Merge tag 'v3.10.59' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_da_btree.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * Copyright (c) 2013 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dir2_format.h"
32 #include "xfs_dir2_priv.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_bmap.h"
38 #include "xfs_attr.h"
39 #include "xfs_attr_leaf.h"
40 #include "xfs_error.h"
41 #include "xfs_trace.h"
42 #include "xfs_cksum.h"
43 #include "xfs_buf_item.h"
44
45 /*
46 * xfs_da_btree.c
47 *
48 * Routines to implement directories as Btrees of hashed names.
49 */
50
51 /*========================================================================
52 * Function prototypes for the kernel.
53 *========================================================================*/
54
55 /*
56 * Routines used for growing the Btree.
57 */
58 STATIC int xfs_da3_root_split(xfs_da_state_t *state,
59 xfs_da_state_blk_t *existing_root,
60 xfs_da_state_blk_t *new_child);
61 STATIC int xfs_da3_node_split(xfs_da_state_t *state,
62 xfs_da_state_blk_t *existing_blk,
63 xfs_da_state_blk_t *split_blk,
64 xfs_da_state_blk_t *blk_to_add,
65 int treelevel,
66 int *result);
67 STATIC void xfs_da3_node_rebalance(xfs_da_state_t *state,
68 xfs_da_state_blk_t *node_blk_1,
69 xfs_da_state_blk_t *node_blk_2);
70 STATIC void xfs_da3_node_add(xfs_da_state_t *state,
71 xfs_da_state_blk_t *old_node_blk,
72 xfs_da_state_blk_t *new_node_blk);
73
74 /*
75 * Routines used for shrinking the Btree.
76 */
77 STATIC int xfs_da3_root_join(xfs_da_state_t *state,
78 xfs_da_state_blk_t *root_blk);
79 STATIC int xfs_da3_node_toosmall(xfs_da_state_t *state, int *retval);
80 STATIC void xfs_da3_node_remove(xfs_da_state_t *state,
81 xfs_da_state_blk_t *drop_blk);
82 STATIC void xfs_da3_node_unbalance(xfs_da_state_t *state,
83 xfs_da_state_blk_t *src_node_blk,
84 xfs_da_state_blk_t *dst_node_blk);
85
86 /*
87 * Utility routines.
88 */
89 STATIC int xfs_da3_blk_unlink(xfs_da_state_t *state,
90 xfs_da_state_blk_t *drop_blk,
91 xfs_da_state_blk_t *save_blk);
92
93
94 kmem_zone_t *xfs_da_state_zone; /* anchor for state struct zone */
95
96 /*
97 * Allocate a dir-state structure.
98 * We don't put them on the stack since they're large.
99 */
100 xfs_da_state_t *
101 xfs_da_state_alloc(void)
102 {
103 return kmem_zone_zalloc(xfs_da_state_zone, KM_NOFS);
104 }
105
106 /*
107 * Kill the altpath contents of a da-state structure.
108 */
109 STATIC void
110 xfs_da_state_kill_altpath(xfs_da_state_t *state)
111 {
112 int i;
113
114 for (i = 0; i < state->altpath.active; i++)
115 state->altpath.blk[i].bp = NULL;
116 state->altpath.active = 0;
117 }
118
119 /*
120 * Free a da-state structure.
121 */
122 void
123 xfs_da_state_free(xfs_da_state_t *state)
124 {
125 xfs_da_state_kill_altpath(state);
126 #ifdef DEBUG
127 memset((char *)state, 0, sizeof(*state));
128 #endif /* DEBUG */
129 kmem_zone_free(xfs_da_state_zone, state);
130 }
131
132 void
133 xfs_da3_node_hdr_from_disk(
134 struct xfs_da3_icnode_hdr *to,
135 struct xfs_da_intnode *from)
136 {
137 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
138 from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
139
140 if (from->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
141 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)from;
142
143 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
144 to->back = be32_to_cpu(hdr3->info.hdr.back);
145 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
146 to->count = be16_to_cpu(hdr3->__count);
147 to->level = be16_to_cpu(hdr3->__level);
148 return;
149 }
150 to->forw = be32_to_cpu(from->hdr.info.forw);
151 to->back = be32_to_cpu(from->hdr.info.back);
152 to->magic = be16_to_cpu(from->hdr.info.magic);
153 to->count = be16_to_cpu(from->hdr.__count);
154 to->level = be16_to_cpu(from->hdr.__level);
155 }
156
157 void
158 xfs_da3_node_hdr_to_disk(
159 struct xfs_da_intnode *to,
160 struct xfs_da3_icnode_hdr *from)
161 {
162 ASSERT(from->magic == XFS_DA_NODE_MAGIC ||
163 from->magic == XFS_DA3_NODE_MAGIC);
164
165 if (from->magic == XFS_DA3_NODE_MAGIC) {
166 struct xfs_da3_node_hdr *hdr3 = (struct xfs_da3_node_hdr *)to;
167
168 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
169 hdr3->info.hdr.back = cpu_to_be32(from->back);
170 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
171 hdr3->__count = cpu_to_be16(from->count);
172 hdr3->__level = cpu_to_be16(from->level);
173 return;
174 }
175 to->hdr.info.forw = cpu_to_be32(from->forw);
176 to->hdr.info.back = cpu_to_be32(from->back);
177 to->hdr.info.magic = cpu_to_be16(from->magic);
178 to->hdr.__count = cpu_to_be16(from->count);
179 to->hdr.__level = cpu_to_be16(from->level);
180 }
181
182 static bool
183 xfs_da3_node_verify(
184 struct xfs_buf *bp)
185 {
186 struct xfs_mount *mp = bp->b_target->bt_mount;
187 struct xfs_da_intnode *hdr = bp->b_addr;
188 struct xfs_da3_icnode_hdr ichdr;
189
190 xfs_da3_node_hdr_from_disk(&ichdr, hdr);
191
192 if (xfs_sb_version_hascrc(&mp->m_sb)) {
193 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
194
195 if (ichdr.magic != XFS_DA3_NODE_MAGIC)
196 return false;
197
198 if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid))
199 return false;
200 if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn)
201 return false;
202 } else {
203 if (ichdr.magic != XFS_DA_NODE_MAGIC)
204 return false;
205 }
206 if (ichdr.level == 0)
207 return false;
208 if (ichdr.level > XFS_DA_NODE_MAXDEPTH)
209 return false;
210 if (ichdr.count == 0)
211 return false;
212
213 /*
214 * we don't know if the node is for and attribute or directory tree,
215 * so only fail if the count is outside both bounds
216 */
217 if (ichdr.count > mp->m_dir_node_ents &&
218 ichdr.count > mp->m_attr_node_ents)
219 return false;
220
221 /* XXX: hash order check? */
222
223 return true;
224 }
225
226 static void
227 xfs_da3_node_write_verify(
228 struct xfs_buf *bp)
229 {
230 struct xfs_mount *mp = bp->b_target->bt_mount;
231 struct xfs_buf_log_item *bip = bp->b_fspriv;
232 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
233
234 if (!xfs_da3_node_verify(bp)) {
235 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
236 xfs_buf_ioerror(bp, EFSCORRUPTED);
237 return;
238 }
239
240 if (!xfs_sb_version_hascrc(&mp->m_sb))
241 return;
242
243 if (bip)
244 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
245
246 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), XFS_DA3_NODE_CRC_OFF);
247 }
248
249 /*
250 * leaf/node format detection on trees is sketchy, so a node read can be done on
251 * leaf level blocks when detection identifies the tree as a node format tree
252 * incorrectly. In this case, we need to swap the verifier to match the correct
253 * format of the block being read.
254 */
255 static void
256 xfs_da3_node_read_verify(
257 struct xfs_buf *bp)
258 {
259 struct xfs_mount *mp = bp->b_target->bt_mount;
260 struct xfs_da_blkinfo *info = bp->b_addr;
261
262 switch (be16_to_cpu(info->magic)) {
263 case XFS_DA3_NODE_MAGIC:
264 if (!xfs_verify_cksum(bp->b_addr, BBTOB(bp->b_length),
265 XFS_DA3_NODE_CRC_OFF))
266 break;
267 /* fall through */
268 case XFS_DA_NODE_MAGIC:
269 if (!xfs_da3_node_verify(bp))
270 break;
271 return;
272 case XFS_ATTR_LEAF_MAGIC:
273 case XFS_ATTR3_LEAF_MAGIC:
274 bp->b_ops = &xfs_attr3_leaf_buf_ops;
275 bp->b_ops->verify_read(bp);
276 return;
277 case XFS_DIR2_LEAFN_MAGIC:
278 case XFS_DIR3_LEAFN_MAGIC:
279 bp->b_ops = &xfs_dir3_leafn_buf_ops;
280 bp->b_ops->verify_read(bp);
281 return;
282 default:
283 break;
284 }
285
286 /* corrupt block */
287 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
288 xfs_buf_ioerror(bp, EFSCORRUPTED);
289 }
290
291 const struct xfs_buf_ops xfs_da3_node_buf_ops = {
292 .verify_read = xfs_da3_node_read_verify,
293 .verify_write = xfs_da3_node_write_verify,
294 };
295
296 int
297 xfs_da3_node_read(
298 struct xfs_trans *tp,
299 struct xfs_inode *dp,
300 xfs_dablk_t bno,
301 xfs_daddr_t mappedbno,
302 struct xfs_buf **bpp,
303 int which_fork)
304 {
305 int err;
306
307 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
308 which_fork, &xfs_da3_node_buf_ops);
309 if (!err && tp) {
310 struct xfs_da_blkinfo *info = (*bpp)->b_addr;
311 int type;
312
313 switch (be16_to_cpu(info->magic)) {
314 case XFS_DA_NODE_MAGIC:
315 case XFS_DA3_NODE_MAGIC:
316 type = XFS_BLFT_DA_NODE_BUF;
317 break;
318 case XFS_ATTR_LEAF_MAGIC:
319 case XFS_ATTR3_LEAF_MAGIC:
320 type = XFS_BLFT_ATTR_LEAF_BUF;
321 break;
322 case XFS_DIR2_LEAFN_MAGIC:
323 case XFS_DIR3_LEAFN_MAGIC:
324 type = XFS_BLFT_DIR_LEAFN_BUF;
325 break;
326 default:
327 type = 0;
328 ASSERT(0);
329 break;
330 }
331 xfs_trans_buf_set_type(tp, *bpp, type);
332 }
333 return err;
334 }
335
336 /*========================================================================
337 * Routines used for growing the Btree.
338 *========================================================================*/
339
340 /*
341 * Create the initial contents of an intermediate node.
342 */
343 int
344 xfs_da3_node_create(
345 struct xfs_da_args *args,
346 xfs_dablk_t blkno,
347 int level,
348 struct xfs_buf **bpp,
349 int whichfork)
350 {
351 struct xfs_da_intnode *node;
352 struct xfs_trans *tp = args->trans;
353 struct xfs_mount *mp = tp->t_mountp;
354 struct xfs_da3_icnode_hdr ichdr = {0};
355 struct xfs_buf *bp;
356 int error;
357
358 trace_xfs_da_node_create(args);
359 ASSERT(level <= XFS_DA_NODE_MAXDEPTH);
360
361 error = xfs_da_get_buf(tp, args->dp, blkno, -1, &bp, whichfork);
362 if (error)
363 return(error);
364 bp->b_ops = &xfs_da3_node_buf_ops;
365 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
366 node = bp->b_addr;
367
368 if (xfs_sb_version_hascrc(&mp->m_sb)) {
369 struct xfs_da3_node_hdr *hdr3 = bp->b_addr;
370
371 ichdr.magic = XFS_DA3_NODE_MAGIC;
372 hdr3->info.blkno = cpu_to_be64(bp->b_bn);
373 hdr3->info.owner = cpu_to_be64(args->dp->i_ino);
374 uuid_copy(&hdr3->info.uuid, &mp->m_sb.sb_uuid);
375 } else {
376 ichdr.magic = XFS_DA_NODE_MAGIC;
377 }
378 ichdr.level = level;
379
380 xfs_da3_node_hdr_to_disk(node, &ichdr);
381 xfs_trans_log_buf(tp, bp,
382 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
383
384 *bpp = bp;
385 return(0);
386 }
387
388 /*
389 * Split a leaf node, rebalance, then possibly split
390 * intermediate nodes, rebalance, etc.
391 */
392 int /* error */
393 xfs_da3_split(
394 struct xfs_da_state *state)
395 {
396 struct xfs_da_state_blk *oldblk;
397 struct xfs_da_state_blk *newblk;
398 struct xfs_da_state_blk *addblk;
399 struct xfs_da_intnode *node;
400 struct xfs_buf *bp;
401 int max;
402 int action;
403 int error;
404 int i;
405
406 trace_xfs_da_split(state->args);
407
408 /*
409 * Walk back up the tree splitting/inserting/adjusting as necessary.
410 * If we need to insert and there isn't room, split the node, then
411 * decide which fragment to insert the new block from below into.
412 * Note that we may split the root this way, but we need more fixup.
413 */
414 max = state->path.active - 1;
415 ASSERT((max >= 0) && (max < XFS_DA_NODE_MAXDEPTH));
416 ASSERT(state->path.blk[max].magic == XFS_ATTR_LEAF_MAGIC ||
417 state->path.blk[max].magic == XFS_DIR2_LEAFN_MAGIC);
418
419 addblk = &state->path.blk[max]; /* initial dummy value */
420 for (i = max; (i >= 0) && addblk; state->path.active--, i--) {
421 oldblk = &state->path.blk[i];
422 newblk = &state->altpath.blk[i];
423
424 /*
425 * If a leaf node then
426 * Allocate a new leaf node, then rebalance across them.
427 * else if an intermediate node then
428 * We split on the last layer, must we split the node?
429 */
430 switch (oldblk->magic) {
431 case XFS_ATTR_LEAF_MAGIC:
432 error = xfs_attr3_leaf_split(state, oldblk, newblk);
433 if ((error != 0) && (error != ENOSPC)) {
434 return(error); /* GROT: attr is inconsistent */
435 }
436 if (!error) {
437 addblk = newblk;
438 break;
439 }
440 /*
441 * Entry wouldn't fit, split the leaf again.
442 */
443 state->extravalid = 1;
444 if (state->inleaf) {
445 state->extraafter = 0; /* before newblk */
446 trace_xfs_attr_leaf_split_before(state->args);
447 error = xfs_attr3_leaf_split(state, oldblk,
448 &state->extrablk);
449 } else {
450 state->extraafter = 1; /* after newblk */
451 trace_xfs_attr_leaf_split_after(state->args);
452 error = xfs_attr3_leaf_split(state, newblk,
453 &state->extrablk);
454 }
455 if (error)
456 return(error); /* GROT: attr inconsistent */
457 addblk = newblk;
458 break;
459 case XFS_DIR2_LEAFN_MAGIC:
460 error = xfs_dir2_leafn_split(state, oldblk, newblk);
461 if (error)
462 return error;
463 addblk = newblk;
464 break;
465 case XFS_DA_NODE_MAGIC:
466 error = xfs_da3_node_split(state, oldblk, newblk, addblk,
467 max - i, &action);
468 addblk->bp = NULL;
469 if (error)
470 return(error); /* GROT: dir is inconsistent */
471 /*
472 * Record the newly split block for the next time thru?
473 */
474 if (action)
475 addblk = newblk;
476 else
477 addblk = NULL;
478 break;
479 }
480
481 /*
482 * Update the btree to show the new hashval for this child.
483 */
484 xfs_da3_fixhashpath(state, &state->path);
485 }
486 if (!addblk)
487 return(0);
488
489 /*
490 * Split the root node.
491 */
492 ASSERT(state->path.active == 0);
493 oldblk = &state->path.blk[0];
494 error = xfs_da3_root_split(state, oldblk, addblk);
495 if (error) {
496 addblk->bp = NULL;
497 return(error); /* GROT: dir is inconsistent */
498 }
499
500 /*
501 * Update pointers to the node which used to be block 0 and
502 * just got bumped because of the addition of a new root node.
503 * There might be three blocks involved if a double split occurred,
504 * and the original block 0 could be at any position in the list.
505 *
506 * Note: the magic numbers and sibling pointers are in the same
507 * physical place for both v2 and v3 headers (by design). Hence it
508 * doesn't matter which version of the xfs_da_intnode structure we use
509 * here as the result will be the same using either structure.
510 */
511 node = oldblk->bp->b_addr;
512 if (node->hdr.info.forw) {
513 if (be32_to_cpu(node->hdr.info.forw) == addblk->blkno) {
514 bp = addblk->bp;
515 } else {
516 ASSERT(state->extravalid);
517 bp = state->extrablk.bp;
518 }
519 node = bp->b_addr;
520 node->hdr.info.back = cpu_to_be32(oldblk->blkno);
521 xfs_trans_log_buf(state->args->trans, bp,
522 XFS_DA_LOGRANGE(node, &node->hdr.info,
523 sizeof(node->hdr.info)));
524 }
525 node = oldblk->bp->b_addr;
526 if (node->hdr.info.back) {
527 if (be32_to_cpu(node->hdr.info.back) == addblk->blkno) {
528 bp = addblk->bp;
529 } else {
530 ASSERT(state->extravalid);
531 bp = state->extrablk.bp;
532 }
533 node = bp->b_addr;
534 node->hdr.info.forw = cpu_to_be32(oldblk->blkno);
535 xfs_trans_log_buf(state->args->trans, bp,
536 XFS_DA_LOGRANGE(node, &node->hdr.info,
537 sizeof(node->hdr.info)));
538 }
539 addblk->bp = NULL;
540 return(0);
541 }
542
543 /*
544 * Split the root. We have to create a new root and point to the two
545 * parts (the split old root) that we just created. Copy block zero to
546 * the EOF, extending the inode in process.
547 */
548 STATIC int /* error */
549 xfs_da3_root_split(
550 struct xfs_da_state *state,
551 struct xfs_da_state_blk *blk1,
552 struct xfs_da_state_blk *blk2)
553 {
554 struct xfs_da_intnode *node;
555 struct xfs_da_intnode *oldroot;
556 struct xfs_da_node_entry *btree;
557 struct xfs_da3_icnode_hdr nodehdr;
558 struct xfs_da_args *args;
559 struct xfs_buf *bp;
560 struct xfs_inode *dp;
561 struct xfs_trans *tp;
562 struct xfs_mount *mp;
563 struct xfs_dir2_leaf *leaf;
564 xfs_dablk_t blkno;
565 int level;
566 int error;
567 int size;
568
569 trace_xfs_da_root_split(state->args);
570
571 /*
572 * Copy the existing (incorrect) block from the root node position
573 * to a free space somewhere.
574 */
575 args = state->args;
576 error = xfs_da_grow_inode(args, &blkno);
577 if (error)
578 return error;
579
580 dp = args->dp;
581 tp = args->trans;
582 mp = state->mp;
583 error = xfs_da_get_buf(tp, dp, blkno, -1, &bp, args->whichfork);
584 if (error)
585 return error;
586 node = bp->b_addr;
587 oldroot = blk1->bp->b_addr;
588 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
589 oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC)) {
590 struct xfs_da3_icnode_hdr nodehdr;
591
592 xfs_da3_node_hdr_from_disk(&nodehdr, oldroot);
593 btree = xfs_da3_node_tree_p(oldroot);
594 size = (int)((char *)&btree[nodehdr.count] - (char *)oldroot);
595 level = nodehdr.level;
596
597 /*
598 * we are about to copy oldroot to bp, so set up the type
599 * of bp while we know exactly what it will be.
600 */
601 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DA_NODE_BUF);
602 } else {
603 struct xfs_dir3_icleaf_hdr leafhdr;
604 struct xfs_dir2_leaf_entry *ents;
605
606 leaf = (xfs_dir2_leaf_t *)oldroot;
607 xfs_dir3_leaf_hdr_from_disk(&leafhdr, leaf);
608 ents = xfs_dir3_leaf_ents_p(leaf);
609
610 ASSERT(leafhdr.magic == XFS_DIR2_LEAFN_MAGIC ||
611 leafhdr.magic == XFS_DIR3_LEAFN_MAGIC);
612 size = (int)((char *)&ents[leafhdr.count] - (char *)leaf);
613 level = 0;
614
615 /*
616 * we are about to copy oldroot to bp, so set up the type
617 * of bp while we know exactly what it will be.
618 */
619 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DIR_LEAFN_BUF);
620 }
621
622 /*
623 * we can copy most of the information in the node from one block to
624 * another, but for CRC enabled headers we have to make sure that the
625 * block specific identifiers are kept intact. We update the buffer
626 * directly for this.
627 */
628 memcpy(node, oldroot, size);
629 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
630 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
631 struct xfs_da3_intnode *node3 = (struct xfs_da3_intnode *)node;
632
633 node3->hdr.info.blkno = cpu_to_be64(bp->b_bn);
634 }
635 xfs_trans_log_buf(tp, bp, 0, size - 1);
636
637 bp->b_ops = blk1->bp->b_ops;
638 blk1->bp = bp;
639 blk1->blkno = blkno;
640
641 /*
642 * Set up the new root node.
643 */
644 error = xfs_da3_node_create(args,
645 (args->whichfork == XFS_DATA_FORK) ? mp->m_dirleafblk : 0,
646 level + 1, &bp, args->whichfork);
647 if (error)
648 return error;
649
650 node = bp->b_addr;
651 xfs_da3_node_hdr_from_disk(&nodehdr, node);
652 btree = xfs_da3_node_tree_p(node);
653 btree[0].hashval = cpu_to_be32(blk1->hashval);
654 btree[0].before = cpu_to_be32(blk1->blkno);
655 btree[1].hashval = cpu_to_be32(blk2->hashval);
656 btree[1].before = cpu_to_be32(blk2->blkno);
657 nodehdr.count = 2;
658 xfs_da3_node_hdr_to_disk(node, &nodehdr);
659
660 #ifdef DEBUG
661 if (oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
662 oldroot->hdr.info.magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
663 ASSERT(blk1->blkno >= mp->m_dirleafblk &&
664 blk1->blkno < mp->m_dirfreeblk);
665 ASSERT(blk2->blkno >= mp->m_dirleafblk &&
666 blk2->blkno < mp->m_dirfreeblk);
667 }
668 #endif
669
670 /* Header is already logged by xfs_da_node_create */
671 xfs_trans_log_buf(tp, bp,
672 XFS_DA_LOGRANGE(node, btree, sizeof(xfs_da_node_entry_t) * 2));
673
674 return 0;
675 }
676
677 /*
678 * Split the node, rebalance, then add the new entry.
679 */
680 STATIC int /* error */
681 xfs_da3_node_split(
682 struct xfs_da_state *state,
683 struct xfs_da_state_blk *oldblk,
684 struct xfs_da_state_blk *newblk,
685 struct xfs_da_state_blk *addblk,
686 int treelevel,
687 int *result)
688 {
689 struct xfs_da_intnode *node;
690 struct xfs_da3_icnode_hdr nodehdr;
691 xfs_dablk_t blkno;
692 int newcount;
693 int error;
694 int useextra;
695
696 trace_xfs_da_node_split(state->args);
697
698 node = oldblk->bp->b_addr;
699 xfs_da3_node_hdr_from_disk(&nodehdr, node);
700
701 /*
702 * With V2 dirs the extra block is data or freespace.
703 */
704 useextra = state->extravalid && state->args->whichfork == XFS_ATTR_FORK;
705 newcount = 1 + useextra;
706 /*
707 * Do we have to split the node?
708 */
709 if (nodehdr.count + newcount > state->node_ents) {
710 /*
711 * Allocate a new node, add to the doubly linked chain of
712 * nodes, then move some of our excess entries into it.
713 */
714 error = xfs_da_grow_inode(state->args, &blkno);
715 if (error)
716 return(error); /* GROT: dir is inconsistent */
717
718 error = xfs_da3_node_create(state->args, blkno, treelevel,
719 &newblk->bp, state->args->whichfork);
720 if (error)
721 return(error); /* GROT: dir is inconsistent */
722 newblk->blkno = blkno;
723 newblk->magic = XFS_DA_NODE_MAGIC;
724 xfs_da3_node_rebalance(state, oldblk, newblk);
725 error = xfs_da3_blk_link(state, oldblk, newblk);
726 if (error)
727 return(error);
728 *result = 1;
729 } else {
730 *result = 0;
731 }
732
733 /*
734 * Insert the new entry(s) into the correct block
735 * (updating last hashval in the process).
736 *
737 * xfs_da3_node_add() inserts BEFORE the given index,
738 * and as a result of using node_lookup_int() we always
739 * point to a valid entry (not after one), but a split
740 * operation always results in a new block whose hashvals
741 * FOLLOW the current block.
742 *
743 * If we had double-split op below us, then add the extra block too.
744 */
745 node = oldblk->bp->b_addr;
746 xfs_da3_node_hdr_from_disk(&nodehdr, node);
747 if (oldblk->index <= nodehdr.count) {
748 oldblk->index++;
749 xfs_da3_node_add(state, oldblk, addblk);
750 if (useextra) {
751 if (state->extraafter)
752 oldblk->index++;
753 xfs_da3_node_add(state, oldblk, &state->extrablk);
754 state->extravalid = 0;
755 }
756 } else {
757 newblk->index++;
758 xfs_da3_node_add(state, newblk, addblk);
759 if (useextra) {
760 if (state->extraafter)
761 newblk->index++;
762 xfs_da3_node_add(state, newblk, &state->extrablk);
763 state->extravalid = 0;
764 }
765 }
766
767 return(0);
768 }
769
770 /*
771 * Balance the btree elements between two intermediate nodes,
772 * usually one full and one empty.
773 *
774 * NOTE: if blk2 is empty, then it will get the upper half of blk1.
775 */
776 STATIC void
777 xfs_da3_node_rebalance(
778 struct xfs_da_state *state,
779 struct xfs_da_state_blk *blk1,
780 struct xfs_da_state_blk *blk2)
781 {
782 struct xfs_da_intnode *node1;
783 struct xfs_da_intnode *node2;
784 struct xfs_da_intnode *tmpnode;
785 struct xfs_da_node_entry *btree1;
786 struct xfs_da_node_entry *btree2;
787 struct xfs_da_node_entry *btree_s;
788 struct xfs_da_node_entry *btree_d;
789 struct xfs_da3_icnode_hdr nodehdr1;
790 struct xfs_da3_icnode_hdr nodehdr2;
791 struct xfs_trans *tp;
792 int count;
793 int tmp;
794 int swap = 0;
795
796 trace_xfs_da_node_rebalance(state->args);
797
798 node1 = blk1->bp->b_addr;
799 node2 = blk2->bp->b_addr;
800 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
801 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
802 btree1 = xfs_da3_node_tree_p(node1);
803 btree2 = xfs_da3_node_tree_p(node2);
804
805 /*
806 * Figure out how many entries need to move, and in which direction.
807 * Swap the nodes around if that makes it simpler.
808 */
809 if (nodehdr1.count > 0 && nodehdr2.count > 0 &&
810 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
811 (be32_to_cpu(btree2[nodehdr2.count - 1].hashval) <
812 be32_to_cpu(btree1[nodehdr1.count - 1].hashval)))) {
813 tmpnode = node1;
814 node1 = node2;
815 node2 = tmpnode;
816 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
817 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
818 btree1 = xfs_da3_node_tree_p(node1);
819 btree2 = xfs_da3_node_tree_p(node2);
820 swap = 1;
821 }
822
823 count = (nodehdr1.count - nodehdr2.count) / 2;
824 if (count == 0)
825 return;
826 tp = state->args->trans;
827 /*
828 * Two cases: high-to-low and low-to-high.
829 */
830 if (count > 0) {
831 /*
832 * Move elements in node2 up to make a hole.
833 */
834 tmp = nodehdr2.count;
835 if (tmp > 0) {
836 tmp *= (uint)sizeof(xfs_da_node_entry_t);
837 btree_s = &btree2[0];
838 btree_d = &btree2[count];
839 memmove(btree_d, btree_s, tmp);
840 }
841
842 /*
843 * Move the req'd B-tree elements from high in node1 to
844 * low in node2.
845 */
846 nodehdr2.count += count;
847 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
848 btree_s = &btree1[nodehdr1.count - count];
849 btree_d = &btree2[0];
850 memcpy(btree_d, btree_s, tmp);
851 nodehdr1.count -= count;
852 } else {
853 /*
854 * Move the req'd B-tree elements from low in node2 to
855 * high in node1.
856 */
857 count = -count;
858 tmp = count * (uint)sizeof(xfs_da_node_entry_t);
859 btree_s = &btree2[0];
860 btree_d = &btree1[nodehdr1.count];
861 memcpy(btree_d, btree_s, tmp);
862 nodehdr1.count += count;
863
864 xfs_trans_log_buf(tp, blk1->bp,
865 XFS_DA_LOGRANGE(node1, btree_d, tmp));
866
867 /*
868 * Move elements in node2 down to fill the hole.
869 */
870 tmp = nodehdr2.count - count;
871 tmp *= (uint)sizeof(xfs_da_node_entry_t);
872 btree_s = &btree2[count];
873 btree_d = &btree2[0];
874 memmove(btree_d, btree_s, tmp);
875 nodehdr2.count -= count;
876 }
877
878 /*
879 * Log header of node 1 and all current bits of node 2.
880 */
881 xfs_da3_node_hdr_to_disk(node1, &nodehdr1);
882 xfs_trans_log_buf(tp, blk1->bp,
883 XFS_DA_LOGRANGE(node1, &node1->hdr,
884 xfs_da3_node_hdr_size(node1)));
885
886 xfs_da3_node_hdr_to_disk(node2, &nodehdr2);
887 xfs_trans_log_buf(tp, blk2->bp,
888 XFS_DA_LOGRANGE(node2, &node2->hdr,
889 xfs_da3_node_hdr_size(node2) +
890 (sizeof(btree2[0]) * nodehdr2.count)));
891
892 /*
893 * Record the last hashval from each block for upward propagation.
894 * (note: don't use the swapped node pointers)
895 */
896 if (swap) {
897 node1 = blk1->bp->b_addr;
898 node2 = blk2->bp->b_addr;
899 xfs_da3_node_hdr_from_disk(&nodehdr1, node1);
900 xfs_da3_node_hdr_from_disk(&nodehdr2, node2);
901 btree1 = xfs_da3_node_tree_p(node1);
902 btree2 = xfs_da3_node_tree_p(node2);
903 }
904 blk1->hashval = be32_to_cpu(btree1[nodehdr1.count - 1].hashval);
905 blk2->hashval = be32_to_cpu(btree2[nodehdr2.count - 1].hashval);
906
907 /*
908 * Adjust the expected index for insertion.
909 */
910 if (blk1->index >= nodehdr1.count) {
911 blk2->index = blk1->index - nodehdr1.count;
912 blk1->index = nodehdr1.count + 1; /* make it invalid */
913 }
914 }
915
916 /*
917 * Add a new entry to an intermediate node.
918 */
919 STATIC void
920 xfs_da3_node_add(
921 struct xfs_da_state *state,
922 struct xfs_da_state_blk *oldblk,
923 struct xfs_da_state_blk *newblk)
924 {
925 struct xfs_da_intnode *node;
926 struct xfs_da3_icnode_hdr nodehdr;
927 struct xfs_da_node_entry *btree;
928 int tmp;
929
930 trace_xfs_da_node_add(state->args);
931
932 node = oldblk->bp->b_addr;
933 xfs_da3_node_hdr_from_disk(&nodehdr, node);
934 btree = xfs_da3_node_tree_p(node);
935
936 ASSERT(oldblk->index >= 0 && oldblk->index <= nodehdr.count);
937 ASSERT(newblk->blkno != 0);
938 if (state->args->whichfork == XFS_DATA_FORK)
939 ASSERT(newblk->blkno >= state->mp->m_dirleafblk &&
940 newblk->blkno < state->mp->m_dirfreeblk);
941
942 /*
943 * We may need to make some room before we insert the new node.
944 */
945 tmp = 0;
946 if (oldblk->index < nodehdr.count) {
947 tmp = (nodehdr.count - oldblk->index) * (uint)sizeof(*btree);
948 memmove(&btree[oldblk->index + 1], &btree[oldblk->index], tmp);
949 }
950 btree[oldblk->index].hashval = cpu_to_be32(newblk->hashval);
951 btree[oldblk->index].before = cpu_to_be32(newblk->blkno);
952 xfs_trans_log_buf(state->args->trans, oldblk->bp,
953 XFS_DA_LOGRANGE(node, &btree[oldblk->index],
954 tmp + sizeof(*btree)));
955
956 nodehdr.count += 1;
957 xfs_da3_node_hdr_to_disk(node, &nodehdr);
958 xfs_trans_log_buf(state->args->trans, oldblk->bp,
959 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
960
961 /*
962 * Copy the last hash value from the oldblk to propagate upwards.
963 */
964 oldblk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
965 }
966
967 /*========================================================================
968 * Routines used for shrinking the Btree.
969 *========================================================================*/
970
971 /*
972 * Deallocate an empty leaf node, remove it from its parent,
973 * possibly deallocating that block, etc...
974 */
975 int
976 xfs_da3_join(
977 struct xfs_da_state *state)
978 {
979 struct xfs_da_state_blk *drop_blk;
980 struct xfs_da_state_blk *save_blk;
981 int action = 0;
982 int error;
983
984 trace_xfs_da_join(state->args);
985
986 drop_blk = &state->path.blk[ state->path.active-1 ];
987 save_blk = &state->altpath.blk[ state->path.active-1 ];
988 ASSERT(state->path.blk[0].magic == XFS_DA_NODE_MAGIC);
989 ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC ||
990 drop_blk->magic == XFS_DIR2_LEAFN_MAGIC);
991
992 /*
993 * Walk back up the tree joining/deallocating as necessary.
994 * When we stop dropping blocks, break out.
995 */
996 for ( ; state->path.active >= 2; drop_blk--, save_blk--,
997 state->path.active--) {
998 /*
999 * See if we can combine the block with a neighbor.
1000 * (action == 0) => no options, just leave
1001 * (action == 1) => coalesce, then unlink
1002 * (action == 2) => block empty, unlink it
1003 */
1004 switch (drop_blk->magic) {
1005 case XFS_ATTR_LEAF_MAGIC:
1006 error = xfs_attr3_leaf_toosmall(state, &action);
1007 if (error)
1008 return(error);
1009 if (action == 0)
1010 return(0);
1011 xfs_attr3_leaf_unbalance(state, drop_blk, save_blk);
1012 break;
1013 case XFS_DIR2_LEAFN_MAGIC:
1014 error = xfs_dir2_leafn_toosmall(state, &action);
1015 if (error)
1016 return error;
1017 if (action == 0)
1018 return 0;
1019 xfs_dir2_leafn_unbalance(state, drop_blk, save_blk);
1020 break;
1021 case XFS_DA_NODE_MAGIC:
1022 /*
1023 * Remove the offending node, fixup hashvals,
1024 * check for a toosmall neighbor.
1025 */
1026 xfs_da3_node_remove(state, drop_blk);
1027 xfs_da3_fixhashpath(state, &state->path);
1028 error = xfs_da3_node_toosmall(state, &action);
1029 if (error)
1030 return(error);
1031 if (action == 0)
1032 return 0;
1033 xfs_da3_node_unbalance(state, drop_blk, save_blk);
1034 break;
1035 }
1036 xfs_da3_fixhashpath(state, &state->altpath);
1037 error = xfs_da3_blk_unlink(state, drop_blk, save_blk);
1038 xfs_da_state_kill_altpath(state);
1039 if (error)
1040 return(error);
1041 error = xfs_da_shrink_inode(state->args, drop_blk->blkno,
1042 drop_blk->bp);
1043 drop_blk->bp = NULL;
1044 if (error)
1045 return(error);
1046 }
1047 /*
1048 * We joined all the way to the top. If it turns out that
1049 * we only have one entry in the root, make the child block
1050 * the new root.
1051 */
1052 xfs_da3_node_remove(state, drop_blk);
1053 xfs_da3_fixhashpath(state, &state->path);
1054 error = xfs_da3_root_join(state, &state->path.blk[0]);
1055 return(error);
1056 }
1057
1058 #ifdef DEBUG
1059 static void
1060 xfs_da_blkinfo_onlychild_validate(struct xfs_da_blkinfo *blkinfo, __u16 level)
1061 {
1062 __be16 magic = blkinfo->magic;
1063
1064 if (level == 1) {
1065 ASSERT(magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1066 magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1067 magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1068 magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1069 } else {
1070 ASSERT(magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1071 magic == cpu_to_be16(XFS_DA3_NODE_MAGIC));
1072 }
1073 ASSERT(!blkinfo->forw);
1074 ASSERT(!blkinfo->back);
1075 }
1076 #else /* !DEBUG */
1077 #define xfs_da_blkinfo_onlychild_validate(blkinfo, level)
1078 #endif /* !DEBUG */
1079
1080 /*
1081 * We have only one entry in the root. Copy the only remaining child of
1082 * the old root to block 0 as the new root node.
1083 */
1084 STATIC int
1085 xfs_da3_root_join(
1086 struct xfs_da_state *state,
1087 struct xfs_da_state_blk *root_blk)
1088 {
1089 struct xfs_da_intnode *oldroot;
1090 struct xfs_da_args *args;
1091 xfs_dablk_t child;
1092 struct xfs_buf *bp;
1093 struct xfs_da3_icnode_hdr oldroothdr;
1094 struct xfs_da_node_entry *btree;
1095 int error;
1096
1097 trace_xfs_da_root_join(state->args);
1098
1099 ASSERT(root_blk->magic == XFS_DA_NODE_MAGIC);
1100
1101 args = state->args;
1102 oldroot = root_blk->bp->b_addr;
1103 xfs_da3_node_hdr_from_disk(&oldroothdr, oldroot);
1104 ASSERT(oldroothdr.forw == 0);
1105 ASSERT(oldroothdr.back == 0);
1106
1107 /*
1108 * If the root has more than one child, then don't do anything.
1109 */
1110 if (oldroothdr.count > 1)
1111 return 0;
1112
1113 /*
1114 * Read in the (only) child block, then copy those bytes into
1115 * the root block's buffer and free the original child block.
1116 */
1117 btree = xfs_da3_node_tree_p(oldroot);
1118 child = be32_to_cpu(btree[0].before);
1119 ASSERT(child != 0);
1120 error = xfs_da3_node_read(args->trans, args->dp, child, -1, &bp,
1121 args->whichfork);
1122 if (error)
1123 return error;
1124 xfs_da_blkinfo_onlychild_validate(bp->b_addr, oldroothdr.level);
1125
1126 /*
1127 * This could be copying a leaf back into the root block in the case of
1128 * there only being a single leaf block left in the tree. Hence we have
1129 * to update the b_ops pointer as well to match the buffer type change
1130 * that could occur. For dir3 blocks we also need to update the block
1131 * number in the buffer header.
1132 */
1133 memcpy(root_blk->bp->b_addr, bp->b_addr, state->blocksize);
1134 root_blk->bp->b_ops = bp->b_ops;
1135 xfs_trans_buf_copy_type(root_blk->bp, bp);
1136 if (oldroothdr.magic == XFS_DA3_NODE_MAGIC) {
1137 struct xfs_da3_blkinfo *da3 = root_blk->bp->b_addr;
1138 da3->blkno = cpu_to_be64(root_blk->bp->b_bn);
1139 }
1140 xfs_trans_log_buf(args->trans, root_blk->bp, 0, state->blocksize - 1);
1141 error = xfs_da_shrink_inode(args, child, bp);
1142 return(error);
1143 }
1144
1145 /*
1146 * Check a node block and its neighbors to see if the block should be
1147 * collapsed into one or the other neighbor. Always keep the block
1148 * with the smaller block number.
1149 * If the current block is over 50% full, don't try to join it, return 0.
1150 * If the block is empty, fill in the state structure and return 2.
1151 * If it can be collapsed, fill in the state structure and return 1.
1152 * If nothing can be done, return 0.
1153 */
1154 STATIC int
1155 xfs_da3_node_toosmall(
1156 struct xfs_da_state *state,
1157 int *action)
1158 {
1159 struct xfs_da_intnode *node;
1160 struct xfs_da_state_blk *blk;
1161 struct xfs_da_blkinfo *info;
1162 xfs_dablk_t blkno;
1163 struct xfs_buf *bp;
1164 struct xfs_da3_icnode_hdr nodehdr;
1165 int count;
1166 int forward;
1167 int error;
1168 int retval;
1169 int i;
1170
1171 trace_xfs_da_node_toosmall(state->args);
1172
1173 /*
1174 * Check for the degenerate case of the block being over 50% full.
1175 * If so, it's not worth even looking to see if we might be able
1176 * to coalesce with a sibling.
1177 */
1178 blk = &state->path.blk[ state->path.active-1 ];
1179 info = blk->bp->b_addr;
1180 node = (xfs_da_intnode_t *)info;
1181 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1182 if (nodehdr.count > (state->node_ents >> 1)) {
1183 *action = 0; /* blk over 50%, don't try to join */
1184 return(0); /* blk over 50%, don't try to join */
1185 }
1186
1187 /*
1188 * Check for the degenerate case of the block being empty.
1189 * If the block is empty, we'll simply delete it, no need to
1190 * coalesce it with a sibling block. We choose (arbitrarily)
1191 * to merge with the forward block unless it is NULL.
1192 */
1193 if (nodehdr.count == 0) {
1194 /*
1195 * Make altpath point to the block we want to keep and
1196 * path point to the block we want to drop (this one).
1197 */
1198 forward = (info->forw != 0);
1199 memcpy(&state->altpath, &state->path, sizeof(state->path));
1200 error = xfs_da3_path_shift(state, &state->altpath, forward,
1201 0, &retval);
1202 if (error)
1203 return(error);
1204 if (retval) {
1205 *action = 0;
1206 } else {
1207 *action = 2;
1208 }
1209 return(0);
1210 }
1211
1212 /*
1213 * Examine each sibling block to see if we can coalesce with
1214 * at least 25% free space to spare. We need to figure out
1215 * whether to merge with the forward or the backward block.
1216 * We prefer coalescing with the lower numbered sibling so as
1217 * to shrink a directory over time.
1218 */
1219 count = state->node_ents;
1220 count -= state->node_ents >> 2;
1221 count -= nodehdr.count;
1222
1223 /* start with smaller blk num */
1224 forward = nodehdr.forw < nodehdr.back;
1225 for (i = 0; i < 2; forward = !forward, i++) {
1226 struct xfs_da3_icnode_hdr thdr;
1227 if (forward)
1228 blkno = nodehdr.forw;
1229 else
1230 blkno = nodehdr.back;
1231 if (blkno == 0)
1232 continue;
1233 error = xfs_da3_node_read(state->args->trans, state->args->dp,
1234 blkno, -1, &bp, state->args->whichfork);
1235 if (error)
1236 return(error);
1237
1238 node = bp->b_addr;
1239 xfs_da3_node_hdr_from_disk(&thdr, node);
1240 xfs_trans_brelse(state->args->trans, bp);
1241
1242 if (count - thdr.count >= 0)
1243 break; /* fits with at least 25% to spare */
1244 }
1245 if (i >= 2) {
1246 *action = 0;
1247 return 0;
1248 }
1249
1250 /*
1251 * Make altpath point to the block we want to keep (the lower
1252 * numbered block) and path point to the block we want to drop.
1253 */
1254 memcpy(&state->altpath, &state->path, sizeof(state->path));
1255 if (blkno < blk->blkno) {
1256 error = xfs_da3_path_shift(state, &state->altpath, forward,
1257 0, &retval);
1258 } else {
1259 error = xfs_da3_path_shift(state, &state->path, forward,
1260 0, &retval);
1261 }
1262 if (error)
1263 return error;
1264 if (retval) {
1265 *action = 0;
1266 return 0;
1267 }
1268 *action = 1;
1269 return 0;
1270 }
1271
1272 /*
1273 * Pick up the last hashvalue from an intermediate node.
1274 */
1275 STATIC uint
1276 xfs_da3_node_lasthash(
1277 struct xfs_buf *bp,
1278 int *count)
1279 {
1280 struct xfs_da_intnode *node;
1281 struct xfs_da_node_entry *btree;
1282 struct xfs_da3_icnode_hdr nodehdr;
1283
1284 node = bp->b_addr;
1285 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1286 if (count)
1287 *count = nodehdr.count;
1288 if (!nodehdr.count)
1289 return 0;
1290 btree = xfs_da3_node_tree_p(node);
1291 return be32_to_cpu(btree[nodehdr.count - 1].hashval);
1292 }
1293
1294 /*
1295 * Walk back up the tree adjusting hash values as necessary,
1296 * when we stop making changes, return.
1297 */
1298 void
1299 xfs_da3_fixhashpath(
1300 struct xfs_da_state *state,
1301 struct xfs_da_state_path *path)
1302 {
1303 struct xfs_da_state_blk *blk;
1304 struct xfs_da_intnode *node;
1305 struct xfs_da_node_entry *btree;
1306 xfs_dahash_t lasthash=0;
1307 int level;
1308 int count;
1309
1310 trace_xfs_da_fixhashpath(state->args);
1311
1312 level = path->active-1;
1313 blk = &path->blk[ level ];
1314 switch (blk->magic) {
1315 case XFS_ATTR_LEAF_MAGIC:
1316 lasthash = xfs_attr_leaf_lasthash(blk->bp, &count);
1317 if (count == 0)
1318 return;
1319 break;
1320 case XFS_DIR2_LEAFN_MAGIC:
1321 lasthash = xfs_dir2_leafn_lasthash(blk->bp, &count);
1322 if (count == 0)
1323 return;
1324 break;
1325 case XFS_DA_NODE_MAGIC:
1326 lasthash = xfs_da3_node_lasthash(blk->bp, &count);
1327 if (count == 0)
1328 return;
1329 break;
1330 }
1331 for (blk--, level--; level >= 0; blk--, level--) {
1332 struct xfs_da3_icnode_hdr nodehdr;
1333
1334 node = blk->bp->b_addr;
1335 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1336 btree = xfs_da3_node_tree_p(node);
1337 if (be32_to_cpu(btree[blk->index].hashval) == lasthash)
1338 break;
1339 blk->hashval = lasthash;
1340 btree[blk->index].hashval = cpu_to_be32(lasthash);
1341 xfs_trans_log_buf(state->args->trans, blk->bp,
1342 XFS_DA_LOGRANGE(node, &btree[blk->index],
1343 sizeof(*btree)));
1344
1345 lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1346 }
1347 }
1348
1349 /*
1350 * Remove an entry from an intermediate node.
1351 */
1352 STATIC void
1353 xfs_da3_node_remove(
1354 struct xfs_da_state *state,
1355 struct xfs_da_state_blk *drop_blk)
1356 {
1357 struct xfs_da_intnode *node;
1358 struct xfs_da3_icnode_hdr nodehdr;
1359 struct xfs_da_node_entry *btree;
1360 int index;
1361 int tmp;
1362
1363 trace_xfs_da_node_remove(state->args);
1364
1365 node = drop_blk->bp->b_addr;
1366 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1367 ASSERT(drop_blk->index < nodehdr.count);
1368 ASSERT(drop_blk->index >= 0);
1369
1370 /*
1371 * Copy over the offending entry, or just zero it out.
1372 */
1373 index = drop_blk->index;
1374 btree = xfs_da3_node_tree_p(node);
1375 if (index < nodehdr.count - 1) {
1376 tmp = nodehdr.count - index - 1;
1377 tmp *= (uint)sizeof(xfs_da_node_entry_t);
1378 memmove(&btree[index], &btree[index + 1], tmp);
1379 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1380 XFS_DA_LOGRANGE(node, &btree[index], tmp));
1381 index = nodehdr.count - 1;
1382 }
1383 memset(&btree[index], 0, sizeof(xfs_da_node_entry_t));
1384 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1385 XFS_DA_LOGRANGE(node, &btree[index], sizeof(btree[index])));
1386 nodehdr.count -= 1;
1387 xfs_da3_node_hdr_to_disk(node, &nodehdr);
1388 xfs_trans_log_buf(state->args->trans, drop_blk->bp,
1389 XFS_DA_LOGRANGE(node, &node->hdr, xfs_da3_node_hdr_size(node)));
1390
1391 /*
1392 * Copy the last hash value from the block to propagate upwards.
1393 */
1394 drop_blk->hashval = be32_to_cpu(btree[index - 1].hashval);
1395 }
1396
1397 /*
1398 * Unbalance the elements between two intermediate nodes,
1399 * move all Btree elements from one node into another.
1400 */
1401 STATIC void
1402 xfs_da3_node_unbalance(
1403 struct xfs_da_state *state,
1404 struct xfs_da_state_blk *drop_blk,
1405 struct xfs_da_state_blk *save_blk)
1406 {
1407 struct xfs_da_intnode *drop_node;
1408 struct xfs_da_intnode *save_node;
1409 struct xfs_da_node_entry *drop_btree;
1410 struct xfs_da_node_entry *save_btree;
1411 struct xfs_da3_icnode_hdr drop_hdr;
1412 struct xfs_da3_icnode_hdr save_hdr;
1413 struct xfs_trans *tp;
1414 int sindex;
1415 int tmp;
1416
1417 trace_xfs_da_node_unbalance(state->args);
1418
1419 drop_node = drop_blk->bp->b_addr;
1420 save_node = save_blk->bp->b_addr;
1421 xfs_da3_node_hdr_from_disk(&drop_hdr, drop_node);
1422 xfs_da3_node_hdr_from_disk(&save_hdr, save_node);
1423 drop_btree = xfs_da3_node_tree_p(drop_node);
1424 save_btree = xfs_da3_node_tree_p(save_node);
1425 tp = state->args->trans;
1426
1427 /*
1428 * If the dying block has lower hashvals, then move all the
1429 * elements in the remaining block up to make a hole.
1430 */
1431 if ((be32_to_cpu(drop_btree[0].hashval) <
1432 be32_to_cpu(save_btree[0].hashval)) ||
1433 (be32_to_cpu(drop_btree[drop_hdr.count - 1].hashval) <
1434 be32_to_cpu(save_btree[save_hdr.count - 1].hashval))) {
1435 /* XXX: check this - is memmove dst correct? */
1436 tmp = save_hdr.count * sizeof(xfs_da_node_entry_t);
1437 memmove(&save_btree[drop_hdr.count], &save_btree[0], tmp);
1438
1439 sindex = 0;
1440 xfs_trans_log_buf(tp, save_blk->bp,
1441 XFS_DA_LOGRANGE(save_node, &save_btree[0],
1442 (save_hdr.count + drop_hdr.count) *
1443 sizeof(xfs_da_node_entry_t)));
1444 } else {
1445 sindex = save_hdr.count;
1446 xfs_trans_log_buf(tp, save_blk->bp,
1447 XFS_DA_LOGRANGE(save_node, &save_btree[sindex],
1448 drop_hdr.count * sizeof(xfs_da_node_entry_t)));
1449 }
1450
1451 /*
1452 * Move all the B-tree elements from drop_blk to save_blk.
1453 */
1454 tmp = drop_hdr.count * (uint)sizeof(xfs_da_node_entry_t);
1455 memcpy(&save_btree[sindex], &drop_btree[0], tmp);
1456 save_hdr.count += drop_hdr.count;
1457
1458 xfs_da3_node_hdr_to_disk(save_node, &save_hdr);
1459 xfs_trans_log_buf(tp, save_blk->bp,
1460 XFS_DA_LOGRANGE(save_node, &save_node->hdr,
1461 xfs_da3_node_hdr_size(save_node)));
1462
1463 /*
1464 * Save the last hashval in the remaining block for upward propagation.
1465 */
1466 save_blk->hashval = be32_to_cpu(save_btree[save_hdr.count - 1].hashval);
1467 }
1468
1469 /*========================================================================
1470 * Routines used for finding things in the Btree.
1471 *========================================================================*/
1472
1473 /*
1474 * Walk down the Btree looking for a particular filename, filling
1475 * in the state structure as we go.
1476 *
1477 * We will set the state structure to point to each of the elements
1478 * in each of the nodes where either the hashval is or should be.
1479 *
1480 * We support duplicate hashval's so for each entry in the current
1481 * node that could contain the desired hashval, descend. This is a
1482 * pruned depth-first tree search.
1483 */
1484 int /* error */
1485 xfs_da3_node_lookup_int(
1486 struct xfs_da_state *state,
1487 int *result)
1488 {
1489 struct xfs_da_state_blk *blk;
1490 struct xfs_da_blkinfo *curr;
1491 struct xfs_da_intnode *node;
1492 struct xfs_da_node_entry *btree;
1493 struct xfs_da3_icnode_hdr nodehdr;
1494 struct xfs_da_args *args;
1495 xfs_dablk_t blkno;
1496 xfs_dahash_t hashval;
1497 xfs_dahash_t btreehashval;
1498 int probe;
1499 int span;
1500 int max;
1501 int error;
1502 int retval;
1503
1504 args = state->args;
1505
1506 /*
1507 * Descend thru the B-tree searching each level for the right
1508 * node to use, until the right hashval is found.
1509 */
1510 blkno = (args->whichfork == XFS_DATA_FORK)? state->mp->m_dirleafblk : 0;
1511 for (blk = &state->path.blk[0], state->path.active = 1;
1512 state->path.active <= XFS_DA_NODE_MAXDEPTH;
1513 blk++, state->path.active++) {
1514 /*
1515 * Read the next node down in the tree.
1516 */
1517 blk->blkno = blkno;
1518 error = xfs_da3_node_read(args->trans, args->dp, blkno,
1519 -1, &blk->bp, args->whichfork);
1520 if (error) {
1521 blk->blkno = 0;
1522 state->path.active--;
1523 return(error);
1524 }
1525 curr = blk->bp->b_addr;
1526 blk->magic = be16_to_cpu(curr->magic);
1527
1528 if (blk->magic == XFS_ATTR_LEAF_MAGIC ||
1529 blk->magic == XFS_ATTR3_LEAF_MAGIC) {
1530 blk->magic = XFS_ATTR_LEAF_MAGIC;
1531 blk->hashval = xfs_attr_leaf_lasthash(blk->bp, NULL);
1532 break;
1533 }
1534
1535 if (blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1536 blk->magic == XFS_DIR3_LEAFN_MAGIC) {
1537 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1538 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp, NULL);
1539 break;
1540 }
1541
1542 blk->magic = XFS_DA_NODE_MAGIC;
1543
1544
1545 /*
1546 * Search an intermediate node for a match.
1547 */
1548 node = blk->bp->b_addr;
1549 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1550 btree = xfs_da3_node_tree_p(node);
1551
1552 max = nodehdr.count;
1553 blk->hashval = be32_to_cpu(btree[max - 1].hashval);
1554
1555 /*
1556 * Binary search. (note: small blocks will skip loop)
1557 */
1558 probe = span = max / 2;
1559 hashval = args->hashval;
1560 while (span > 4) {
1561 span /= 2;
1562 btreehashval = be32_to_cpu(btree[probe].hashval);
1563 if (btreehashval < hashval)
1564 probe += span;
1565 else if (btreehashval > hashval)
1566 probe -= span;
1567 else
1568 break;
1569 }
1570 ASSERT((probe >= 0) && (probe < max));
1571 ASSERT((span <= 4) ||
1572 (be32_to_cpu(btree[probe].hashval) == hashval));
1573
1574 /*
1575 * Since we may have duplicate hashval's, find the first
1576 * matching hashval in the node.
1577 */
1578 while (probe > 0 &&
1579 be32_to_cpu(btree[probe].hashval) >= hashval) {
1580 probe--;
1581 }
1582 while (probe < max &&
1583 be32_to_cpu(btree[probe].hashval) < hashval) {
1584 probe++;
1585 }
1586
1587 /*
1588 * Pick the right block to descend on.
1589 */
1590 if (probe == max) {
1591 blk->index = max - 1;
1592 blkno = be32_to_cpu(btree[max - 1].before);
1593 } else {
1594 blk->index = probe;
1595 blkno = be32_to_cpu(btree[probe].before);
1596 }
1597 }
1598
1599 /*
1600 * A leaf block that ends in the hashval that we are interested in
1601 * (final hashval == search hashval) means that the next block may
1602 * contain more entries with the same hashval, shift upward to the
1603 * next leaf and keep searching.
1604 */
1605 for (;;) {
1606 if (blk->magic == XFS_DIR2_LEAFN_MAGIC) {
1607 retval = xfs_dir2_leafn_lookup_int(blk->bp, args,
1608 &blk->index, state);
1609 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1610 retval = xfs_attr3_leaf_lookup_int(blk->bp, args);
1611 blk->index = args->index;
1612 args->blkno = blk->blkno;
1613 } else {
1614 ASSERT(0);
1615 return XFS_ERROR(EFSCORRUPTED);
1616 }
1617 if (((retval == ENOENT) || (retval == ENOATTR)) &&
1618 (blk->hashval == args->hashval)) {
1619 error = xfs_da3_path_shift(state, &state->path, 1, 1,
1620 &retval);
1621 if (error)
1622 return(error);
1623 if (retval == 0) {
1624 continue;
1625 } else if (blk->magic == XFS_ATTR_LEAF_MAGIC) {
1626 /* path_shift() gives ENOENT */
1627 retval = XFS_ERROR(ENOATTR);
1628 }
1629 }
1630 break;
1631 }
1632 *result = retval;
1633 return(0);
1634 }
1635
1636 /*========================================================================
1637 * Utility routines.
1638 *========================================================================*/
1639
1640 /*
1641 * Compare two intermediate nodes for "order".
1642 */
1643 STATIC int
1644 xfs_da3_node_order(
1645 struct xfs_buf *node1_bp,
1646 struct xfs_buf *node2_bp)
1647 {
1648 struct xfs_da_intnode *node1;
1649 struct xfs_da_intnode *node2;
1650 struct xfs_da_node_entry *btree1;
1651 struct xfs_da_node_entry *btree2;
1652 struct xfs_da3_icnode_hdr node1hdr;
1653 struct xfs_da3_icnode_hdr node2hdr;
1654
1655 node1 = node1_bp->b_addr;
1656 node2 = node2_bp->b_addr;
1657 xfs_da3_node_hdr_from_disk(&node1hdr, node1);
1658 xfs_da3_node_hdr_from_disk(&node2hdr, node2);
1659 btree1 = xfs_da3_node_tree_p(node1);
1660 btree2 = xfs_da3_node_tree_p(node2);
1661
1662 if (node1hdr.count > 0 && node2hdr.count > 0 &&
1663 ((be32_to_cpu(btree2[0].hashval) < be32_to_cpu(btree1[0].hashval)) ||
1664 (be32_to_cpu(btree2[node2hdr.count - 1].hashval) <
1665 be32_to_cpu(btree1[node1hdr.count - 1].hashval)))) {
1666 return 1;
1667 }
1668 return 0;
1669 }
1670
1671 /*
1672 * Link a new block into a doubly linked list of blocks (of whatever type).
1673 */
1674 int /* error */
1675 xfs_da3_blk_link(
1676 struct xfs_da_state *state,
1677 struct xfs_da_state_blk *old_blk,
1678 struct xfs_da_state_blk *new_blk)
1679 {
1680 struct xfs_da_blkinfo *old_info;
1681 struct xfs_da_blkinfo *new_info;
1682 struct xfs_da_blkinfo *tmp_info;
1683 struct xfs_da_args *args;
1684 struct xfs_buf *bp;
1685 int before = 0;
1686 int error;
1687
1688 /*
1689 * Set up environment.
1690 */
1691 args = state->args;
1692 ASSERT(args != NULL);
1693 old_info = old_blk->bp->b_addr;
1694 new_info = new_blk->bp->b_addr;
1695 ASSERT(old_blk->magic == XFS_DA_NODE_MAGIC ||
1696 old_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1697 old_blk->magic == XFS_ATTR_LEAF_MAGIC);
1698
1699 switch (old_blk->magic) {
1700 case XFS_ATTR_LEAF_MAGIC:
1701 before = xfs_attr_leaf_order(old_blk->bp, new_blk->bp);
1702 break;
1703 case XFS_DIR2_LEAFN_MAGIC:
1704 before = xfs_dir2_leafn_order(old_blk->bp, new_blk->bp);
1705 break;
1706 case XFS_DA_NODE_MAGIC:
1707 before = xfs_da3_node_order(old_blk->bp, new_blk->bp);
1708 break;
1709 }
1710
1711 /*
1712 * Link blocks in appropriate order.
1713 */
1714 if (before) {
1715 /*
1716 * Link new block in before existing block.
1717 */
1718 trace_xfs_da_link_before(args);
1719 new_info->forw = cpu_to_be32(old_blk->blkno);
1720 new_info->back = old_info->back;
1721 if (old_info->back) {
1722 error = xfs_da3_node_read(args->trans, args->dp,
1723 be32_to_cpu(old_info->back),
1724 -1, &bp, args->whichfork);
1725 if (error)
1726 return(error);
1727 ASSERT(bp != NULL);
1728 tmp_info = bp->b_addr;
1729 ASSERT(tmp_info->magic == old_info->magic);
1730 ASSERT(be32_to_cpu(tmp_info->forw) == old_blk->blkno);
1731 tmp_info->forw = cpu_to_be32(new_blk->blkno);
1732 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1733 }
1734 old_info->back = cpu_to_be32(new_blk->blkno);
1735 } else {
1736 /*
1737 * Link new block in after existing block.
1738 */
1739 trace_xfs_da_link_after(args);
1740 new_info->forw = old_info->forw;
1741 new_info->back = cpu_to_be32(old_blk->blkno);
1742 if (old_info->forw) {
1743 error = xfs_da3_node_read(args->trans, args->dp,
1744 be32_to_cpu(old_info->forw),
1745 -1, &bp, args->whichfork);
1746 if (error)
1747 return(error);
1748 ASSERT(bp != NULL);
1749 tmp_info = bp->b_addr;
1750 ASSERT(tmp_info->magic == old_info->magic);
1751 ASSERT(be32_to_cpu(tmp_info->back) == old_blk->blkno);
1752 tmp_info->back = cpu_to_be32(new_blk->blkno);
1753 xfs_trans_log_buf(args->trans, bp, 0, sizeof(*tmp_info)-1);
1754 }
1755 old_info->forw = cpu_to_be32(new_blk->blkno);
1756 }
1757
1758 xfs_trans_log_buf(args->trans, old_blk->bp, 0, sizeof(*tmp_info) - 1);
1759 xfs_trans_log_buf(args->trans, new_blk->bp, 0, sizeof(*tmp_info) - 1);
1760 return(0);
1761 }
1762
1763 /*
1764 * Unlink a block from a doubly linked list of blocks.
1765 */
1766 STATIC int /* error */
1767 xfs_da3_blk_unlink(
1768 struct xfs_da_state *state,
1769 struct xfs_da_state_blk *drop_blk,
1770 struct xfs_da_state_blk *save_blk)
1771 {
1772 struct xfs_da_blkinfo *drop_info;
1773 struct xfs_da_blkinfo *save_info;
1774 struct xfs_da_blkinfo *tmp_info;
1775 struct xfs_da_args *args;
1776 struct xfs_buf *bp;
1777 int error;
1778
1779 /*
1780 * Set up environment.
1781 */
1782 args = state->args;
1783 ASSERT(args != NULL);
1784 save_info = save_blk->bp->b_addr;
1785 drop_info = drop_blk->bp->b_addr;
1786 ASSERT(save_blk->magic == XFS_DA_NODE_MAGIC ||
1787 save_blk->magic == XFS_DIR2_LEAFN_MAGIC ||
1788 save_blk->magic == XFS_ATTR_LEAF_MAGIC);
1789 ASSERT(save_blk->magic == drop_blk->magic);
1790 ASSERT((be32_to_cpu(save_info->forw) == drop_blk->blkno) ||
1791 (be32_to_cpu(save_info->back) == drop_blk->blkno));
1792 ASSERT((be32_to_cpu(drop_info->forw) == save_blk->blkno) ||
1793 (be32_to_cpu(drop_info->back) == save_blk->blkno));
1794
1795 /*
1796 * Unlink the leaf block from the doubly linked chain of leaves.
1797 */
1798 if (be32_to_cpu(save_info->back) == drop_blk->blkno) {
1799 trace_xfs_da_unlink_back(args);
1800 save_info->back = drop_info->back;
1801 if (drop_info->back) {
1802 error = xfs_da3_node_read(args->trans, args->dp,
1803 be32_to_cpu(drop_info->back),
1804 -1, &bp, args->whichfork);
1805 if (error)
1806 return(error);
1807 ASSERT(bp != NULL);
1808 tmp_info = bp->b_addr;
1809 ASSERT(tmp_info->magic == save_info->magic);
1810 ASSERT(be32_to_cpu(tmp_info->forw) == drop_blk->blkno);
1811 tmp_info->forw = cpu_to_be32(save_blk->blkno);
1812 xfs_trans_log_buf(args->trans, bp, 0,
1813 sizeof(*tmp_info) - 1);
1814 }
1815 } else {
1816 trace_xfs_da_unlink_forward(args);
1817 save_info->forw = drop_info->forw;
1818 if (drop_info->forw) {
1819 error = xfs_da3_node_read(args->trans, args->dp,
1820 be32_to_cpu(drop_info->forw),
1821 -1, &bp, args->whichfork);
1822 if (error)
1823 return(error);
1824 ASSERT(bp != NULL);
1825 tmp_info = bp->b_addr;
1826 ASSERT(tmp_info->magic == save_info->magic);
1827 ASSERT(be32_to_cpu(tmp_info->back) == drop_blk->blkno);
1828 tmp_info->back = cpu_to_be32(save_blk->blkno);
1829 xfs_trans_log_buf(args->trans, bp, 0,
1830 sizeof(*tmp_info) - 1);
1831 }
1832 }
1833
1834 xfs_trans_log_buf(args->trans, save_blk->bp, 0, sizeof(*save_info) - 1);
1835 return(0);
1836 }
1837
1838 /*
1839 * Move a path "forward" or "!forward" one block at the current level.
1840 *
1841 * This routine will adjust a "path" to point to the next block
1842 * "forward" (higher hashvalues) or "!forward" (lower hashvals) in the
1843 * Btree, including updating pointers to the intermediate nodes between
1844 * the new bottom and the root.
1845 */
1846 int /* error */
1847 xfs_da3_path_shift(
1848 struct xfs_da_state *state,
1849 struct xfs_da_state_path *path,
1850 int forward,
1851 int release,
1852 int *result)
1853 {
1854 struct xfs_da_state_blk *blk;
1855 struct xfs_da_blkinfo *info;
1856 struct xfs_da_intnode *node;
1857 struct xfs_da_args *args;
1858 struct xfs_da_node_entry *btree;
1859 struct xfs_da3_icnode_hdr nodehdr;
1860 xfs_dablk_t blkno = 0;
1861 int level;
1862 int error;
1863
1864 trace_xfs_da_path_shift(state->args);
1865
1866 /*
1867 * Roll up the Btree looking for the first block where our
1868 * current index is not at the edge of the block. Note that
1869 * we skip the bottom layer because we want the sibling block.
1870 */
1871 args = state->args;
1872 ASSERT(args != NULL);
1873 ASSERT(path != NULL);
1874 ASSERT((path->active > 0) && (path->active < XFS_DA_NODE_MAXDEPTH));
1875 level = (path->active-1) - 1; /* skip bottom layer in path */
1876 for (blk = &path->blk[level]; level >= 0; blk--, level--) {
1877 node = blk->bp->b_addr;
1878 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1879 btree = xfs_da3_node_tree_p(node);
1880
1881 if (forward && (blk->index < nodehdr.count - 1)) {
1882 blk->index++;
1883 blkno = be32_to_cpu(btree[blk->index].before);
1884 break;
1885 } else if (!forward && (blk->index > 0)) {
1886 blk->index--;
1887 blkno = be32_to_cpu(btree[blk->index].before);
1888 break;
1889 }
1890 }
1891 if (level < 0) {
1892 *result = XFS_ERROR(ENOENT); /* we're out of our tree */
1893 ASSERT(args->op_flags & XFS_DA_OP_OKNOENT);
1894 return(0);
1895 }
1896
1897 /*
1898 * Roll down the edge of the subtree until we reach the
1899 * same depth we were at originally.
1900 */
1901 for (blk++, level++; level < path->active; blk++, level++) {
1902 /*
1903 * Release the old block.
1904 * (if it's dirty, trans won't actually let go)
1905 */
1906 if (release)
1907 xfs_trans_brelse(args->trans, blk->bp);
1908
1909 /*
1910 * Read the next child block.
1911 */
1912 blk->blkno = blkno;
1913 error = xfs_da3_node_read(args->trans, args->dp, blkno, -1,
1914 &blk->bp, args->whichfork);
1915 if (error)
1916 return(error);
1917 info = blk->bp->b_addr;
1918 ASSERT(info->magic == cpu_to_be16(XFS_DA_NODE_MAGIC) ||
1919 info->magic == cpu_to_be16(XFS_DA3_NODE_MAGIC) ||
1920 info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
1921 info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC) ||
1922 info->magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
1923 info->magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
1924
1925
1926 /*
1927 * Note: we flatten the magic number to a single type so we
1928 * don't have to compare against crc/non-crc types elsewhere.
1929 */
1930 switch (be16_to_cpu(info->magic)) {
1931 case XFS_DA_NODE_MAGIC:
1932 case XFS_DA3_NODE_MAGIC:
1933 blk->magic = XFS_DA_NODE_MAGIC;
1934 node = (xfs_da_intnode_t *)info;
1935 xfs_da3_node_hdr_from_disk(&nodehdr, node);
1936 btree = xfs_da3_node_tree_p(node);
1937 blk->hashval = be32_to_cpu(btree[nodehdr.count - 1].hashval);
1938 if (forward)
1939 blk->index = 0;
1940 else
1941 blk->index = nodehdr.count - 1;
1942 blkno = be32_to_cpu(btree[blk->index].before);
1943 break;
1944 case XFS_ATTR_LEAF_MAGIC:
1945 case XFS_ATTR3_LEAF_MAGIC:
1946 blk->magic = XFS_ATTR_LEAF_MAGIC;
1947 ASSERT(level == path->active-1);
1948 blk->index = 0;
1949 blk->hashval = xfs_attr_leaf_lasthash(blk->bp,
1950 NULL);
1951 break;
1952 case XFS_DIR2_LEAFN_MAGIC:
1953 case XFS_DIR3_LEAFN_MAGIC:
1954 blk->magic = XFS_DIR2_LEAFN_MAGIC;
1955 ASSERT(level == path->active-1);
1956 blk->index = 0;
1957 blk->hashval = xfs_dir2_leafn_lasthash(blk->bp,
1958 NULL);
1959 break;
1960 default:
1961 ASSERT(0);
1962 break;
1963 }
1964 }
1965 *result = 0;
1966 return 0;
1967 }
1968
1969
1970 /*========================================================================
1971 * Utility routines.
1972 *========================================================================*/
1973
1974 /*
1975 * Implement a simple hash on a character string.
1976 * Rotate the hash value by 7 bits, then XOR each character in.
1977 * This is implemented with some source-level loop unrolling.
1978 */
1979 xfs_dahash_t
1980 xfs_da_hashname(const __uint8_t *name, int namelen)
1981 {
1982 xfs_dahash_t hash;
1983
1984 /*
1985 * Do four characters at a time as long as we can.
1986 */
1987 for (hash = 0; namelen >= 4; namelen -= 4, name += 4)
1988 hash = (name[0] << 21) ^ (name[1] << 14) ^ (name[2] << 7) ^
1989 (name[3] << 0) ^ rol32(hash, 7 * 4);
1990
1991 /*
1992 * Now do the rest of the characters.
1993 */
1994 switch (namelen) {
1995 case 3:
1996 return (name[0] << 14) ^ (name[1] << 7) ^ (name[2] << 0) ^
1997 rol32(hash, 7 * 3);
1998 case 2:
1999 return (name[0] << 7) ^ (name[1] << 0) ^ rol32(hash, 7 * 2);
2000 case 1:
2001 return (name[0] << 0) ^ rol32(hash, 7 * 1);
2002 default: /* case 0: */
2003 return hash;
2004 }
2005 }
2006
2007 enum xfs_dacmp
2008 xfs_da_compname(
2009 struct xfs_da_args *args,
2010 const unsigned char *name,
2011 int len)
2012 {
2013 return (args->namelen == len && memcmp(args->name, name, len) == 0) ?
2014 XFS_CMP_EXACT : XFS_CMP_DIFFERENT;
2015 }
2016
2017 static xfs_dahash_t
2018 xfs_default_hashname(
2019 struct xfs_name *name)
2020 {
2021 return xfs_da_hashname(name->name, name->len);
2022 }
2023
2024 const struct xfs_nameops xfs_default_nameops = {
2025 .hashname = xfs_default_hashname,
2026 .compname = xfs_da_compname
2027 };
2028
2029 int
2030 xfs_da_grow_inode_int(
2031 struct xfs_da_args *args,
2032 xfs_fileoff_t *bno,
2033 int count)
2034 {
2035 struct xfs_trans *tp = args->trans;
2036 struct xfs_inode *dp = args->dp;
2037 int w = args->whichfork;
2038 xfs_drfsbno_t nblks = dp->i_d.di_nblocks;
2039 struct xfs_bmbt_irec map, *mapp;
2040 int nmap, error, got, i, mapi;
2041
2042 /*
2043 * Find a spot in the file space to put the new block.
2044 */
2045 error = xfs_bmap_first_unused(tp, dp, count, bno, w);
2046 if (error)
2047 return error;
2048
2049 /*
2050 * Try mapping it in one filesystem block.
2051 */
2052 nmap = 1;
2053 ASSERT(args->firstblock != NULL);
2054 error = xfs_bmapi_write(tp, dp, *bno, count,
2055 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA|XFS_BMAPI_CONTIG,
2056 args->firstblock, args->total, &map, &nmap,
2057 args->flist);
2058 if (error)
2059 return error;
2060
2061 ASSERT(nmap <= 1);
2062 if (nmap == 1) {
2063 mapp = &map;
2064 mapi = 1;
2065 } else if (nmap == 0 && count > 1) {
2066 xfs_fileoff_t b;
2067 int c;
2068
2069 /*
2070 * If we didn't get it and the block might work if fragmented,
2071 * try without the CONTIG flag. Loop until we get it all.
2072 */
2073 mapp = kmem_alloc(sizeof(*mapp) * count, KM_SLEEP);
2074 for (b = *bno, mapi = 0; b < *bno + count; ) {
2075 nmap = MIN(XFS_BMAP_MAX_NMAP, count);
2076 c = (int)(*bno + count - b);
2077 error = xfs_bmapi_write(tp, dp, b, c,
2078 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2079 args->firstblock, args->total,
2080 &mapp[mapi], &nmap, args->flist);
2081 if (error)
2082 goto out_free_map;
2083 if (nmap < 1)
2084 break;
2085 mapi += nmap;
2086 b = mapp[mapi - 1].br_startoff +
2087 mapp[mapi - 1].br_blockcount;
2088 }
2089 } else {
2090 mapi = 0;
2091 mapp = NULL;
2092 }
2093
2094 /*
2095 * Count the blocks we got, make sure it matches the total.
2096 */
2097 for (i = 0, got = 0; i < mapi; i++)
2098 got += mapp[i].br_blockcount;
2099 if (got != count || mapp[0].br_startoff != *bno ||
2100 mapp[mapi - 1].br_startoff + mapp[mapi - 1].br_blockcount !=
2101 *bno + count) {
2102 error = XFS_ERROR(ENOSPC);
2103 goto out_free_map;
2104 }
2105
2106 /* account for newly allocated blocks in reserved blocks total */
2107 args->total -= dp->i_d.di_nblocks - nblks;
2108
2109 out_free_map:
2110 if (mapp != &map)
2111 kmem_free(mapp);
2112 return error;
2113 }
2114
2115 /*
2116 * Add a block to the btree ahead of the file.
2117 * Return the new block number to the caller.
2118 */
2119 int
2120 xfs_da_grow_inode(
2121 struct xfs_da_args *args,
2122 xfs_dablk_t *new_blkno)
2123 {
2124 xfs_fileoff_t bno;
2125 int count;
2126 int error;
2127
2128 trace_xfs_da_grow_inode(args);
2129
2130 if (args->whichfork == XFS_DATA_FORK) {
2131 bno = args->dp->i_mount->m_dirleafblk;
2132 count = args->dp->i_mount->m_dirblkfsbs;
2133 } else {
2134 bno = 0;
2135 count = 1;
2136 }
2137
2138 error = xfs_da_grow_inode_int(args, &bno, count);
2139 if (!error)
2140 *new_blkno = (xfs_dablk_t)bno;
2141 return error;
2142 }
2143
2144 /*
2145 * Ick. We need to always be able to remove a btree block, even
2146 * if there's no space reservation because the filesystem is full.
2147 * This is called if xfs_bunmapi on a btree block fails due to ENOSPC.
2148 * It swaps the target block with the last block in the file. The
2149 * last block in the file can always be removed since it can't cause
2150 * a bmap btree split to do that.
2151 */
2152 STATIC int
2153 xfs_da3_swap_lastblock(
2154 struct xfs_da_args *args,
2155 xfs_dablk_t *dead_blknop,
2156 struct xfs_buf **dead_bufp)
2157 {
2158 struct xfs_da_blkinfo *dead_info;
2159 struct xfs_da_blkinfo *sib_info;
2160 struct xfs_da_intnode *par_node;
2161 struct xfs_da_intnode *dead_node;
2162 struct xfs_dir2_leaf *dead_leaf2;
2163 struct xfs_da_node_entry *btree;
2164 struct xfs_da3_icnode_hdr par_hdr;
2165 struct xfs_inode *ip;
2166 struct xfs_trans *tp;
2167 struct xfs_mount *mp;
2168 struct xfs_buf *dead_buf;
2169 struct xfs_buf *last_buf;
2170 struct xfs_buf *sib_buf;
2171 struct xfs_buf *par_buf;
2172 xfs_dahash_t dead_hash;
2173 xfs_fileoff_t lastoff;
2174 xfs_dablk_t dead_blkno;
2175 xfs_dablk_t last_blkno;
2176 xfs_dablk_t sib_blkno;
2177 xfs_dablk_t par_blkno;
2178 int error;
2179 int w;
2180 int entno;
2181 int level;
2182 int dead_level;
2183
2184 trace_xfs_da_swap_lastblock(args);
2185
2186 dead_buf = *dead_bufp;
2187 dead_blkno = *dead_blknop;
2188 tp = args->trans;
2189 ip = args->dp;
2190 w = args->whichfork;
2191 ASSERT(w == XFS_DATA_FORK);
2192 mp = ip->i_mount;
2193 lastoff = mp->m_dirfreeblk;
2194 error = xfs_bmap_last_before(tp, ip, &lastoff, w);
2195 if (error)
2196 return error;
2197 if (unlikely(lastoff == 0)) {
2198 XFS_ERROR_REPORT("xfs_da_swap_lastblock(1)", XFS_ERRLEVEL_LOW,
2199 mp);
2200 return XFS_ERROR(EFSCORRUPTED);
2201 }
2202 /*
2203 * Read the last block in the btree space.
2204 */
2205 last_blkno = (xfs_dablk_t)lastoff - mp->m_dirblkfsbs;
2206 error = xfs_da3_node_read(tp, ip, last_blkno, -1, &last_buf, w);
2207 if (error)
2208 return error;
2209 /*
2210 * Copy the last block into the dead buffer and log it.
2211 */
2212 memcpy(dead_buf->b_addr, last_buf->b_addr, mp->m_dirblksize);
2213 xfs_trans_log_buf(tp, dead_buf, 0, mp->m_dirblksize - 1);
2214 dead_info = dead_buf->b_addr;
2215 /*
2216 * Get values from the moved block.
2217 */
2218 if (dead_info->magic == cpu_to_be16(XFS_DIR2_LEAFN_MAGIC) ||
2219 dead_info->magic == cpu_to_be16(XFS_DIR3_LEAFN_MAGIC)) {
2220 struct xfs_dir3_icleaf_hdr leafhdr;
2221 struct xfs_dir2_leaf_entry *ents;
2222
2223 dead_leaf2 = (xfs_dir2_leaf_t *)dead_info;
2224 xfs_dir3_leaf_hdr_from_disk(&leafhdr, dead_leaf2);
2225 ents = xfs_dir3_leaf_ents_p(dead_leaf2);
2226 dead_level = 0;
2227 dead_hash = be32_to_cpu(ents[leafhdr.count - 1].hashval);
2228 } else {
2229 struct xfs_da3_icnode_hdr deadhdr;
2230
2231 dead_node = (xfs_da_intnode_t *)dead_info;
2232 xfs_da3_node_hdr_from_disk(&deadhdr, dead_node);
2233 btree = xfs_da3_node_tree_p(dead_node);
2234 dead_level = deadhdr.level;
2235 dead_hash = be32_to_cpu(btree[deadhdr.count - 1].hashval);
2236 }
2237 sib_buf = par_buf = NULL;
2238 /*
2239 * If the moved block has a left sibling, fix up the pointers.
2240 */
2241 if ((sib_blkno = be32_to_cpu(dead_info->back))) {
2242 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2243 if (error)
2244 goto done;
2245 sib_info = sib_buf->b_addr;
2246 if (unlikely(
2247 be32_to_cpu(sib_info->forw) != last_blkno ||
2248 sib_info->magic != dead_info->magic)) {
2249 XFS_ERROR_REPORT("xfs_da_swap_lastblock(2)",
2250 XFS_ERRLEVEL_LOW, mp);
2251 error = XFS_ERROR(EFSCORRUPTED);
2252 goto done;
2253 }
2254 sib_info->forw = cpu_to_be32(dead_blkno);
2255 xfs_trans_log_buf(tp, sib_buf,
2256 XFS_DA_LOGRANGE(sib_info, &sib_info->forw,
2257 sizeof(sib_info->forw)));
2258 sib_buf = NULL;
2259 }
2260 /*
2261 * If the moved block has a right sibling, fix up the pointers.
2262 */
2263 if ((sib_blkno = be32_to_cpu(dead_info->forw))) {
2264 error = xfs_da3_node_read(tp, ip, sib_blkno, -1, &sib_buf, w);
2265 if (error)
2266 goto done;
2267 sib_info = sib_buf->b_addr;
2268 if (unlikely(
2269 be32_to_cpu(sib_info->back) != last_blkno ||
2270 sib_info->magic != dead_info->magic)) {
2271 XFS_ERROR_REPORT("xfs_da_swap_lastblock(3)",
2272 XFS_ERRLEVEL_LOW, mp);
2273 error = XFS_ERROR(EFSCORRUPTED);
2274 goto done;
2275 }
2276 sib_info->back = cpu_to_be32(dead_blkno);
2277 xfs_trans_log_buf(tp, sib_buf,
2278 XFS_DA_LOGRANGE(sib_info, &sib_info->back,
2279 sizeof(sib_info->back)));
2280 sib_buf = NULL;
2281 }
2282 par_blkno = mp->m_dirleafblk;
2283 level = -1;
2284 /*
2285 * Walk down the tree looking for the parent of the moved block.
2286 */
2287 for (;;) {
2288 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2289 if (error)
2290 goto done;
2291 par_node = par_buf->b_addr;
2292 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2293 if (level >= 0 && level != par_hdr.level + 1) {
2294 XFS_ERROR_REPORT("xfs_da_swap_lastblock(4)",
2295 XFS_ERRLEVEL_LOW, mp);
2296 error = XFS_ERROR(EFSCORRUPTED);
2297 goto done;
2298 }
2299 level = par_hdr.level;
2300 btree = xfs_da3_node_tree_p(par_node);
2301 for (entno = 0;
2302 entno < par_hdr.count &&
2303 be32_to_cpu(btree[entno].hashval) < dead_hash;
2304 entno++)
2305 continue;
2306 if (entno == par_hdr.count) {
2307 XFS_ERROR_REPORT("xfs_da_swap_lastblock(5)",
2308 XFS_ERRLEVEL_LOW, mp);
2309 error = XFS_ERROR(EFSCORRUPTED);
2310 goto done;
2311 }
2312 par_blkno = be32_to_cpu(btree[entno].before);
2313 if (level == dead_level + 1)
2314 break;
2315 xfs_trans_brelse(tp, par_buf);
2316 par_buf = NULL;
2317 }
2318 /*
2319 * We're in the right parent block.
2320 * Look for the right entry.
2321 */
2322 for (;;) {
2323 for (;
2324 entno < par_hdr.count &&
2325 be32_to_cpu(btree[entno].before) != last_blkno;
2326 entno++)
2327 continue;
2328 if (entno < par_hdr.count)
2329 break;
2330 par_blkno = par_hdr.forw;
2331 xfs_trans_brelse(tp, par_buf);
2332 par_buf = NULL;
2333 if (unlikely(par_blkno == 0)) {
2334 XFS_ERROR_REPORT("xfs_da_swap_lastblock(6)",
2335 XFS_ERRLEVEL_LOW, mp);
2336 error = XFS_ERROR(EFSCORRUPTED);
2337 goto done;
2338 }
2339 error = xfs_da3_node_read(tp, ip, par_blkno, -1, &par_buf, w);
2340 if (error)
2341 goto done;
2342 par_node = par_buf->b_addr;
2343 xfs_da3_node_hdr_from_disk(&par_hdr, par_node);
2344 if (par_hdr.level != level) {
2345 XFS_ERROR_REPORT("xfs_da_swap_lastblock(7)",
2346 XFS_ERRLEVEL_LOW, mp);
2347 error = XFS_ERROR(EFSCORRUPTED);
2348 goto done;
2349 }
2350 btree = xfs_da3_node_tree_p(par_node);
2351 entno = 0;
2352 }
2353 /*
2354 * Update the parent entry pointing to the moved block.
2355 */
2356 btree[entno].before = cpu_to_be32(dead_blkno);
2357 xfs_trans_log_buf(tp, par_buf,
2358 XFS_DA_LOGRANGE(par_node, &btree[entno].before,
2359 sizeof(btree[entno].before)));
2360 *dead_blknop = last_blkno;
2361 *dead_bufp = last_buf;
2362 return 0;
2363 done:
2364 if (par_buf)
2365 xfs_trans_brelse(tp, par_buf);
2366 if (sib_buf)
2367 xfs_trans_brelse(tp, sib_buf);
2368 xfs_trans_brelse(tp, last_buf);
2369 return error;
2370 }
2371
2372 /*
2373 * Remove a btree block from a directory or attribute.
2374 */
2375 int
2376 xfs_da_shrink_inode(
2377 xfs_da_args_t *args,
2378 xfs_dablk_t dead_blkno,
2379 struct xfs_buf *dead_buf)
2380 {
2381 xfs_inode_t *dp;
2382 int done, error, w, count;
2383 xfs_trans_t *tp;
2384 xfs_mount_t *mp;
2385
2386 trace_xfs_da_shrink_inode(args);
2387
2388 dp = args->dp;
2389 w = args->whichfork;
2390 tp = args->trans;
2391 mp = dp->i_mount;
2392 if (w == XFS_DATA_FORK)
2393 count = mp->m_dirblkfsbs;
2394 else
2395 count = 1;
2396 for (;;) {
2397 /*
2398 * Remove extents. If we get ENOSPC for a dir we have to move
2399 * the last block to the place we want to kill.
2400 */
2401 error = xfs_bunmapi(tp, dp, dead_blkno, count,
2402 xfs_bmapi_aflag(w)|XFS_BMAPI_METADATA,
2403 0, args->firstblock, args->flist, &done);
2404 if (error == ENOSPC) {
2405 if (w != XFS_DATA_FORK)
2406 break;
2407 error = xfs_da3_swap_lastblock(args, &dead_blkno,
2408 &dead_buf);
2409 if (error)
2410 break;
2411 } else {
2412 break;
2413 }
2414 }
2415 xfs_trans_binval(tp, dead_buf);
2416 return error;
2417 }
2418
2419 /*
2420 * See if the mapping(s) for this btree block are valid, i.e.
2421 * don't contain holes, are logically contiguous, and cover the whole range.
2422 */
2423 STATIC int
2424 xfs_da_map_covers_blocks(
2425 int nmap,
2426 xfs_bmbt_irec_t *mapp,
2427 xfs_dablk_t bno,
2428 int count)
2429 {
2430 int i;
2431 xfs_fileoff_t off;
2432
2433 for (i = 0, off = bno; i < nmap; i++) {
2434 if (mapp[i].br_startblock == HOLESTARTBLOCK ||
2435 mapp[i].br_startblock == DELAYSTARTBLOCK) {
2436 return 0;
2437 }
2438 if (off != mapp[i].br_startoff) {
2439 return 0;
2440 }
2441 off += mapp[i].br_blockcount;
2442 }
2443 return off == bno + count;
2444 }
2445
2446 /*
2447 * Convert a struct xfs_bmbt_irec to a struct xfs_buf_map.
2448 *
2449 * For the single map case, it is assumed that the caller has provided a pointer
2450 * to a valid xfs_buf_map. For the multiple map case, this function will
2451 * allocate the xfs_buf_map to hold all the maps and replace the caller's single
2452 * map pointer with the allocated map.
2453 */
2454 static int
2455 xfs_buf_map_from_irec(
2456 struct xfs_mount *mp,
2457 struct xfs_buf_map **mapp,
2458 unsigned int *nmaps,
2459 struct xfs_bmbt_irec *irecs,
2460 unsigned int nirecs)
2461 {
2462 struct xfs_buf_map *map;
2463 int i;
2464
2465 ASSERT(*nmaps == 1);
2466 ASSERT(nirecs >= 1);
2467
2468 if (nirecs > 1) {
2469 map = kmem_zalloc(nirecs * sizeof(struct xfs_buf_map),
2470 KM_SLEEP | KM_NOFS);
2471 if (!map)
2472 return ENOMEM;
2473 *mapp = map;
2474 }
2475
2476 *nmaps = nirecs;
2477 map = *mapp;
2478 for (i = 0; i < *nmaps; i++) {
2479 ASSERT(irecs[i].br_startblock != DELAYSTARTBLOCK &&
2480 irecs[i].br_startblock != HOLESTARTBLOCK);
2481 map[i].bm_bn = XFS_FSB_TO_DADDR(mp, irecs[i].br_startblock);
2482 map[i].bm_len = XFS_FSB_TO_BB(mp, irecs[i].br_blockcount);
2483 }
2484 return 0;
2485 }
2486
2487 /*
2488 * Map the block we are given ready for reading. There are three possible return
2489 * values:
2490 * -1 - will be returned if we land in a hole and mappedbno == -2 so the
2491 * caller knows not to execute a subsequent read.
2492 * 0 - if we mapped the block successfully
2493 * >0 - positive error number if there was an error.
2494 */
2495 static int
2496 xfs_dabuf_map(
2497 struct xfs_trans *trans,
2498 struct xfs_inode *dp,
2499 xfs_dablk_t bno,
2500 xfs_daddr_t mappedbno,
2501 int whichfork,
2502 struct xfs_buf_map **map,
2503 int *nmaps)
2504 {
2505 struct xfs_mount *mp = dp->i_mount;
2506 int nfsb;
2507 int error = 0;
2508 struct xfs_bmbt_irec irec;
2509 struct xfs_bmbt_irec *irecs = &irec;
2510 int nirecs;
2511
2512 ASSERT(map && *map);
2513 ASSERT(*nmaps == 1);
2514
2515 nfsb = (whichfork == XFS_DATA_FORK) ? mp->m_dirblkfsbs : 1;
2516
2517 /*
2518 * Caller doesn't have a mapping. -2 means don't complain
2519 * if we land in a hole.
2520 */
2521 if (mappedbno == -1 || mappedbno == -2) {
2522 /*
2523 * Optimize the one-block case.
2524 */
2525 if (nfsb != 1)
2526 irecs = kmem_zalloc(sizeof(irec) * nfsb,
2527 KM_SLEEP | KM_NOFS);
2528
2529 nirecs = nfsb;
2530 error = xfs_bmapi_read(dp, (xfs_fileoff_t)bno, nfsb, irecs,
2531 &nirecs, xfs_bmapi_aflag(whichfork));
2532 if (error)
2533 goto out;
2534 } else {
2535 irecs->br_startblock = XFS_DADDR_TO_FSB(mp, mappedbno);
2536 irecs->br_startoff = (xfs_fileoff_t)bno;
2537 irecs->br_blockcount = nfsb;
2538 irecs->br_state = 0;
2539 nirecs = 1;
2540 }
2541
2542 if (!xfs_da_map_covers_blocks(nirecs, irecs, bno, nfsb)) {
2543 error = mappedbno == -2 ? -1 : XFS_ERROR(EFSCORRUPTED);
2544 if (unlikely(error == EFSCORRUPTED)) {
2545 if (xfs_error_level >= XFS_ERRLEVEL_LOW) {
2546 int i;
2547 xfs_alert(mp, "%s: bno %lld dir: inode %lld",
2548 __func__, (long long)bno,
2549 (long long)dp->i_ino);
2550 for (i = 0; i < *nmaps; i++) {
2551 xfs_alert(mp,
2552 "[%02d] br_startoff %lld br_startblock %lld br_blockcount %lld br_state %d",
2553 i,
2554 (long long)irecs[i].br_startoff,
2555 (long long)irecs[i].br_startblock,
2556 (long long)irecs[i].br_blockcount,
2557 irecs[i].br_state);
2558 }
2559 }
2560 XFS_ERROR_REPORT("xfs_da_do_buf(1)",
2561 XFS_ERRLEVEL_LOW, mp);
2562 }
2563 goto out;
2564 }
2565 error = xfs_buf_map_from_irec(mp, map, nmaps, irecs, nirecs);
2566 out:
2567 if (irecs != &irec)
2568 kmem_free(irecs);
2569 return error;
2570 }
2571
2572 /*
2573 * Get a buffer for the dir/attr block.
2574 */
2575 int
2576 xfs_da_get_buf(
2577 struct xfs_trans *trans,
2578 struct xfs_inode *dp,
2579 xfs_dablk_t bno,
2580 xfs_daddr_t mappedbno,
2581 struct xfs_buf **bpp,
2582 int whichfork)
2583 {
2584 struct xfs_buf *bp;
2585 struct xfs_buf_map map;
2586 struct xfs_buf_map *mapp;
2587 int nmap;
2588 int error;
2589
2590 *bpp = NULL;
2591 mapp = &map;
2592 nmap = 1;
2593 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2594 &mapp, &nmap);
2595 if (error) {
2596 /* mapping a hole is not an error, but we don't continue */
2597 if (error == -1)
2598 error = 0;
2599 goto out_free;
2600 }
2601
2602 bp = xfs_trans_get_buf_map(trans, dp->i_mount->m_ddev_targp,
2603 mapp, nmap, 0);
2604 error = bp ? bp->b_error : XFS_ERROR(EIO);
2605 if (error) {
2606 xfs_trans_brelse(trans, bp);
2607 goto out_free;
2608 }
2609
2610 *bpp = bp;
2611
2612 out_free:
2613 if (mapp != &map)
2614 kmem_free(mapp);
2615
2616 return error;
2617 }
2618
2619 /*
2620 * Get a buffer for the dir/attr block, fill in the contents.
2621 */
2622 int
2623 xfs_da_read_buf(
2624 struct xfs_trans *trans,
2625 struct xfs_inode *dp,
2626 xfs_dablk_t bno,
2627 xfs_daddr_t mappedbno,
2628 struct xfs_buf **bpp,
2629 int whichfork,
2630 const struct xfs_buf_ops *ops)
2631 {
2632 struct xfs_buf *bp;
2633 struct xfs_buf_map map;
2634 struct xfs_buf_map *mapp;
2635 int nmap;
2636 int error;
2637
2638 *bpp = NULL;
2639 mapp = &map;
2640 nmap = 1;
2641 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2642 &mapp, &nmap);
2643 if (error) {
2644 /* mapping a hole is not an error, but we don't continue */
2645 if (error == -1)
2646 error = 0;
2647 goto out_free;
2648 }
2649
2650 error = xfs_trans_read_buf_map(dp->i_mount, trans,
2651 dp->i_mount->m_ddev_targp,
2652 mapp, nmap, 0, &bp, ops);
2653 if (error)
2654 goto out_free;
2655
2656 if (whichfork == XFS_ATTR_FORK)
2657 xfs_buf_set_ref(bp, XFS_ATTR_BTREE_REF);
2658 else
2659 xfs_buf_set_ref(bp, XFS_DIR_BTREE_REF);
2660
2661 /*
2662 * This verification code will be moved to a CRC verification callback
2663 * function so just leave it here unchanged until then.
2664 */
2665 {
2666 xfs_dir2_data_hdr_t *hdr = bp->b_addr;
2667 xfs_dir2_free_t *free = bp->b_addr;
2668 xfs_da_blkinfo_t *info = bp->b_addr;
2669 uint magic, magic1;
2670 struct xfs_mount *mp = dp->i_mount;
2671
2672 magic = be16_to_cpu(info->magic);
2673 magic1 = be32_to_cpu(hdr->magic);
2674 if (unlikely(
2675 XFS_TEST_ERROR((magic != XFS_DA_NODE_MAGIC) &&
2676 (magic != XFS_DA3_NODE_MAGIC) &&
2677 (magic != XFS_ATTR_LEAF_MAGIC) &&
2678 (magic != XFS_ATTR3_LEAF_MAGIC) &&
2679 (magic != XFS_DIR2_LEAF1_MAGIC) &&
2680 (magic != XFS_DIR3_LEAF1_MAGIC) &&
2681 (magic != XFS_DIR2_LEAFN_MAGIC) &&
2682 (magic != XFS_DIR3_LEAFN_MAGIC) &&
2683 (magic1 != XFS_DIR2_BLOCK_MAGIC) &&
2684 (magic1 != XFS_DIR3_BLOCK_MAGIC) &&
2685 (magic1 != XFS_DIR2_DATA_MAGIC) &&
2686 (magic1 != XFS_DIR3_DATA_MAGIC) &&
2687 (free->hdr.magic !=
2688 cpu_to_be32(XFS_DIR2_FREE_MAGIC)) &&
2689 (free->hdr.magic !=
2690 cpu_to_be32(XFS_DIR3_FREE_MAGIC)),
2691 mp, XFS_ERRTAG_DA_READ_BUF,
2692 XFS_RANDOM_DA_READ_BUF))) {
2693 trace_xfs_da_btree_corrupt(bp, _RET_IP_);
2694 XFS_CORRUPTION_ERROR("xfs_da_do_buf(2)",
2695 XFS_ERRLEVEL_LOW, mp, info);
2696 error = XFS_ERROR(EFSCORRUPTED);
2697 xfs_trans_brelse(trans, bp);
2698 goto out_free;
2699 }
2700 }
2701 *bpp = bp;
2702 out_free:
2703 if (mapp != &map)
2704 kmem_free(mapp);
2705
2706 return error;
2707 }
2708
2709 /*
2710 * Readahead the dir/attr block.
2711 */
2712 xfs_daddr_t
2713 xfs_da_reada_buf(
2714 struct xfs_trans *trans,
2715 struct xfs_inode *dp,
2716 xfs_dablk_t bno,
2717 xfs_daddr_t mappedbno,
2718 int whichfork,
2719 const struct xfs_buf_ops *ops)
2720 {
2721 struct xfs_buf_map map;
2722 struct xfs_buf_map *mapp;
2723 int nmap;
2724 int error;
2725
2726 mapp = &map;
2727 nmap = 1;
2728 error = xfs_dabuf_map(trans, dp, bno, mappedbno, whichfork,
2729 &mapp, &nmap);
2730 if (error) {
2731 /* mapping a hole is not an error, but we don't continue */
2732 if (error == -1)
2733 error = 0;
2734 goto out_free;
2735 }
2736
2737 mappedbno = mapp[0].bm_bn;
2738 xfs_buf_readahead_map(dp->i_mount->m_ddev_targp, mapp, nmap, ops);
2739
2740 out_free:
2741 if (mapp != &map)
2742 kmem_free(mapp);
2743
2744 if (error)
2745 return -1;
2746 return mappedbno;
2747 }