #include "xfs_attr_leaf.h"
40 #include "xfs_error.h"
41 #include "xfs_trace.h"
42 #include "xfs_cksum.h"
43 #include "xfs_buf_item.h"
44
45 /*
46 * xfs_da_btree.c
47 *
48 * Routines to implement directories as Btrees of hashed names.
49 */
50
51 /*========================================================================
52 * Function prototypes for the kernel.
53 *========================================================================*/
54
55 /*
56 * Routines used for growing the Btree.
57 */
58 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
59 xfs_da_state_blk_t *existing_root,
60 xfs_da_state_blk_t *new_child);
61 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
62 xfs_da_state_blk_t *existing_blk,
63 xfs_da_state_blk_t *split_blk,
64 xfs_da_state_blk_t *blk_to_add,
65 int treelevel,
66 int *result);
67 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
68 xfs_da_state_blk_t *node_blk_1,
69 xfs_da_state_blk_t *node_blk_2);
70 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
71 xfs_da_state_blk_t *old_node_blk,
72 xfs_da_state_blk_t *new_node_blk);
73
74 /*
75 * Routines used for shrinking the Btree.
76 */
77 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
78 xfs_da_state_blk_t *root_blk);
79 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
80 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
81 xfs_da_state_blk_t *drop_blk);
82 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
83 xfs_da_state_blk_t *src_node_blk,
84 xfs_da_state_blk_t *dst_node_blk);
85
86 /*
87 * Utility routines.
88 */
89 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state,
90 xfs_da_state_blk_t *drop_blk,
91 xfs_da_state_blk_t *save_blk);
92
93
94 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */
95
96 /*
97 * Allocate a dir-state structure.
98 * We don't put them on the stack since they're large.
99 */
100 xfs_da_state_t *
101 xfs_da_state_alloc(void)
102 {
103 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
104 }
105
106 /*
107 * Kill the altpath contents of a da-state structure.
108 */
109 STATIC void
110 xfs_da_state_kill_altpath(xfs_da_state_t *state)
111 {
112 int i;
113
114 for (i = 0; i < state->altpath.active; i++)
115 state->altpath.blk[i].bp = NULL;
116 state->altpath.active = 0;
117 }
118
119 /*
120 * Free a da-state structure.
121 */
122 void
123 xfs_da_state_free(xfs_da_state_t *state)
124 {
125 xfs_da_state_kill_altpath(state);
126 #ifdef DEBUG
127 memset((char *)state, 0, sizeof(*state));
128 #endif /* DEBUG */
129 kmem_zone_free(xfs_da_state_zone, state);
130 }
131
132 void
133 xfs_da3_node_hdr_from_disk(
134 struct xfs_da3_icnode_hdr *to,
135 struct xfs_da_intnode *from)
136 {
137 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
138 from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
139
140 if (from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
141 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)from;
142
143 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
144 to->back = be32_to_cpu(hdr3->info.hdr.back);
145 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
146 to->count = be16_to_cpu(hdr3->__count);
147 to->level = be16_to_cpu(hdr3->__level);
148 return;
149 }
150 to->forw = be32_to_cpu(from->hdr.info.forw);
151 to->back = be32_to_cpu(from->hdr.info.back);
152 to->magic = be16_to_cpu(from->hdr.info.magic);
153 to->count = be16_to_cpu(from->hdr.__count);
154 to->level = be16_to_cpu(from->hdr.__level);
155 }
156
157 void
158 xfs_da3_node_hdr_to_disk(
159 struct xfs_da_intnode *to,
160 struct xfs_da3_icnode_hdr *from)
161 {
162 ASSERT(from->magic == XFS_DA_NODE_MAGIC ||
163 from->magic == XFS_DA3_NODE_MAGIC);
164
165 if (from->magic == XFS_DA3_NODE_MAGIC) {
166 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)to;
167
168 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
169 hdr3->info.hdr.back = cpu_to_be32(from->back);
170 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
171 hdr3->__count = cpu_to_be16(from->count);
172 hdr3->__level = cpu_to_be16(from->level);
173 return;
174 }
175 to->hdr.info.forw = cpu_to_be32(from->forw);
176 to->hdr.info.back = cpu_to_be32(from->back);
177 to->hdr.info.magic = cpu_to_be16(from->magic);
178 to->hdr.__count = cpu_to_be16(from->count);
179 to->hdr.__level = cpu_to_be16(from->level);
180 }
181
182 static bool
183 xfs_da3_node_verify(
184 struct xfs_buf *bp)
185 {
186 struct xfs_mount *mp = bp->b_target->bt_mount;
187 struct xfs_da_intnode *hdr = bp->b_addr;
188 struct xfs_da3_icnode_hdr ichdr;
189
190 xfs_da3_node_hdr_from_disk(&ichdr, hdr);
191
192 if (xfs_sb_version_hascrc(&mp->m_sb)) {
193 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
194
195 if (ichdr.magic != XFS_DA3_NODE_MAGIC)
196 return false;
197
198 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
199 return false;
200 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
201 return false;
202 } else {
203 if (ichdr.magic != XFS_DA_NODE_MAGIC)
204 return false;
205 }
206 if (ichdr.level == 0)
207 return false;
208 if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
209 return false;
210 if (ichdr.count == 0)
211 return false;
212
213 /*
214 * we don't know if the node is for and attribute or directory tree,
215 * so only fail if the count is outside both bounds
216 */
217 if (ichdr.count > mp->m_dir_node_ents &&
218 ichdr.count > mp->m_attr_node_ents)
219 return false;
220
221 /* XXX: hash order check? */
222
223 return true;
224 }
225
226 static void
227 xfs_da3_node_write_verify(
228 struct xfs_buf *bp)
229 {
230 struct xfs_mount *mp = bp->b_target->bt_mount;
231 struct xfs_buf_log_item *bip = bp->b_fspriv;
232 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
233
234 if (!xfs_da3_node_verify(bp)) {
235 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
236 xfs_buf_ioerror(bp, EFSCORRUPTED);
237 return;
238 }
239
240 if (!xfs_sb_version_hascrc(&mp->m_sb))
241 return;
242
243 if (bip)
244 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
245
246 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_DA3_NODE_CRC_OFF);
247 }
248
249 /*
250 * leaf/node format detection on trees is sketchy, so a node read can be done on
251 * leaf level blocks when detection identifies the tree as a node format tree
252 * incorrectly. In this case, we need to swap the verifier to match the correct
253 * format of the block being read.
254 */
255 static void
256 xfs_da3_node_read_verify(
257 struct xfs_buf *bp)
258 {
259 struct xfs_mount *mp = bp->b_target->bt_mount;
260 struct xfs_da_blkinfo *info = bp->b_addr;
261
262 switch (be16_to_cpu(info->magic)) {
263 case XFS_DA3_NODE_MAGIC:
264 if (!xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
265 XFS_DA3_NODE_CRC_OFF))
266 break;
267 /* fall through */
268 case XFS_DA_NODE_MAGIC:
269 if (!xfs_da3_node_verify(bp))
270 break;
271 return;
272 case XFS_ATTR_LEAF_MAGIC:
273 bp->b_ops = &xfs_attr3_leaf_buf_ops;
274 bp->b_ops->verify_read(bp);
275 return;
276 case XFS_DIR2_LEAFN_MAGIC:
277 case XFS_DIR3_LEAFN_MAGIC:
278 bp->b_ops = &xfs_dir3_leafn_buf_ops;
279 bp->b_ops->verify_read(bp);
280 return;
281 default:
282 break;
283 }
284
285 /* corrupt block */
286 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
287 xfs_buf_ioerror(bp, EFSCORRUPTED);
288 }
289
290 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
291 .verify_read = xfs_da3_node_read_verify,
292 .verify_write = xfs_da3_node_write_verify,
293 };
294
295 int
296 xfs_da3_node_read(
297 struct xfs_trans *tp,
298 struct xfs_inode *dp,
299 xfs_dablk_t bno,
300 xfs_daddr_t mappedbno,
301 struct xfs_buf **bpp,
302 int which_fork)
303 {
304 int err;
305
306 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
307 which_fork, &xfs_da3_node_buf_ops);
308 if (!err && tp) {
309 struct xfs_da_blkinfo *info = (*bpp)->b_addr;
310 int type;
311
312 switch (be16_to_cpu(info->magic)) {
313 case XFS_DA_NODE_MAGIC:
314 case XFS_DA3_NODE_MAGIC:
315 type = XFS_BLFT_DA_NODE_BUF;
316 break;
317 case XFS_ATTR_LEAF_MAGIC:
318 case XFS_ATTR3_LEAF_MAGIC:
319 type = XFS_BLFT_ATTR_LEAF_BUF;
320 break;
321 case XFS_DIR2_LEAFN_MAGIC:
322 case XFS_DIR3_LEAFN_MAGIC:
323 type = XFS_BLFT_DIR_LEAFN_BUF;
324 break;
325 default:
326 type = 0;
327 ASSERT(0);
328 break;
329 }
330 xfs_trans_buf_set_type(tp, *bpp, type);
331 }
332 return err;
333 }
334
335 /*========================================================================
336 * Routines used for growing the Btree.
337 *========================================================================*/
338
339 /*
340 * Create the initial contents of an intermediate node.
341 */
342 int
343 xfs_da3_node_create(
344 struct xfs_da_args *args,
345 xfs_dablk_t blkno,
346 int level,
347 struct xfs_buf **bpp,
348 int whichfork)
349 {
350 struct xfs_da_intnode *node;
351 struct xfs_trans *tp = args->trans;
352 struct xfs_mount *mp = tp->t_mountp;
353 struct xfs_da3_icnode_hdr ichdr = {0};
354 struct xfs_buf *bp;
355 int error;
356
357 trace_xfs_da_node_create(args);
358 ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
359
360 error = xfs_da_get_buf(tp, args->dp, blkno, -1, &bp, whichfork);
361 if (error)
362 return(error);
363 bp->b_ops = &xfs_da3_node_buf_ops;
364 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
365 node = bp->b_addr;
366
367 if (xfs_sb_version_hascrc(&mp->m_sb)) {
368 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
369
370 ichdr.magic = XFS_DA3_NODE_MAGIC;
371 hdr3->info.blkno = cpu_to_be64(bp->b_bn);
372 hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
373 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_uuid);
374 } else {
375 ichdr.magic = XFS_DA_NODE_MAGIC;
376 }
377 ichdr.level = level;
378
379 xfs_da3_node_hdr_to_disk(node, &ichdr);
380 xfs_trans_log_buf(tp, bp,
381 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
382
383 *bpp = bp;
384 return(0);
385 }
386
387 /*
388 * Split a leaf node, rebalance, then possibly split
389 * intermediate nodes, rebalance, etc.
390 */
391 int /* error */
392 xfs_da3_split(
393 struct xfs_da_state *state)
394 {
395 struct xfs_da_state_blk *oldblk;
396 struct xfs_da_state_blk *newblk;
397 struct xfs_da_state_blk *addblk;
398 struct xfs_da_intnode *node;
399 struct xfs_buf *bp;
400 int max;
401 int action;
402 int error;
403 int i;
404
405 trace_xfs_da_split(state->args);
406
407 /*
408 * Walk back up the tree splitting/inserting/adjusting as necessary.
409 * If we need to insert and there isn't room, split the node, then
410 * decide which fragment to insert the new block from below into.
411 * Note that we may split the root this way, but we need more fixup.
412 */
413 max = state->path.active - 1;
414 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
415 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
416 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
417
418 addblk = &state->path.blk[max]; /* initial dummy value */
419 for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
420 oldblk = &state->path.blk[i];
421 newblk = &state->altpath.blk[i];
422
423 /*
424 * If a leaf node then
425 * Allocate a new leaf node, then rebalance across them.
426 * else if an intermediate node then
427 * We split on the last layer, must we split the node?
428 */
429 switch (oldblk->magic) {
430 case XFS_ATTR_LEAF_MAGIC:
431 error = xfs_attr3_leaf_split(state, oldblk, newblk);
432 if ((error != 0) && (error != ENOSPC)) {
433 return(error); /* GROT: attr is inconsistent */
434 }
435 if (!error) {
436 addblk = newblk;
437 break;
438 }
439 /*
440 * Entry wouldn't fit, split the leaf again.
441 */
442 state->extravalid = 1;
443 if (state->inleaf) {
444 state->extraafter = 0; /* before newblk */
445 trace_xfs_attr_leaf_split_before(state->args);
446 error = xfs_attr3_leaf_split(state, oldblk,
447 &state->extrablk);
448 } else {
449 state->extraafter = 1; /* after newblk */
450 trace_xfs_attr_leaf_split_after(state->args);
451 error = xfs_attr3_leaf_split(state, newblk,
452 &state->extrablk);
453 }
454 if (error)
455 return(error); /* GROT: attr inconsistent */
456 addblk = newblk;
457 break;
458 case XFS_DIR2_LEAFN_MAGIC:
459 error = xfs_dir2_leafn_split(state, oldblk, newblk);
460 if (error)
461 return error;
462 addblk = newblk;
463 break;
464 case XFS_DA_NODE_MAGIC:
465 error = xfs_da3_node_split(state, oldblk, newblk, addblk,
466 max - i, &action);
467 addblk->bp = NULL;
468 if (error)
469 return(error); /* GROT: dir is inconsistent */
470 /*
471 * Record the newly split block for the next time thru?
472 */
473 if (action)
474 addblk = newblk;
475 else
476 addblk = NULL;
477 break;
478 }
479
480 /*
481 * Update the btree to show the new hashval for this child.
482 */
483 xfs_da3_fixhashpath(state, &state->path);
484 }
485 if (!addblk)
486 return(0);
487
488 /*
489 * Split the root node.
490 */
491 ASSERT(state->path.active == 0);
492 oldblk = &state->path.blk[0];
493 error = xfs_da3_root_split(state, oldblk, addblk);
494 if (error) {
495 addblk->bp = NULL;
496 return(error); /* GROT: dir is inconsistent */
497 }
498
499 /*
500 * Update pointers to the node which used to be block 0 and
501 * just got bumped because of the addition of a new root node.
502 * There might be three blocks involved if a double split occurred,
503 * and the original block 0 could be at any position in the list.
504 *
505 * Note: the magic numbers and sibling pointers are in the same
506 * physical place for both v2 and v3 headers (by design). Hence it
507 * doesn't matter which version of the xfs_da_intnode structure we use
508 * here as the result will be the same using either structure.
509 */
510 node = oldblk->bp->b_addr;
511 if (node->hdr.info.forw) {
512 if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) {
513 bp = addblk->bp;
514 } else {
515 ASSERT(state->extravalid);
516 bp = state->extrablk.bp;
517 }
518 node = bp->b_addr;
519 node->hdr.info.back = cpu_to_be32(oldblk->blkno);
520 xfs_trans_log_buf(state->args->trans, bp,
521 XFS_DA_LOGRANGE(node, &node->hdr.info,
522 sizeof(node->hdr.info)));
523 }
524 node = oldblk->bp->b_addr;
525 if (node->hdr.info.back) {
526 if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) {
527 bp = addblk->bp;
528 } else {
529 ASSERT(state->extravalid);
530 bp = state->extrablk.bp;
531 }
532 node = bp->b_addr;
533 node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
534 xfs_trans_log_buf(state->args->trans, bp,
535 XFS_DA_LOGRANGE(node, &node->hdr.info,
536 sizeof(node->hdr.info)));
537 }
538 addblk->bp = NULL;
539 return(0);
540 }
541
542 /*
543 * Split the root. We have to create a new root and point to the two
544 * parts (the split old root) that we just created. Copy block zero to
545 * the EOF, extending the inode in process.
546 */
547 STATIC int /* error */
548 xfs_da3_root_split(
549 struct xfs_da_state *state,
550 struct xfs_da_state_blk *blk1,
551 struct xfs_da_state_blk *blk2)
552 {
553 struct xfs_da_intnode *node;
554 struct xfs_da_intnode *oldroot;
555 struct xfs_da_node_entry *btree;
556 struct xfs_da3_icnode_hdr nodehdr;
557 struct xfs_da_args *args;
558 struct xfs_buf *bp;
559 struct xfs_inode *dp;
560 struct xfs_trans *tp;
561 struct xfs_mount *mp;
562 struct xfs_dir2_leaf *leaf;
563 xfs_dablk_t blkno;
564 int level;
565 int error;
566 int size;
567
568 trace_xfs_da_root_split(state->args);
569
570 /*
571 * Copy the existing (incorrect) block from the root node position
572 * to a free space somewhere.
573 */
574 args = state->args;
575 error = xfs_da_grow_inode(args, &blkno);
576 if (error)
577 return error;
578
579 dp = args->dp;
580 tp = args->trans;
581 mp = state->mp;
582 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
583 if (error)
584 return error;
585 node = bp->b_addr;
586 oldroot = blk1->bp->b_addr;
587 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
588 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
589 struct xfs_da3_icnode_hdr nodehdr;
590
591 xfs_da3_node_hdr_from_disk(&nodehdr, oldroot);
592 btree = xfs_da3_node_tree_p(oldroot);
593 size = (int)((char *)&btree[nodehdr.count] - (char *)oldroot);
594 level = nodehdr.level;
595
596 /*
597 * we are about to copy oldroot to bp, so set up the type
598 * of bp while we know exactly what it will be.
599 */
600 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
601 } else {
602 struct xfs_dir3_icleaf_hdr leafhdr;
603 struct xfs_dir2_leaf_entry *ents;
604
605 leaf = (xfs_dir2_leaf_t *)oldroot;
606 xfs_dir3_leaf_hdr_from_disk(&leafhdr, leaf);
607 ents = xfs_dir3_leaf_ents_p(leaf);
608
609 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
610 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
611 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
612 level = 0;
613
614 /*
615 * we are about to copy oldroot to bp, so set up the type
616 * of bp while we know exactly what it will be.
617 */
618 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
619 }
620
621 /*
622 * we can copy most of the information in the node from one block to
623 * another, but for CRC enabled headers we have to make sure that the
624 * block specific identifiers are kept intact. We update the buffer
625 * directly for this.
626 */
627 memcpy(node, oldroot, size);
628 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
629 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
630 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
631
632 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
633 }
634 xfs_trans_log_buf(tp, bp, 0, size - 1);
635
636 bp->b_ops = blk1->bp->b_ops;
637 blk1->bp = bp;
638 blk1->blkno = blkno;
639
640 /*
641 * Set up the new root node.
642 */
643 error = xfs_da3_node_create(args,
644 (args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0,
645 level + 1, &bp, args->whichfork);
646 if (error)
647 return error;
648
649 node = bp->b_addr;
650 xfs_da3_node_hdr_from_disk(&nodehdr, node);
651 btree = xfs_da3_node_tree_p(node);
652 btree[0].hashval = cpu_to_be32(blk1->hashval);
653 btree[0].before = cpu_to_be32(blk1->blkno);
654 btree[1].hashval = cpu_to_be32(blk2->hashval);
655 btree[1].before = cpu_to_be32(blk2->blkno);
656 nodehdr.count = 2;
657 xfs_da3_node_hdr_to_disk(node, &nodehdr);
658
659 #ifdef DEBUG
660 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
661 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
662 ASSERT(blk1->blkno >= mp->m_dirleafblk &&
663 blk1->blkno < mp->m_dirfreeblk);
664 ASSERT(blk2->blkno >= mp->m_dirleafblk &&
665 blk2->blkno < mp->m_dirfreeblk);
666 }
667 #endif
668
669 /* Header is already logged by xfs_da_node_create */
670 xfs_trans_log_buf(tp, bp,
671 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
672
673 return 0;
674 }
675
676 /*
677 * Split the node, rebalance, then add the new entry.
678 */
679 STATIC int /* error */
680 xfs_da3_node_split(
681 struct xfs_da_state *state,
682 struct xfs_da_state_blk *oldblk,
683 struct xfs_da_state_blk *newblk,
684 struct xfs_da_state_blk *addblk,
685 int treelevel,
686 int *result)
687 {
688 struct xfs_da_intnode *node;
689 struct xfs_da3_icnode_hdr nodehdr;
690 xfs_dablk_t blkno;
691 int newcount;
692 int error;
693 int useextra;
694
695 trace_xfs_da_node_split(state->args);
696
697 node = oldblk->bp->b_addr;
698 xfs_da3_node_hdr_from_disk(&nodehdr, node);
699
700 /*
701 * With V2 dirs the extra block is data or freespace.
702 */
703 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
704 newcount = 1 + useextra;
705 /*
706 * Do we have to split the node?
707 */
708 if (nodehdr.count + newcount > state->node_ents) {
709 /*
710 * Allocate a new node, add to the doubly linked chain of
711 * nodes, then move some of our excess entries into it.
712 */
713 error = xfs_da_grow_inode(state->args, &blkno);
714 if (error)
715 return(error); /* GROT: dir is inconsistent */
716
717 error = xfs_da3_node_create(state->args, blkno, treelevel,
718 &newblk->bp, state->args->whichfork);
719 if (error)
720 return(error); /* GROT: dir is inconsistent */
721 newblk->blkno = blkno;
722 newblk->magic = XFS_DA_NODE_MAGIC;
723 xfs_da3_node_rebalance(state, oldblk, newblk);
724 error = xfs_da3_blk_link(state, oldblk, newblk);
725 if (error)
726 return(error);
727 *result = 1;
728 } else {
729 *result = 0;
730 }
731
732 /*
733 * Insert the new entry(s) into the correct block
734 * (updating last hashval in the process).
735 *
736 * xfs_da3_node_add() inserts BEFORE the given index,
737 * and as a result of using node_lookup_int() we always
738 * point to a valid entry (not after one), but a split
739 * operation always results in a new block whose hashvals
740 * FOLLOW the current block.
741 *
742 * If we had double-split op below us, then add the extra block too.
743 */
744 node = oldblk->bp->b_addr;
745 xfs_da3_node_hdr_from_disk(&nodehdr, node);
746 if (oldblk->index <= nodehdr.count) {
747 oldblk->index++;
748 xfs_da3_node_add(state, oldblk, addblk);
749 if (useextra) {
750 if (state->extraafter)
751 oldblk->index++;
752 xfs_da3_node_add(state, oldblk, &state->extrablk);
753 state->extravalid = 0;
754 }
755 } else {
756 newblk->index++;
757 xfs_da3_node_add(state, newblk, addblk);
758 if (useextra) {
759 if (state->extraafter)
760 newblk->index++;
761 xfs_da3_node_add(state, newblk, &state->extrablk);
762 state->extravalid = 0;
763 }
764 }
765
766 return(0);
767 }
768
769 /*
770 * Balance the btree elements between two intermediate nodes,
771 * usually one full and one empty.
772 *
773 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
774 */
775 STATIC void
776 xfs_da3_node_rebalance(
777 struct xfs_da_state *state,
778 struct xfs_da_state_blk *blk1,
779 struct xfs_da_state_blk *blk2)
780 {
781 struct xfs_da_intnode *node1;
782 struct xfs_da_intnode *node2;
783 struct xfs_da_intnode *tmpnode;
784 struct xfs_da_node_entry *btree1;
785 struct xfs_da_node_entry *btree2;
786 struct xfs_da_node_entry *btree_s;
787 struct xfs_da_node_entry *btree_d;
788 struct xfs_da3_icnode_hdr nodehdr1;
789 struct xfs_da3_icnode_hdr nodehdr2;
790 struct xfs_trans *tp;
791 int count;
792 int tmp;
793 int swap = 0;
794
795 trace_xfs_da_node_rebalance(state->args);
796
797 node1 = blk1->bp->b_addr;
798 node2 = blk2->bp->b_addr;
799 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
800 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
801 btree1 = xfs_da3_node_tree_p(node1);
802 btree2 = xfs_da3_node_tree_p(node2);
803
804 /*
805 * Figure out how many entries need to move, and in which direction.
806 * Swap the nodes around if that makes it simpler.
807 */
808 if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
809 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
810 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
811 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
812 tmpnode = node1;
813 node1 = node2;
814 node2 = tmpnode;
815 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
816 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
817 btree1 = xfs_da3_node_tree_p(node1);
818 btree2 = xfs_da3_node_tree_p(node2);
819 swap = 1;
820 }
821
822 count = (nodehdr1.count - nodehdr2.count) / 2;
823 if (count == 0)
824 return;
825 tp = state->args->trans;
826 /*
827 * Two cases: high-to-low and low-to-high.
828 */
829 if (count > 0) {
830 /*
831 * Move elements in node2 up to make a hole.
832 */
833 tmp = nodehdr2.count;
834 if (tmp > 0) {
835 tmp *= (uint)sizeof(xfs_da_node_entry_t);
836 btree_s = &btree2[0];
837 btree_d = &btree2[count];
838 memmove(btree_d, btree_s, tmp);
839 }
840
841 /*
842 * Move the req'd B-tree elements from high in node1 to
843 * low in node2.
844 */
845 nodehdr2.count += count;
846 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
847 btree_s = &btree1[nodehdr1.count - count];
848 btree_d = &btree2[0];
849 memcpy(btree_d, btree_s, tmp);
850 nodehdr1.count -= count;
851 } else {
852 /*
853 * Move the req'd B-tree elements from low in node2 to
854 * high in node1.
855 */
856 count = -count;
857 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
858 btree_s = &btree2[0];
859 btree_d = &btree1[nodehdr1.count];
860 memcpy(btree_d, btree_s, tmp);
861 nodehdr1.count += count;
862
863 xfs_trans_log_buf(tp, blk1->bp,
864 XFS_DA_LOGRANGE(node1, btree_d, tmp));
865
866 /*
867 * Move elements in node2 down to fill the hole.
868 */
869 tmp = nodehdr2.count - count;
870 tmp *= (uint)sizeof(xfs_da_node_entry_t);
871 btree_s = &btree2[count];
872 btree_d = &btree2[0];
873 memmove(btree_d, btree_s, tmp);
874 nodehdr2.count -= count;
875 }
876
877 /*
878 * Log header of node 1 and all current bits of node 2.
879 */
880 xfs_da3_node_hdr_to_disk(node1, &nodehdr1);
881 xfs_trans_log_buf(tp, blk1->bp,
882 XFS_DA_LOGRANGE(node1, &node1->hdr,
883 xfs_da3_node_hdr_size(node1)));
884
885 xfs_da3_node_hdr_to_disk(node2, &nodehdr2);
886 xfs_trans_log_buf(tp, blk2->bp,
887 XFS_DA_LOGRANGE(node2, &node2->hdr,
888 xfs_da3_node_hdr_size(node2) +
889 (sizeof(btree2[0]) * nodehdr2.count)));
890
891 /*
892 * Record the last hashval from each block for upward propagation.
893 * (note: don't use the swapped node pointers)
894 */
895 if (swap) {
896 node1 = blk1->bp->b_addr;
897 node2 = blk2->bp->b_addr;
898 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
899 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
900 btree1 = xfs_da3_node_tree_p(node1);
901 btree2 = xfs_da3_node_tree_p(node2);
902 }
903 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
904 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
905
906 /*
907 * Adjust the expected index for insertion.
908 */
909 if (blk1->index >= nodehdr1.count) {
910 blk2->index = blk1->index - nodehdr1.count;
911 blk1->index = nodehdr1.count + 1; /* make it invalid */
912 }
913 }
914
915 /*
916 * Add a new entry to an intermediate node.
917 */
918 STATIC void
919 xfs_da3_node_add(
920 struct xfs_da_state *state,
921 struct xfs_da_state_blk *oldblk,
922 struct xfs_da_state_blk *newblk)
923 {
924 struct xfs_da_intnode *node;
925 struct xfs_da3_icnode_hdr nodehdr;
926 struct xfs_da_node_entry *btree;
927 int tmp;
928
929 trace_xfs_da_node_add(state->args);
930
931 node = oldblk->bp->b_addr;
932 xfs_da3_node_hdr_from_disk(&nodehdr, node);
933 btree = xfs_da3_node_tree_p(node);
934
935 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
936 ASSERT(newblk->blkno != 0);
937 if (state->args->whichfork == XFS_DATA_FORK)
938 ASSERT(newblk->blkno >= state->mp->m_dirleafblk &&
939 newblk->blkno < state->mp->m_dirfreeblk);
940
941 /*
942 * We may need to make some room before we insert the new node.
943 */
944 tmp = 0;
945 if (oldblk->index < nodehdr.count) {
946 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
947 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
948 }
949 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
950 btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
951 xfs_trans_log_buf(state->args->trans, oldblk->bp,
952 XFS_DA_LOGRANGE(node, &btree[oldblk->index],
953 tmp + sizeof(*btree)));
954
955 nodehdr.count += 1;
956 xfs_da3_node_hdr_to_disk(node, &nodehdr);
957 xfs_trans_log_buf(state->args->trans, oldblk->bp,
958 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
959
960 /*
961 * Copy the last hash value from the oldblk to propagate upwards.
962 */
963 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
964 }
965
966 /*========================================================================
967 * Routines used for shrinking the Btree.
968 *========================================================================*/
969
970 /*
971 * Deallocate an empty leaf node, remove it from its parent,
972 * possibly deallocating that block, etc...
973 */
974 int
975 xfs_da3_join(
976 struct xfs_da_state *state)
977 {
978 struct xfs_da_state_blk *drop_blk;
979 struct xfs_da_state_blk *save_blk;
980 int action = 0;
981 int error;
982
983 trace_xfs_da_join(state->args);
984
985 drop_blk = &state->path.blk[ state->path.active-1 ];
986 save_blk = &state->altpath.blk[ state->path.active-1 ];
987 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
988 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
989 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
990
991 /*
992 * Walk back up the tree joining/deallocating as necessary.
993 * When we stop dropping blocks, break out.
994 */
995 for ( ; state->path.active >= 2; drop_blk--, save_blk--,
996 state->path.active--) {
997 /*
998 * See if we can combine the block with a neighbor.
999 * (action == 0) => no options, just leave
1000 * (action == 1) => coalesce, then unlink
1001 * (action == 2) => block empty, unlink it
1002 */
1003 switch (drop_blk->magic) {
1004 case XFS_ATTR_LEAF_MAGIC:
1005 error = xfs_attr3_leaf_toosmall(state, &action);
1006 if (error)
1007 return(error);
1008 if (action == 0)
1009 return(0);
1010 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
1011 break;
1012 case XFS_DIR2_LEAFN_MAGIC:
1013 error = xfs_dir2_leafn_toosmall(state, &action);
1014 if (error)
1015 return error;
1016 if (action == 0)
1017 return 0;
1018 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
1019 break;
1020 case XFS_DA_NODE_MAGIC:
1021 /*
1022 * Remove the offending node, fixup hashvals,
1023 * check for a toosmall neighbor.
1024 */
1025 xfs_da3_node_remove(state, drop_blk);
1026 xfs_da3_fixhashpath(state, &state->path);
1027 error = xfs_da3_node_toosmall(state, &action);
1028 if (error)
1029 return(error);
1030 if (action == 0)
1031 return 0;
1032 xfs_da3_node_unbalance(state, drop_blk, save_blk);
1033 break;
1034 }
1035 xfs_da3_fixhashpath(state, &state->altpath);
1036 error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
1037 xfs_da_state_kill_altpath(state);
1038 if (error)
1039 return(error);
1040 error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1041 drop_blk->bp);
1042 drop_blk->bp = NULL;
1043 if (error)
1044 return(error);
1045 }
1046 /*
1047 * We joined all the way to the top. If it turns out that
1048 * we only have one entry in the root, make the child block
1049 * the new root.
1050 */
1051 xfs_da3_node_remove(state, drop_blk);
1052 xfs_da3_fixhashpath(state, &state->path);
1053 error = xfs_da3_root_join(state, &state->path.blk[0]);
1054 return(error);
1055 }
1056
1057 #ifdef DEBUG
1058 static void
1059 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1060 {
1061 __be16 magic = blkinfo->magic;
1062
1063 if (level == 1) {
1064 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1065 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1066 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1067 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1068 } else {
1069 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1070 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1071 }
1072 ASSERT(!blkinfo->forw);
1073 ASSERT(!blkinfo->back);
1074 }
1075 #else /* !DEBUG */
1076 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1077 #endif /* !DEBUG */
1078
1079 /*
1080 * We have only one entry in the root. Copy the only remaining child of
1081 * the old root to block 0 as the new root node.
1082 */
1083 STATIC int
1084 xfs_da3_root_join(
1085 struct xfs_da_state *state,
1086 struct xfs_da_state_blk *root_blk)
1087 {
1088 struct xfs_da_intnode *oldroot;
1089 struct xfs_da_args *args;
1090 xfs_dablk_t child;
1091 struct xfs_buf *bp;
1092 struct xfs_da3_icnode_hdr oldroothdr;
1093 struct xfs_da_node_entry *btree;
1094 int error;
1095
1096 trace_xfs_da_root_join(state->args);
1097
1098 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1099
1100 args = state->args;
1101 oldroot = root_blk->bp->b_addr;
1102 xfs_da3_node_hdr_from_disk(&oldroothdr, oldroot);
1103 ASSERT(oldroothdr.forw == 0);
1104 ASSERT(oldroothdr.back == 0);
1105
1106 /*
1107 * If the root has more than one child, then don't do anything.
1108 */
1109 if (oldroothdr.count > 1)
1110 return 0;
1111
1112 /*
1113 * Read in the (only) child block, then copy those bytes into
1114 * the root block's buffer and free the original child block.
1115 */
1116 btree = xfs_da3_node_tree_p(oldroot);
1117 child = be32_to_cpu(btree[0].before);
1118 ASSERT(child != 0);
1119 error = xfs_da3_node_read(args->trans, args->dp, child, -1, &bp,
1120 args->whichfork);
1121 if (error)
1122 return error;
1123 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1124
1125 /*
1126 * This could be copying a leaf back into the root block in the case of
1127 * there only being a single leaf block left in the tree. Hence we have
1128 * to update the b_ops pointer as well to match the buffer type change
1129 * that could occur. For dir3 blocks we also need to update the block
1130 * number in the buffer header.
1131 */
1132 memcpy(root_blk->bp->b_addr, bp->b_addr, state->blocksize);
1133 root_blk->bp->b_ops = bp->b_ops;
1134 xfs_trans_buf_copy_type(root_blk->bp, bp);
1135 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1136 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1137 da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1138 }
1139 xfs_trans_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1);
1140 error = xfs_da_shrink_inode(args, child, bp);
1141 return(error);
1142 }
1143
1144 /*
1145 * Check a node block and its neighbors to see if the block should be
1146 * collapsed into one or the other neighbor. Always keep the block
1147 * with the smaller block number.
1148 * If the current block is over 50% full, don't try to join it, return 0.
1149 * If the block is empty, fill in the state structure and return 2.
1150 * If it can be collapsed, fill in the state structure and return 1.
1151 * If nothing can be done, return 0.
1152 */
1153 STATIC int
1154 xfs_da3_node_toosmall(
1155 struct xfs_da_state *state,
1156 int *action)
1157 {
1158 struct xfs_da_intnode *node;
1159 struct xfs_da_state_blk *blk;
1160 struct xfs_da_blkinfo *info;
1161 xfs_dablk_t blkno;
1162 struct xfs_buf *bp;
1163 struct xfs_da3_icnode_hdr nodehdr;
1164 int count;
1165 int forward;
1166 int error;
1167 int retval;
1168 int i;
1169
1170 trace_xfs_da_node_toosmall(state->args);
1171
1172 /*
1173 * Check for the degenerate case of the block being over 50% full.
1174 * If so, it's not worth even looking to see if we might be able
1175 * to coalesce with a sibling.
1176 */
1177 blk = &state->path.blk[ state->path.active-1 ];
1178 info = blk->bp->b_addr;
1179 node = (xfs_da_intnode_t *)info;
1180 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1181 if (nodehdr.count > (state->node_ents >> 1)) {
1182 *action = 0; /* blk over 50%, don't try to join */
1183 return(0); /* blk over 50%, don't try to join */
1184 }
1185
1186 /*
1187 * Check for the degenerate case of the block being empty.
1188 * If the block is empty, we'll simply delete it, no need to
1189 * coalesce it with a sibling block. We choose (arbitrarily)
1190 * to merge with the forward block unless it is NULL.
1191 */
1192 if (nodehdr.count == 0) {
1193 /*
1194 * Make altpath point to the block we want to keep and
1195 * path point to the block we want to drop (this one).
1196 */
1197 forward = (info->forw != 0);
1198 memcpy(&state->altpath, &state->path, sizeof(state->path));
1199 error = xfs_da3_path_shift(state, &state->altpath, forward,
1200 0, &retval);
1201 if (error)
1202 return(error);
1203 if (retval) {
1204 *action = 0;
1205 } else {
1206 *action = 2;
1207 }
1208 return(0);
1209 }
1210
1211 /*
1212 * Examine each sibling block to see if we can coalesce with
1213 * at least 25% free space to spare. We need to figure out
1214 * whether to merge with the forward or the backward block.
1215 * We prefer coalescing with the lower numbered sibling so as
1216 * to shrink a directory over time.
1217 */
1218 count = state->node_ents;
1219 count -= state->node_ents >> 2;
1220 count -= nodehdr.count;
1221
1222 /* start with smaller blk num */
1223 forward = nodehdr.forw < nodehdr.back;
1224 for (i = 0; i < 2; forward = !forward, i++) {
1225 if (forward)
1226 blkno = nodehdr.forw;
1227 else
1228 blkno = nodehdr.back;
1229 if (blkno == 0)
1230 continue;
1231 error = xfs_da3_node_read(state->args->trans, state->args->dp,
1232 blkno, -1, &bp, state->args->whichfork);
1233 if (error)
1234 return(error);
1235
1236 node = bp->b_addr;
1237 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1238 xfs_trans_brelse(state->args->trans, bp);
1239
1240 if (count - nodehdr.count >= 0)
1241 break; /* fits with at least 25% to spare */
1242 }
1243 if (i >= 2) {
1244 *action = 0;
1245 return 0;
1246 }
1247
1248 /*
1249 * Make altpath point to the block we want to keep (the lower
1250 * numbered block) and path point to the block we want to drop.
1251 */
1252 memcpy(&state->altpath, &state->path, sizeof(state->path));
1253 if (blkno < blk->blkno) {
1254 error = xfs_da3_path_shift(state, &state->altpath, forward,
1255 0, &retval);
1256 } else {
1257 error = xfs_da3_path_shift(state, &state->path, forward,
1258 0, &retval);
1259 }
1260 if (error)
1261 return error;
1262 if (retval) {
1263 *action = 0;
1264 return 0;
1265 }
1266 *action = 1;
1267 return 0;
1268 }
1269
1270 /*
1271 * Pick up the last hashvalue from an intermediate node.
1272 */
1273 STATIC uint
1274 xfs_da3_node_lasthash(
1275 struct xfs_buf *bp,
1276 int *count)
1277 {
1278 struct xfs_da_intnode *node;
1279 struct xfs_da_node_entry *btree;
1280 struct xfs_da3_icnode_hdr nodehdr;
1281
1282 node = bp->b_addr;
1283 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1284 if (count)
1285 *count = nodehdr.count;
1286 if (!nodehdr.count)
1287 return 0;
1288 btree = xfs_da3_node_tree_p(node);
1289 return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1290 }
1291
1292 /*
1293 * Walk back up the tree adjusting hash values as necessary,
1294 * when we stop making changes, return.
1295 */
1296 void
1297 xfs_da3_fixhashpath(
1298 struct xfs_da_state *state,
1299 struct xfs_da_state_path *path)
1300 {
1301 struct xfs_da_state_blk *blk;
1302 struct xfs_da_intnode *node;
1303 struct xfs_da_node_entry *btree;
1304 xfs_dahash_t lasthash=0;
1305 int level;
1306 int count;
1307
1308 trace_xfs_da_fixhashpath(state->args);
1309
1310 level = path->active-1;
1311 blk = &path->blk[ level ];
1312 switch (blk->magic) {
1313 case XFS_ATTR_LEAF_MAGIC:
1314 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1315 if (count == 0)
1316 return;
1317 break;
1318 case XFS_DIR2_LEAFN_MAGIC:
1319 lasthash = xfs_dir2_leafn_lasthash(blk->bp, &count);
1320 if (count == 0)
1321 return;
1322 break;
1323 case XFS_DA_NODE_MAGIC:
1324 lasthash = xfs_da3_node_lasthash(blk->bp, &count);
1325 if (count == 0)
1326 return;
1327 break;
1328 }
1329 for (blk--, level--; level >= 0; blk--, level--) {
1330 struct xfs_da3_icnode_hdr nodehdr;
1331
1332 node = blk->bp->b_addr;
1333 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1334 btree = xfs_da3_node_tree_p(node);
1335 if (be32_to_cpu(btree->hashval) == lasthash)
1336 break;
1337 blk->hashval = lasthash;
1338 btree[blk->index].hashval = cpu_to_be32(lasthash);
1339 xfs_trans_log_buf(state->args->trans, blk->bp,
1340 XFS_DA_LOGRANGE(node, &btree[blk->index],
1341 sizeof(*btree)));
1342
1343 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1344 }
1345 }
1346
1347 /*
1348 * Remove an entry from an intermediate node.
1349 */
1350 STATIC void
1351 xfs_da3_node_remove(
1352 struct xfs_da_state *state,
1353 struct xfs_da_state_blk *drop_blk)
1354 {
1355 struct xfs_da_intnode *node;
1356 struct xfs_da3_icnode_hdr nodehdr;
1357 struct xfs_da_node_entry *btree;
1358 int index;
1359 int tmp;
1360
1361 trace_xfs_da_node_remove(state->args);
1362
1363 node = drop_blk->bp->b_addr;
1364 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1365 ASSERT(drop_blk->index < nodehdr.count);
1366 ASSERT(drop_blk->index >= 0);
1367
1368 /*
1369 * Copy over the offending entry, or just zero it out.
1370 */
1371 index = drop_blk->index;
1372 btree = xfs_da3_node_tree_p(node);
1373 if (index < nodehdr.count - 1) {
1374 tmp = nodehdr.count - index - 1;
1375 tmp *= (uint)sizeof(xfs_da_node_entry_t);
1376 memmove(&btree[index], &btree[index + 1], tmp);
1377 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1378 XFS_DA_LOGRANGE(node, &btree[index], tmp));
1379 index = nodehdr.count - 1;
1380 }
1381 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1382 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1383 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1384 nodehdr.count -= 1;
1385 xfs_da3_node_hdr_to_disk(node, &nodehdr);
1386 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1387 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
1388
1389 /*
1390 * Copy the last hash value from the block to propagate upwards.
1391 */
1392 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1393 }
1394
1395 /*
1396 * Unbalance the elements between two intermediate nodes,
1397 * move all Btree elements from one node into another.
1398 */
1399 STATIC void
1400 xfs_da3_node_unbalance(
1401 struct xfs_da_state *state,
1402 struct xfs_da_state_blk *drop_blk,
1403 struct xfs_da_state_blk *save_blk)
1404 {
1405 struct xfs_da_intnode *drop_node;
1406 struct xfs_da_intnode *save_node;
1407 struct xfs_da_node_entry *drop_btree;
1408 struct xfs_da_node_entry *save_btree;
1409 struct xfs_da3_icnode_hdr drop_hdr;
1410 struct xfs_da3_icnode_hdr save_hdr;
1411 struct xfs_trans *tp;
1412 int sindex;
1413 int tmp;
1414
1415 trace_xfs_da_node_unbalance(state->args);
1416
1417 drop_node = drop_blk->bp->b_addr;
1418 save_node = save_blk->bp->b_addr;
1419 xfs_da3_node_hdr_from_disk(&drop_hdr, drop_node);
1420 xfs_da3_node_hdr_from_disk(&save_hdr, save_node);
1421 drop_btree = xfs_da3_node_tree_p(drop_node);
1422 save_btree = xfs_da3_node_tree_p(save_node);
1423 tp = state->args->trans;
1424
1425 /*
1426 * If the dying block has lower hashvals, then move all the
1427 * elements in the remaining block up to make a hole.
1428 */
1429 if ((be32_to_cpu(drop_btree[0].hashval) <
1430 be32_to_cpu(save_btree[0].hashval)) ||
1431 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1432 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1433 /* XXX: check this - is memmove dst correct? */
1434 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1435 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1436
1437 sindex = 0;
1438 xfs_trans_log_buf(tp, save_blk->bp,
1439 XFS_DA_LOGRANGE(save_node, &save_btree[0],
1440 (save_hdr.count + drop_hdr.count) *
1441 sizeof(xfs_da_node_entry_t)));
1442 } else {
1443 sindex = save_hdr.count;
1444 xfs_trans_log_buf(tp, save_blk->bp,
1445 XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1446 drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1447 }
1448
1449 /*
1450 * Move all the B-tree elements from drop_blk to save_blk.
1451 */
1452 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1453 memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1454 save_hdr.count += drop_hdr.count;
1455
1456 xfs_da3_node_hdr_to_disk(save_node, &save_hdr);
1457 xfs_trans_log_buf(tp, save_blk->bp,
1458 XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1459 xfs_da3_node_hdr_size(save_node)));
1460
1461 /*
1462 * Save the last hashval in the remaining block for upward propagation.
1463 */
1464 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1465 }
1466
1467 /*========================================================================
1468 * Routines used for finding things in the Btree.
1469 *========================================================================*/
1470
1471 /*
1472 * Walk down the Btree looking for a particular filename, filling
1473 * in the state structure as we go.
1474 *
1475 * We will set the state structure to point to each of the elements
1476 * in each of the nodes where either the hashval is or should be.
1477 *
1478 * We support duplicate hashval's so for each entry in the current
1479 * node that could contain the desired hashval, descend. This is a
1480 * pruned depth-first tree search.
1481 */
1482 int /* error */
1483 xfs_da3_node_lookup_int(
1484 struct xfs_da_state *state,
1485 int *result)
1486 {
1487 struct xfs_da_state_blk *blk;
1488 struct xfs_da_blkinfo *curr;
1489 struct xfs_da_intnode *node;
1490 struct xfs_da_node_entry *btree;
1491 struct xfs_da3_icnode_hdr nodehdr;
1492 struct xfs_da_args *args;
1493 xfs_dablk_t blkno;
1494 xfs_dahash_t hashval;
1495 xfs_dahash_t btreehashval;
1496 int probe;
1497 int span;
1498 int max;
1499 int error;
1500 int retval;
1501
1502 args = state->args;
1503
1504 /*
1505 * Descend thru the B-tree searching each level for the right
1506 * node to use, until the right hashval is found.
1507 */
1508 blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0;
1509 for (blk = &state->path.blk[0], state->path.active = 1;
1510 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1511 blk++, state->path.active++) {
1512 /*
1513 * Read the next node down in the tree.
1514 */
1515 blk->blkno = blkno;
1516 error = xfs_da3_node_read(args->trans, args->dp, blkno,
1517 -1, &blk->bp, args->whichfork);
1518 if (error) {
1519 blk->blkno = 0;
1520 state->path.active--;
1521 return(error);
1522 }
1523 curr = blk->bp->b_addr;
1524 blk->magic = be16_to_cpu(curr->magic);
1525
1526 if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1527 blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1528 blk->magic = XFS_ATTR_LEAF_MAGIC;
1529 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1530 break;
1531 }
1532
1533 if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1534 blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1535 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1536 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp, NULL);
1537 break;
1538 }
1539
1540 blk->magic = XFS_DA_NODE_MAGIC;
1541
1542
1543 /*
1544 * Search an intermediate node for a match.
1545 */
1546 node = blk->bp->b_addr;
1547 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1548 btree = xfs_da3_node_tree_p(node);
1549
1550 max = nodehdr.count;
1551 blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1552
1553 /*
1554 * Binary search. (note: small blocks will skip loop)
1555 */
1556 probe = span = max / 2;
1557 hashval = args->hashval;
1558 while (span > 4) {
1559 span /= 2;
1560 btreehashval = be32_to_cpu(btree[probe].hashval);
1561 if (btreehashval < hashval)
1562 probe += span;
1563 else if (btreehashval > hashval)
1564 probe -= span;
1565 else
1566 break;
1567 }
1568 ASSERT((probe >= 0) && (probe < max));
1569 ASSERT((span <= 4) ||
1570 (be32_to_cpu(btree[probe].hashval) == hashval));
1571
1572 /*
1573 * Since we may have duplicate hashval's, find the first
1574 * matching hashval in the node.
1575 */
1576 while (probe > 0 &&
1577 be32_to_cpu(btree[probe].hashval) >= hashval) {
1578 probe--;
1579 }
1580 while (probe < max &&
1581 be32_to_cpu(btree[probe].hashval) < hashval) {
1582 probe++;
1583 }
1584
1585 /*
1586 * Pick the right block to descend on.
1587 */
1588 if (probe == max) {
1589 blk->index = max - 1;
1590 blkno = be32_to_cpu(btree[max - 1].before);
1591 } else {
1592 blk->index = probe;
1593 blkno = be32_to_cpu(btree[probe].before);
1594 }
1595 }
1596
1597 /*
1598 * A leaf block that ends in the hashval that we are interested in
1599 * (final hashval == search hashval) means that the next block may
1600 * contain more entries with the same hashval, shift upward to the
1601 * next leaf and keep searching.
1602 */
1603 for (;;) {
1604 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1605 retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1606 &blk->index, state);
1607 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1608 retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1609 blk->index = args->index;
1610 args->blkno = blk->blkno;
1611 } else {
1612 ASSERT(0);
1613 return XFS_ERROR(EFSCORRUPTED);
1614 }
1615 if (((retval == ENOENT) || (retval == ENOATTR)) &&
1616 (blk->hashval == args->hashval)) {
1617 error = xfs_da3_path_shift(state, &state->path, 1, 1,
1618 &retval);
1619 if (error)
1620 return(error);
1621 if (retval == 0) {
1622 continue;
1623 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1624 /* path_shift() gives ENOENT */
1625 retval = XFS_ERROR(ENOATTR);
1626 }
1627 }
1628 break;
1629 }
1630 *result = retval;
1631 return(0);
1632 }
1633
1634 /*========================================================================
1635 * Utility routines.
1636 *========================================================================*/
1637
1638 /*
1639 * Compare two intermediate nodes for "order".
1640 */
1641 STATIC int
1642 xfs_da3_node_order(
1643 struct xfs_buf *node1_bp,
1644 struct xfs_buf *node2_bp)
1645 {
1646 struct xfs_da_intnode *node1;
1647 struct xfs_da_intnode *node2;
1648 struct xfs_da_node_entry *btree1;
1649 struct xfs_da_node_entry *btree2;
1650 struct xfs_da3_icnode_hdr node1hdr;
1651 struct xfs_da3_icnode_hdr node2hdr;
1652
1653 node1 = node1_bp->b_addr;
1654 node2 = node2_bp->b_addr;
1655 xfs_da3_node_hdr_from_disk(&node1hdr, node1);
1656 xfs_da3_node_hdr_from_disk(&node2hdr, node2);
1657 btree1 = xfs_da3_node_tree_p(node1);
1658 btree2 = xfs_da3_node_tree_p(node2);
1659
1660 if (node1hdr.count > 0 && node2hdr.count > 0 &&
1661 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1662 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1663 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1664 return 1;
1665 }
1666 return 0;
1667 }
1668
1669 /*
1670 * Link a new block into a doubly linked list of blocks (of whatever type).
1671 */
1672 int /* error */
1673 xfs_da3_blk_link(
1674 struct xfs_da_state *state,
1675 struct xfs_da_state_blk *old_blk,
1676 struct xfs_da_state_blk *new_blk)
1677 {
1678 struct xfs_da_blkinfo *old_info;
1679 struct xfs_da_blkinfo *new_info;
1680 struct xfs_da_blkinfo *tmp_info;
1681 struct xfs_da_args *args;
1682 struct xfs_buf *bp;
1683 int before = 0;
1684 int error;
1685
1686 /*
1687 * Set up environment.
1688 */
1689 args = state->args;
1690 ASSERT(args != NULL);
1691 old_info = old_blk->bp->b_addr;
1692 new_info = new_blk->bp->b_addr;
1693 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1694 old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1695 old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1696
1697 switch (old_blk->magic) {
1698 case XFS_ATTR_LEAF_MAGIC:
1699 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1700 break;
1701 case XFS_DIR2_LEAFN_MAGIC:
1702 before = xfs_dir2_leafn_order(old_blk->bp, new_blk->bp);
1703 break;
1704 case XFS_DA_NODE_MAGIC:
1705 before = xfs_da3_node_order(old_blk->bp, new_blk->bp);
1706 break;
1707 }
1708
1709 /*
1710 * Link blocks in appropriate order.
1711 */
1712 if (before) {
1713 /*
1714 * Link new block in before existing block.
1715 */
1716 trace_xfs_da_link_before(args);
1717 new_info->forw = cpu_to_be32(old_blk->blkno);
1718 new_info->back = old_info->back;
1719 if (old_info->back) {
1720 error = xfs_da3_node_read(args->trans, args->dp,
1721 be32_to_cpu(old_info->back),
1722 -1, &bp, args->whichfork);
1723 if (error)
1724 return(error);
1725 ASSERT(bp != NULL);
1726 tmp_info = bp->b_addr;
1727 ASSERT(tmp_info->magic == old_info->magic);
1728 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1729 tmp_info->forw = cpu_to_be32(new_blk->blkno);
1730 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1731 }
1732 old_info->back = cpu_to_be32(new_blk->blkno);
1733 } else {
1734 /*
1735 * Link new block in after existing block.
1736 */
1737 trace_xfs_da_link_after(args);
1738 new_info->forw = old_info->forw;
1739 new_info->back = cpu_to_be32(old_blk->blkno);
1740 if (old_info->forw) {
1741 error = xfs_da3_node_read(args->trans, args->dp,
1742 be32_to_cpu(old_info->forw),
1743 -1, &bp, args->whichfork);
1744 if (error)
1745 return(error);
1746 ASSERT(bp != NULL);
1747 tmp_info = bp->b_addr;
1748 ASSERT(tmp_info->magic == old_info->magic);
1749 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1750 tmp_info->back = cpu_to_be32(new_blk->blkno);
1751 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1752 }
1753 old_info->forw = cpu_to_be32(new_blk->blkno);
1754 }
1755
1756 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1757 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1758 return(0);
1759 }
1760
1761 /*
1762 * Unlink a block from a doubly linked list of blocks.
1763 */
1764 STATIC int /* error */
1765 xfs_da3_blk_unlink(
1766 struct xfs_da_state *state,
1767 struct xfs_da_state_blk *drop_blk,
1768 struct xfs_da_state_blk *save_blk)
1769 {
1770 struct xfs_da_blkinfo *drop_info;
1771 struct xfs_da_blkinfo *save_info;
1772 struct xfs_da_blkinfo *tmp_info;
1773 struct xfs_da_args *args;
1774 struct xfs_buf *bp;
1775 int error;
1776
1777 /*
1778 * Set up environment.
1779 */
1780 args = state->args;
1781 ASSERT(args != NULL);
1782 save_info = save_blk->bp->b_addr;
1783 drop_info = drop_blk->bp->b_addr;
1784 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1785 save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1786 save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1787 ASSERT(save_blk->magic == drop_blk->magic);
1788 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1789 (be32_to_cpu(save_info->back) == drop_blk->blkno));
1790 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1791 (be32_to_cpu(drop_info->back) == save_blk->blkno));
1792
1793 /*
1794 * Unlink the leaf block from the doubly linked chain of leaves.
1795 */
1796 if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1797 trace_xfs_da_unlink_back(args);
1798 save_info->back = drop_info->back;
1799 if (drop_info->back) {
1800 error = xfs_da3_node_read(args->trans, args->dp,
1801 be32_to_cpu(drop_info->back),
1802 -1, &bp, args->whichfork);
1803 if (error)
1804 return(error);
1805 ASSERT(bp != NULL);
1806 tmp_info = bp->b_addr;
1807 ASSERT(tmp_info->magic == save_info->magic);
1808 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1809 tmp_info->forw = cpu_to_be32(save_blk->blkno);
1810 xfs_trans_log_buf(args->trans, bp, 0,
1811 sizeof(*tmp_info) - 1);
1812 }
1813 } else {
1814 trace_xfs_da_unlink_forward(args);
1815 save_info->forw = drop_info->forw;
1816 if (drop_info->forw) {
1817 error = xfs_da3_node_read(args->trans, args->dp,
1818 be32_to_cpu(drop_info->forw),
1819 -1, &bp, args->whichfork);
1820 if (error)
1821 return(error);
1822 ASSERT(bp != NULL);
1823 tmp_info = bp->b_addr;
1824 ASSERT(tmp_info->magic == save_info->magic);
1825 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1826 tmp_info->back = cpu_to_be32(save_blk->blkno);
1827 xfs_trans_log_buf(args->trans, bp, 0,
1828 sizeof(*tmp_info) - 1);
1829 }
1830 }
1831
1832 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1833 return(0);
1834 }
1835
1836 /*
1837 * Move a path "forward" or "!forward" one block at the current level.
1838 *
1839 * This routine will adjust a "path" to point to the next block
1840 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1841 * Btree, including updating pointers to the intermediate nodes between
1842 * the new bottom and the root.
1843 */
1844 int /* error */
1845 xfs_da3_path_shift(
1846 struct xfs_da_state *state,
1847 struct xfs_da_state_path *path,
1848 int forward,
1849 int release,
1850 int *result)
1851 {
1852 struct xfs_da_state_blk *blk;
1853 struct xfs_da_blkinfo *info;
1854 struct xfs_da_intnode *node;
1855 struct xfs_da_args *args;
1856 struct xfs_da_node_entry *btree;
1857 struct xfs_da3_icnode_hdr nodehdr;
1858 xfs_dablk_t blkno = 0;
1859 int level;
1860 int error;
1861
1862 trace_xfs_da_path_shift(state->args);
1863
1864 /*
1865 * Roll up the Btree looking for the first block where our
1866 * current index is not at the edge of the block. Note that
1867 * we skip the bottom layer because we want the sibling block.
1868 */
1869 args = state->args;
1870 ASSERT(args != NULL);
1871 ASSERT(path != NULL);
1872 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1873 level = (path->active-1) - 1; /* skip bottom layer in path */
1874 for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1875 node = blk->bp->b_addr;
1876 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1877 btree = xfs_da3_node_tree_p(node);
1878
1879 if (forward && (blk->index < nodehdr.count - 1)) {
1880 blk->index++;
1881 blkno = be32_to_cpu(btree[blk->index].before);
1882 break;
1883 } else if (!forward && (blk->index > 0)) {
1884 blk->index--;
1885 blkno = be32_to_cpu(btree[blk->index].before);
1886 break;
1887 }
1888 }
1889 if (level < 0) {
1890 *result = XFS_ERROR(ENOENT); /* we're out of our tree */
1891 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1892 return(0);
1893 }
1894
1895 /*
1896 * Roll down the edge of the subtree until we reach the
1897 * same depth we were at originally.
1898 */
1899 for (blk++, level++; level < path->active; blk++, level++) {
1900 /*
1901 * Release the old block.
1902 * (if it's dirty, trans won't actually let go)
1903 */
1904 if (release)
1905 xfs_trans_brelse(args->trans, blk->bp);
1906
1907 /*
1908 * Read the next child block.
1909 */
1910 blk->blkno = blkno;
1911 error = xfs_da3_node_read(args->trans, args->dp, blkno, -1,
1912 &blk->bp, args->whichfork);
1913 if (error)
1914 return(error);
1915 info = blk->bp->b_addr;
1916 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1917 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1918 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1919 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1920 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1921 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1922
1923
1924 /*
1925 * Note: we flatten the magic number to a single type so we
1926 * don't have to compare against crc/non-crc types elsewhere.
1927 */
1928 switch (be16_to_cpu(info->magic)) {
1929 case XFS_DA_NODE_MAGIC:
1930 case XFS_DA3_NODE_MAGIC:
1931 blk->magic = XFS_DA_NODE_MAGIC;
1932 node = (xfs_da_intnode_t *)info;
1933 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1934 btree = xfs_da3_node_tree_p(node);
1935 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1936 if (forward)
1937 blk->index = 0;
1938 else
1939 blk->index = nodehdr.count - 1;
1940 blkno = be32_to_cpu(btree[blk->index].before);
1941 break;
1942 case XFS_ATTR_LEAF_MAGIC:
1943 case XFS_ATTR3_LEAF_MAGIC:
1944 blk->magic = XFS_ATTR_LEAF_MAGIC;
1945 ASSERT(level == path->active-1);
1946 blk->index = 0;
1947 blk->hashval = xfs_attr_leaf_lasthash(blk->bp,
1948 NULL);
1949 break;
1950 case XFS_DIR2_LEAFN_MAGIC:
1951 case XFS_DIR3_LEAFN_MAGIC:
1952 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1953 ASSERT(level == path->active-1);
1954 blk->index = 0;
1955 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp,
1956 NULL);
1957 break;
1958 default:
1959 ASSERT(0);
1960 break;
1961 }
1962 }
1963 *result = 0;
1964 return 0;
1965 }
1966
1967
1968 /*========================================================================
1969 * Utility routines.
1970 *========================================================================*/
1971
1972 /*
1973 * Implement a simple hash on a character string.
1974 * Rotate the hash value by 7 bits, then XOR each character in.
1975 * This is implemented with some source-level loop unrolling.
1976 */
1977 xfs_dahash_t
1978 xfs_da_hashname(const __uint8_t *name, int namelen)
1979 {
1980 xfs_dahash_t hash;
1981
1982 /*
1983 * Do four characters at a time as long as we can.
1984 */
1985 for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1986 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1987 (name[3] << 0) ^ rol32(hash, 7 * 4);
1988
1989 /*
1990 * Now do the rest of the characters.
1991 */
1992 switch (namelen) {
1993 case 3:
1994 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1995 rol32(hash, 7 * 3);
1996 case 2:
1997 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
1998 case 1:
1999 return (name[0] << 0) ^ rol32(hash, 7 * 1);
2000 default: /* case 0: */
2001 return hash;
2002 }
2003 }
2004
2005 enum xfs_dacmp
2006 xfs_da_compname(
2007 struct xfs_da_args *args,
2008 const unsigned char *name,
2009 int len)
2010 {
2011 return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
2012 XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
2013 }
2014
2015 static xfs_dahash_t
2016 xfs_default_hashname(
2017 struct xfs_name *name)
2018 {
2019 return xfs_da_hashname(name->name, name->len);
2020 }
2021
2022 const struct xfs_nameops xfs_default_nameops = {
2023 .hashname = xfs_default_hashname,
2024 .compname = xfs_da_compname
2025 };
2026
2027 int
2028 xfs_da_grow_inode_int(
2029 struct xfs_da_args *args,
2030 xfs_fileoff_t *bno,
2031 int count)
2032 {
2033 struct xfs_trans *tp = args->trans;
2034 struct xfs_inode *dp = args->dp;
2035 int w = args->whichfork;
2036 xfs_drfsbno_t nblks = dp->i_d.di_nblocks;
2037 struct xfs_bmbt_irec map, *mapp;
2038 int nmap, error, got, i, mapi;
2039
2040 /*
2041 * Find a spot in the file space to put the new block.
2042 */
2043 error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2044 if (error)
2045 return error;
2046
2047 /*
2048 * Try mapping it in one filesystem block.
2049 */
2050 nmap = 1;
2051 ASSERT(args->firstblock != NULL);
2052 error = xfs_bmapi_write(tp, dp, *bno, count,
2053 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2054 args->firstblock, args->total, &map, &nmap,
2055 args->flist);
2056 if (error)
2057 return error;
2058
2059 ASSERT(nmap <= 1);
2060 if (nmap == 1) {
2061 mapp = &map;
2062 mapi = 1;
2063 } else if (nmap == 0 && count > 1) {
2064 xfs_fileoff_t b;
2065 int c;
2066
2067 /*
2068 * If we didn't get it and the block might work if fragmented,
2069 * try without the CONTIG flag. Loop until we get it all.
2070 */
2071 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2072 for (b = *bno, mapi = 0; b < *bno + count; ) {
2073 nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2074 c = (int)(*bno + count - b);
2075 error = xfs_bmapi_write(tp, dp, b, c,
2076 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2077 args->firstblock, args->total,
2078 &mapp[mapi], &nmap, args->flist);
2079 if (error)
2080 goto out_free_map;
2081 if (nmap < 1)
2082 break;
2083 mapi += nmap;
2084 b = mapp[mapi - 1].br_startoff +
2085 mapp[mapi - 1].br_blockcount;
2086 }
2087 } else {
2088 mapi = 0;
2089 mapp = NULL;
2090 }
2091
2092 /*
2093 * Count the blocks we got, make sure it matches the total.
2094 */
2095 for (i = 0, got = 0; i < mapi; i++)
2096 got += mapp[i].br_blockcount;
2097 if (got != count || mapp[0].br_startoff != *bno ||
2098 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2099 *bno + count) {
2100 error = XFS_ERROR(ENOSPC);
2101 goto out_free_map;
2102 }
2103
2104 /* account for newly allocated blocks in reserved blocks total */
2105 args->total -= dp->i_d.di_nblocks - nblks;
2106
2107 out_free_map:
2108 if (mapp != &map)
2109 kmem_free(mapp);
2110 return error;
2111 }
2112
2113 /*
2114 * Add a block to the btree ahead of the file.
2115 * Return the new block number to the caller.
2116 */
2117 int
2118 xfs_da_grow_inode(
2119 struct xfs_da_args *args,
2120 xfs_dablk_t *new_blkno)
2121 {
2122 xfs_fileoff_t bno;
2123 int count;
2124 int error;
2125
2126 trace_xfs_da_grow_inode(args);
2127
2128 if (args->whichfork == XFS_DATA_FORK) {
2129 bno = args->dp->i_mount->m_dirleafblk;
2130 count = args->dp->i_mount->m_dirblkfsbs;
2131 } else {
2132 bno = 0;
2133 count = 1;
2134 }
2135
2136 error = xfs_da_grow_inode_int(args, &bno, count);
2137 if (!error)
2138 *new_blkno = (xfs_dablk_t)bno;
2139 return error;
2140 }
2141
2142 /*
2143 * Ick. We need to always be able to remove a btree block, even
2144 * if there's no space reservation because the filesystem is full.
2145 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2146 * It swaps the target block with the last block in the file. The
2147 * last block in the file can always be removed since it can't cause
2148 * a bmap btree split to do that.
2149 */
2150 STATIC int
2151 xfs_da3_swap_lastblock(
2152 struct xfs_da_args *args,
2153 xfs_dablk_t *dead_blknop,
2154 struct xfs_buf **dead_bufp)
2155 {
2156 struct xfs_da_blkinfo *dead_info;
2157 struct xfs_da_blkinfo *sib_info;
2158 struct xfs_da_intnode *par_node;
2159 struct xfs_da_intnode *dead_node;
2160 struct xfs_dir2_leaf *dead_leaf2;
2161 struct xfs_da_node_entry *btree;
2162 struct xfs_da3_icnode_hdr par_hdr;
2163 struct xfs_inode *ip;
2164 struct xfs_trans *tp;
2165 struct xfs_mount *mp;
2166 struct xfs_buf *dead_buf;
2167 struct xfs_buf *last_buf;
2168 struct xfs_buf *sib_buf;
2169 struct xfs_buf *par_buf;
2170 xfs_dahash_t dead_hash;
2171 xfs_fileoff_t lastoff;
2172 xfs_dablk_t dead_blkno;
2173 xfs_dablk_t last_blkno;
2174 xfs_dablk_t sib_blkno;
2175 xfs_dablk_t par_blkno;
2176 int error;
2177 int w;
2178 int entno;
2179 int level;
2180 int dead_level;
2181
2182 trace_xfs_da_swap_lastblock(args);
2183
2184 dead_buf = *dead_bufp;
2185 dead_blkno = *dead_blknop;
2186 tp = args->trans;
2187 ip = args->dp;
2188 w = args->whichfork;
2189 ASSERT(w == XFS_DATA_FORK);
2190 mp = ip->i_mount;
2191 lastoff = mp->m_dirfreeblk;
2192 error = xfs_bmap_last_before(tp, ip, &lastoff, w);
2193 if (error)
2194 return error;
2195 if (unlikely(lastoff == 0)) {
2196 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2197 mp);
2198 return XFS_ERROR(EFSCORRUPTED);
2199 }
2200 /*
2201 * Read the last block in the btree space.
2202 */
2203 last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs;
2204 error = xfs_da3_node_read(tp, ip, last_blkno, -1, &last_buf, w);
2205 if (error)
2206 return error;
2207 /*
2208 * Copy the last block into the dead buffer and log it.
2209 */
2210 memcpy(dead_buf->b_addr, last_buf->b_addr, mp->m_dirblksize);
2211 xfs_trans_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1);
2212 dead_info = dead_buf->b_addr;
2213 /*
2214 * Get values from the moved block.
2215 */
2216 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2217 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2218 struct xfs_dir3_icleaf_hdr leafhdr;
2219 struct xfs_dir2_leaf_entry *ents;
2220
2221 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2222 xfs_dir3_leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2223 ents = xfs_dir3_leaf_ents_p(dead_leaf2);
2224 dead_level = 0;
2225 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2226 } else {
2227 struct xfs_da3_icnode_hdr deadhdr;
2228
2229 dead_node = (xfs_da_intnode_t *)dead_info;
2230 xfs_da3_node_hdr_from_disk(&deadhdr, dead_node);
2231 btree = xfs_da3_node_tree_p(dead_node);
2232 dead_level = deadhdr.level;
2233 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2234 }
2235 sib_buf = par_buf = NULL;
2236 /*
2237 * If the moved block has a left sibling, fix up the pointers.
2238 */
2239 if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2240 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2241 if (error)
2242 goto done;
2243 sib_info = sib_buf->b_addr;
2244 if (unlikely(
2245 be32_to_cpu(sib_info->forw) != last_blkno ||
2246 sib_info->magic != dead_info->magic)) {
2247 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2248 XFS_ERRLEVEL_LOW, mp);
2249 error = XFS_ERROR(EFSCORRUPTED);
2250 goto done;
2251 }
2252 sib_info->forw = cpu_to_be32(dead_blkno);
2253 xfs_trans_log_buf(tp, sib_buf,
2254 XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2255 sizeof(sib_info->forw)));
2256 sib_buf = NULL;
2257 }
2258 /*
2259 * If the moved block has a right sibling, fix up the pointers.
2260 */
2261 if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2262 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2263 if (error)
2264 goto done;
2265 sib_info = sib_buf->b_addr;
2266 if (unlikely(
2267 be32_to_cpu(sib_info->back) != last_blkno ||
2268 sib_info->magic != dead_info->magic)) {
2269 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2270 XFS_ERRLEVEL_LOW, mp);
2271 error = XFS_ERROR(EFSCORRUPTED);
2272 goto done;
2273 }
2274 sib_info->back = cpu_to_be32(dead_blkno);
2275 xfs_trans_log_buf(tp, sib_buf,
2276 XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2277 sizeof(sib_info->back)));
2278 sib_buf = NULL;
2279 }
2280 par_blkno = mp->m_dirleafblk;
2281 level = -1;
2282 /*
2283 * Walk down the tree looking for the parent of the moved block.
2284 */
2285 for (;;) {
2286 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2287 if (error)
2288 goto done;
2289 par_node = par_buf->b_addr;
2290 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2291 if (level >= 0 && level != par_hdr.level + 1) {
2292 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2293 XFS_ERRLEVEL_LOW, mp);
2294 error = XFS_ERROR(EFSCORRUPTED);
2295 goto done;
2296 }
2297 level = par_hdr.level;
2298 btree = xfs_da3_node_tree_p(par_node);
2299 for (entno = 0;
2300 entno < par_hdr.count &&
2301 be32_to_cpu(btree[entno].hashval) < dead_hash;
2302 entno++)
2303 continue;
2304 if (entno == par_hdr.count) {
2305 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2306 XFS_ERRLEVEL_LOW, mp);
2307 error = XFS_ERROR(EFSCORRUPTED);
2308 goto done;
2309 }
2310 par_blkno = be32_to_cpu(btree[entno].before);
2311 if (level == dead_level + 1)
2312 break;
2313 xfs_trans_brelse(tp, par_buf);
2314 par_buf = NULL;
2315 }
2316 /*
2317 * We're in the right parent block.
2318 * Look for the right entry.
2319 */
2320 for (;;) {
2321 for (;
2322 entno < par_hdr.count &&
2323 be32_to_cpu(btree[entno].before) != last_blkno;
2324 entno++)
2325 continue;
2326 if (entno < par_hdr.count)
2327 break;
2328 par_blkno = par_hdr.forw;
2329 xfs_trans_brelse(tp, par_buf);
2330 par_buf = NULL;
2331 if (unlikely(par_blkno == 0)) {
2332 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2333 XFS_ERRLEVEL_LOW, mp);
2334 error = XFS_ERROR(EFSCORRUPTED);
2335 goto done;
2336 }
2337 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2338 if (error)
2339 goto done;
2340 par_node = par_buf->b_addr;
2341 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2342 if (par_hdr.level != level) {
2343 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2344 XFS_ERRLEVEL_LOW, mp);
2345 error = XFS_ERROR(EFSCORRUPTED);
2346 goto done;
2347 }
2348 btree = xfs_da3_node_tree_p(par_node);
2349 entno = 0;
2350 }
2351 /*
2352 * Update the parent entry pointing to the moved block.
2353 */
2354 btree[entno].before = cpu_to_be32(dead_blkno);
2355 xfs_trans_log_buf(tp, par_buf,
2356 XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2357 sizeof(btree[entno].before)));
2358 *dead_blknop = last_blkno;
2359 *dead_bufp = last_buf;
2360 return 0;
2361 done:
2362 if (par_buf)
2363 xfs_trans_brelse(tp, par_buf);
2364 if (sib_buf)
2365 xfs_trans_brelse(tp, sib_buf);
2366 xfs_trans_brelse(tp, last_buf);
2367 return error;
2368 }
2369
2370 /*
2371 * Remove a btree block from a directory or attribute.
2372 */
2373 int
2374 xfs_da_shrink_inode(
2375 xfs_da_args_t *args,
2376 xfs_dablk_t dead_blkno,
2377 struct xfs_buf *dead_buf)
2378 {
2379 xfs_inode_t *dp;
2380 int done, error, w, count;
2381 xfs_trans_t *tp;
2382 xfs_mount_t *mp;
2383
2384 trace_xfs_da_shrink_inode(args);
2385
2386 dp = args->dp;
2387 w = args->whichfork;
2388 tp = args->trans;
2389 mp = dp->i_mount;
2390 if (w == XFS_DATA_FORK)
2391 count = mp->m_dirblkfsbs;
2392 else
2393 count = 1;
2394 for (;;) {
2395 /*
2396 * Remove extents. If we get ENOSPC for a dir we have to move
2397 * the last block to the place we want to kill.
2398 */
2399 error = xfs_bunmapi(tp, dp, dead_blkno, count,
2400 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2401 0, args->firstblock, args->flist, &done);
2402 if (error == ENOSPC) {
2403 if (w != XFS_DATA_FORK)
2404 break;
2405 error = xfs_da3_swap_lastblock(args, &dead_blkno,
2406 &dead_buf);
2407 if (error)
2408 break;
2409 } else {
2410 break;
2411 }
2412 }
2413 xfs_trans_binval(tp, dead_buf);
2414 return error;
2415 }
2416
2417 /*
2418 * See if the mapping(s) for this btree block are valid, i.e.
2419 * don't contain holes, are logically contiguous, and cover the whole range.
2420 */
2421 STATIC int
2422 xfs_da_map_covers_blocks(
2423 int nmap,
2424 xfs_bmbt_irec_t *mapp,
2425 xfs_dablk_t bno,
2426 int count)
2427 {
2428 int i;
2429 xfs_fileoff_t off;
2430
2431 for (i = 0, off = bno; i < nmap; i++) {
2432 if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2433 mapp[i].br_startblock == DELAYSTARTBLOCK) {
2434 return 0;
2435 }
2436 if (off != mapp[i].br_startoff) {
2437 return 0;
2438 }
2439 off += mapp[i].br_blockcount;
2440 }
2441 return off == bno + count;
2442 }
2443
2444 /*
2445 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2446 *
2447 * For the single map case, it is assumed that the caller has provided a pointer
2448 * to a valid xfs_buf_map. For the multiple map case, this function will
2449 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2450 * map pointer with the allocated map.
2451 */
2452 static int
2453 xfs_buf_map_from_irec(
2454 struct xfs_mount *mp,
2455 struct xfs_buf_map **mapp,
2456 unsigned int *nmaps,
2457 struct xfs_bmbt_irec *irecs,
2458 unsigned int nirecs)
2459 {
2460 struct xfs_buf_map *map;
2461 int i;
2462
2463 ASSERT(*nmaps == 1);
2464 ASSERT(nirecs >= 1);
2465
2466 if (nirecs > 1) {
2467 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map), KM_SLEEP);
2468 if (!map)
2469 return ENOMEM;
2470 *mapp = map;
2471 }
2472
2473 *nmaps = nirecs;
2474 map = *mapp;
2475 for (i = 0; i < *nmaps; i++) {
2476 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2477 irecs[i].br_startblock != HOLESTARTBLOCK);
2478 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2479 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2480 }
2481 return 0;
2482 }
2483
2484 /*
2485 * Map the block we are given ready for reading. There are three possible return
2486 * values:
2487 * -1 - will be returned if we land in a hole and mappedbno == -2 so the
2488 * caller knows not to execute a subsequent read.
2489 * 0 - if we mapped the block successfully
2490 * >0 - positive error number if there was an error.
2491 */
2492 static int
2493 xfs_dabuf_map(
2494 struct xfs_trans *trans,
2495 struct xfs_inode *dp,
2496 xfs_dablk_t bno,
2497 xfs_daddr_t mappedbno,
2498 int whichfork,
2499 struct xfs_buf_map **map,
2500 int *nmaps)
2501 {
2502 struct xfs_mount *mp = dp->i_mount;
2503 int nfsb;
2504 int error = 0;
2505 struct xfs_bmbt_irec irec;
2506 struct xfs_bmbt_irec *irecs = &irec;
2507 int nirecs;
2508
2509 ASSERT(map && *map);
2510 ASSERT(*nmaps == 1);
2511
2512 nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1;
2513
2514 /*
2515 * Caller doesn't have a mapping. -2 means don't complain
2516 * if we land in a hole.
2517 */
2518 if (mappedbno == -1 || mappedbno == -2) {
2519 /*
2520 * Optimize the one-block case.
2521 */
2522 if (nfsb != 1)
2523 irecs = kmem_zalloc(sizeof(irec) * nfsb, KM_SLEEP);
2524
2525 nirecs = nfsb;
2526 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2527 &nirecs, xfs_bmapi_aflag(whichfork));
2528 if (error)
2529 goto out;
2530 } else {
2531 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2532 irecs->br_startoff = (xfs_fileoff_t)bno;
2533 irecs->br_blockcount = nfsb;
2534 irecs->br_state = 0;
2535 nirecs = 1;
2536 }
2537
2538 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2539 error = mappedbno == -2 ? -1 : XFS_ERROR(EFSCORRUPTED);
2540 if (unlikely(error == EFSCORRUPTED)) {
2541 if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2542 int i;
2543 xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2544 __func__, (long long)bno,
2545 (long long)dp->i_ino);
2546 for (i = 0; i < *nmaps; i++) {
2547 xfs_alert(mp,
2548 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2549 i,
2550 (long long)irecs[i].br_startoff,
2551 (long long)irecs[i].br_startblock,
2552 (long long)irecs[i].br_blockcount,
2553 irecs[i].br_state);
2554 }
2555 }
2556 XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2557 XFS_ERRLEVEL_LOW, mp);
2558 }
2559 goto out;
2560 }
2561 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2562 out:
2563 if (irecs != &irec)
2564 kmem_free(irecs);
2565 return error;
2566 }
2567
2568 /*
2569 * Get a buffer for the dir/attr block.
2570 */
2571 int
2572 xfs_da_get_buf(
2573 struct xfs_trans *trans,
2574 struct xfs_inode *dp,
2575 xfs_dablk_t bno,
2576 xfs_daddr_t mappedbno,
2577 struct xfs_buf **bpp,
2578 int whichfork)
2579 {
2580 struct xfs_buf *bp;
2581 struct xfs_buf_map map;
2582 struct xfs_buf_map *mapp;
2583 int nmap;
2584 int error;
2585
2586 *bpp = NULL;
2587 mapp = &map;
2588 nmap = 1;
2589 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2590 &mapp, &nmap);
2591 if (error) {
2592 /* mapping a hole is not an error, but we don't continue */
2593 if (error == -1)
2594 error = 0;
2595 goto out_free;
2596 }
2597
2598 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2599 mapp, nmap, 0);
2600 error = bp ? bp->b_error : XFS_ERROR(EIO);
2601 if (error) {
2602 xfs_trans_brelse(trans, bp);
2603 goto out_free;
2604 }
2605
2606 *bpp = bp;
2607
2608 out_free:
2609 if (mapp != &map)
2610 kmem_free(mapp);
2611
2612 return error;
2613 }
2614
2615 /*
2616 * Get a buffer for the dir/attr block, fill in the contents.
2617 */
2618 int
2619 xfs_da_read_buf(
2620 struct xfs_trans *trans,
2621 struct xfs_inode *dp,
2622 xfs_dablk_t bno,
2623 xfs_daddr_t mappedbno,
2624 struct xfs_buf **bpp,
2625 int whichfork,
2626 const struct xfs_buf_ops *ops)
2627 {
2628 struct xfs_buf *bp;
2629 struct xfs_buf_map map;
2630 struct xfs_buf_map *mapp;
2631 int nmap;
2632 int error;
2633
2634 *bpp = NULL;
2635 mapp = &map;
2636 nmap = 1;
2637 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2638 &mapp, &nmap);
2639 if (error) {
2640 /* mapping a hole is not an error, but we don't continue */
2641 if (error == -1)
2642 error = 0;
2643 goto out_free;
2644 }
2645
2646 error = xfs_trans_read_buf_map(dp->i_mount, trans,
2647 dp->i_mount->m_ddev_targp,
2648 mapp, nmap, 0, &bp, ops);
2649 if (error)
2650 goto out_free;
2651
2652 if (whichfork == XFS_ATTR_FORK)
2653 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2654 else
2655 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2656
2657 /*
2658 * This verification code will be moved to a CRC verification callback
2659 * function so just leave it here unchanged until then.
2660 */
2661 {
2662 xfs_dir2_data_hdr_t *hdr = bp->b_addr;
2663 xfs_dir2_free_t *free = bp->b_addr;
2664 xfs_da_blkinfo_t *info = bp->b_addr;
2665 uint magic, magic1;
2666 struct xfs_mount *mp = dp->i_mount;
2667
2668 magic = be16_to_cpu(info->magic);
2669 magic1 = be32_to_cpu(hdr->magic);
2670 if (unlikely(
2671 XFS_TEST_ERROR((magic != XFS_DA_NODE_MAGIC) &&
2672 (magic != XFS_DA3_NODE_MAGIC) &&
2673 (magic != XFS_ATTR_LEAF_MAGIC) &&
2674 (magic != XFS_ATTR3_LEAF_MAGIC) &&
2675 (magic != XFS_DIR2_LEAF1_MAGIC) &&
2676 (magic != XFS_DIR3_LEAF1_MAGIC) &&
2677 (magic != XFS_DIR2_LEAFN_MAGIC) &&
2678 (magic != XFS_DIR3_LEAFN_MAGIC) &&
2679 (magic1 != XFS_DIR2_BLOCK_MAGIC) &&
2680 (magic1 != XFS_DIR3_BLOCK_MAGIC) &&
2681 (magic1 != XFS_DIR2_DATA_MAGIC) &&
2682 (magic1 != XFS_DIR3_DATA_MAGIC) &&
2683 (free->hdr.magic !=
2684 cpu_to_be32(XFS_DIR2_FREE_MAGIC)) &&
2685 (free->hdr.magic !=
2686 cpu_to_be32(XFS_DIR3_FREE_MAGIC)),
2687 mp, XFS_ERRTAG_DA_READ_BUF,
2688 XFS_RANDOM_DA_READ_BUF))) {
2689 trace_xfs_da_btree_corrupt(bp, _RET_IP_);
2690 XFS_CORRUPTION_ERROR("xfs_da_do_buf(2)",
2691 XFS_ERRLEVEL_LOW, mp, info);
2692 error = XFS_ERROR(EFSCORRUPTED);
2693 xfs_trans_brelse(trans, bp);
2694 goto out_free;
2695 }
2696 }
2697 *bpp = bp;
2698 out_free:
2699 if (mapp != &map)
2700 kmem_free(mapp);
2701
2702 return error;
2703 }
2704
2705 /*
2706 * Readahead the dir/attr block.
2707 */
2708 xfs_daddr_t
2709 xfs_da_reada_buf(
2710 struct xfs_trans *trans,
2711 struct xfs_inode *dp,
2712 xfs_dablk_t bno,
2713 xfs_daddr_t mappedbno,
2714 int whichfork,
2715 const struct xfs_buf_ops *ops)
2716 {
2717 struct xfs_buf_map map;
2718 struct xfs_buf_map *mapp;
2719 int nmap;
2720 int error;
2721
2722 mapp = &map;
2723 nmap = 1;
2724 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2725 &mapp, &nmap);
2726 if (error) {
2727 /* mapping a hole is not an error, but we don't continue */
2728 if (error == -1)
2729 error = 0;
2730 goto out_free;
2731 }
2732
2733 mappedbno = mapp[0].bm_bn;
2734 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2735
2736 out_free:
2737 if (mapp != &map)
2738 kmem_free(mapp);
2739
2740 if (error)
2741 return -1;
2742 return mappedbno;
2743 }