Merge branch 'for-rmk' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf_item.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32
33
34 kmem_zone_t *xfs_buf_item_zone;
35
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40
41
42 #ifdef XFS_TRANS_DEBUG
43 /*
44 * This function uses an alternate strategy for tracking the bytes
45 * that the user requests to be logged. This can then be used
46 * in conjunction with the bli_orig array in the buf log item to
47 * catch bugs in our callers' code.
48 *
49 * We also double check the bits set in xfs_buf_item_log using a
50 * simple algorithm to check that every byte is accounted for.
51 */
52 STATIC void
53 xfs_buf_item_log_debug(
54 xfs_buf_log_item_t *bip,
55 uint first,
56 uint last)
57 {
58 uint x;
59 uint byte;
60 uint nbytes;
61 uint chunk_num;
62 uint word_num;
63 uint bit_num;
64 uint bit_set;
65 uint *wordp;
66
67 ASSERT(bip->bli_logged != NULL);
68 byte = first;
69 nbytes = last - first + 1;
70 bfset(bip->bli_logged, first, nbytes);
71 for (x = 0; x < nbytes; x++) {
72 chunk_num = byte >> XFS_BLF_SHIFT;
73 word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 bit_num = chunk_num & (NBWORD - 1);
75 wordp = &(bip->bli_format.blf_data_map[word_num]);
76 bit_set = *wordp & (1 << bit_num);
77 ASSERT(bit_set);
78 byte++;
79 }
80 }
81
82 /*
83 * This function is called when we flush something into a buffer without
84 * logging it. This happens for things like inodes which are logged
85 * separately from the buffer.
86 */
87 void
88 xfs_buf_item_flush_log_debug(
89 xfs_buf_t *bp,
90 uint first,
91 uint last)
92 {
93 xfs_buf_log_item_t *bip;
94 uint nbytes;
95
96 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
97 if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
98 return;
99 }
100
101 ASSERT(bip->bli_logged != NULL);
102 nbytes = last - first + 1;
103 bfset(bip->bli_logged, first, nbytes);
104 }
105
106 /*
107 * This function is called to verify that our callers have logged
108 * all the bytes that they changed.
109 *
110 * It does this by comparing the original copy of the buffer stored in
111 * the buf log item's bli_orig array to the current copy of the buffer
112 * and ensuring that all bytes which mismatch are set in the bli_logged
113 * array of the buf log item.
114 */
115 STATIC void
116 xfs_buf_item_log_check(
117 xfs_buf_log_item_t *bip)
118 {
119 char *orig;
120 char *buffer;
121 int x;
122 xfs_buf_t *bp;
123
124 ASSERT(bip->bli_orig != NULL);
125 ASSERT(bip->bli_logged != NULL);
126
127 bp = bip->bli_buf;
128 ASSERT(XFS_BUF_COUNT(bp) > 0);
129 ASSERT(XFS_BUF_PTR(bp) != NULL);
130 orig = bip->bli_orig;
131 buffer = XFS_BUF_PTR(bp);
132 for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
133 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
134 cmn_err(CE_PANIC,
135 "xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
136 bip, bp, orig, x);
137 }
138 }
139 #else
140 #define xfs_buf_item_log_debug(x,y,z)
141 #define xfs_buf_item_log_check(x)
142 #endif
143
144 STATIC void xfs_buf_error_relse(xfs_buf_t *bp);
145 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
146
147 /*
148 * This returns the number of log iovecs needed to log the
149 * given buf log item.
150 *
151 * It calculates this as 1 iovec for the buf log format structure
152 * and 1 for each stretch of non-contiguous chunks to be logged.
153 * Contiguous chunks are logged in a single iovec.
154 *
155 * If the XFS_BLI_STALE flag has been set, then log nothing.
156 */
157 STATIC uint
158 xfs_buf_item_size(
159 struct xfs_log_item *lip)
160 {
161 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
162 struct xfs_buf *bp = bip->bli_buf;
163 uint nvecs;
164 int next_bit;
165 int last_bit;
166
167 ASSERT(atomic_read(&bip->bli_refcount) > 0);
168 if (bip->bli_flags & XFS_BLI_STALE) {
169 /*
170 * The buffer is stale, so all we need to log
171 * is the buf log format structure with the
172 * cancel flag in it.
173 */
174 trace_xfs_buf_item_size_stale(bip);
175 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
176 return 1;
177 }
178
179 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
180 nvecs = 1;
181 last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
182 bip->bli_format.blf_map_size, 0);
183 ASSERT(last_bit != -1);
184 nvecs++;
185 while (last_bit != -1) {
186 /*
187 * This takes the bit number to start looking from and
188 * returns the next set bit from there. It returns -1
189 * if there are no more bits set or the start bit is
190 * beyond the end of the bitmap.
191 */
192 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
193 bip->bli_format.blf_map_size,
194 last_bit + 1);
195 /*
196 * If we run out of bits, leave the loop,
197 * else if we find a new set of bits bump the number of vecs,
198 * else keep scanning the current set of bits.
199 */
200 if (next_bit == -1) {
201 last_bit = -1;
202 } else if (next_bit != last_bit + 1) {
203 last_bit = next_bit;
204 nvecs++;
205 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
206 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
207 XFS_BLF_CHUNK)) {
208 last_bit = next_bit;
209 nvecs++;
210 } else {
211 last_bit++;
212 }
213 }
214
215 trace_xfs_buf_item_size(bip);
216 return nvecs;
217 }
218
219 /*
220 * This is called to fill in the vector of log iovecs for the
221 * given log buf item. It fills the first entry with a buf log
222 * format structure, and the rest point to contiguous chunks
223 * within the buffer.
224 */
225 STATIC void
226 xfs_buf_item_format(
227 struct xfs_log_item *lip,
228 struct xfs_log_iovec *vecp)
229 {
230 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
231 struct xfs_buf *bp = bip->bli_buf;
232 uint base_size;
233 uint nvecs;
234 int first_bit;
235 int last_bit;
236 int next_bit;
237 uint nbits;
238 uint buffer_offset;
239
240 ASSERT(atomic_read(&bip->bli_refcount) > 0);
241 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
242 (bip->bli_flags & XFS_BLI_STALE));
243
244 /*
245 * The size of the base structure is the size of the
246 * declared structure plus the space for the extra words
247 * of the bitmap. We subtract one from the map size, because
248 * the first element of the bitmap is accounted for in the
249 * size of the base structure.
250 */
251 base_size =
252 (uint)(sizeof(xfs_buf_log_format_t) +
253 ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
254 vecp->i_addr = &bip->bli_format;
255 vecp->i_len = base_size;
256 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
257 vecp++;
258 nvecs = 1;
259
260 /*
261 * If it is an inode buffer, transfer the in-memory state to the
262 * format flags and clear the in-memory state. We do not transfer
263 * this state if the inode buffer allocation has not yet been committed
264 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
265 * correct replay of the inode allocation.
266 */
267 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
268 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
269 xfs_log_item_in_current_chkpt(lip)))
270 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
271 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
272 }
273
274 if (bip->bli_flags & XFS_BLI_STALE) {
275 /*
276 * The buffer is stale, so all we need to log
277 * is the buf log format structure with the
278 * cancel flag in it.
279 */
280 trace_xfs_buf_item_format_stale(bip);
281 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
282 bip->bli_format.blf_size = nvecs;
283 return;
284 }
285
286 /*
287 * Fill in an iovec for each set of contiguous chunks.
288 */
289 first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
290 bip->bli_format.blf_map_size, 0);
291 ASSERT(first_bit != -1);
292 last_bit = first_bit;
293 nbits = 1;
294 for (;;) {
295 /*
296 * This takes the bit number to start looking from and
297 * returns the next set bit from there. It returns -1
298 * if there are no more bits set or the start bit is
299 * beyond the end of the bitmap.
300 */
301 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
302 bip->bli_format.blf_map_size,
303 (uint)last_bit + 1);
304 /*
305 * If we run out of bits fill in the last iovec and get
306 * out of the loop.
307 * Else if we start a new set of bits then fill in the
308 * iovec for the series we were looking at and start
309 * counting the bits in the new one.
310 * Else we're still in the same set of bits so just
311 * keep counting and scanning.
312 */
313 if (next_bit == -1) {
314 buffer_offset = first_bit * XFS_BLF_CHUNK;
315 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
316 vecp->i_len = nbits * XFS_BLF_CHUNK;
317 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
318 nvecs++;
319 break;
320 } else if (next_bit != last_bit + 1) {
321 buffer_offset = first_bit * XFS_BLF_CHUNK;
322 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
323 vecp->i_len = nbits * XFS_BLF_CHUNK;
324 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
325 nvecs++;
326 vecp++;
327 first_bit = next_bit;
328 last_bit = next_bit;
329 nbits = 1;
330 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
331 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
332 XFS_BLF_CHUNK)) {
333 buffer_offset = first_bit * XFS_BLF_CHUNK;
334 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
335 vecp->i_len = nbits * XFS_BLF_CHUNK;
336 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
337 /* You would think we need to bump the nvecs here too, but we do not
338 * this number is used by recovery, and it gets confused by the boundary
339 * split here
340 * nvecs++;
341 */
342 vecp++;
343 first_bit = next_bit;
344 last_bit = next_bit;
345 nbits = 1;
346 } else {
347 last_bit++;
348 nbits++;
349 }
350 }
351 bip->bli_format.blf_size = nvecs;
352
353 /*
354 * Check to make sure everything is consistent.
355 */
356 trace_xfs_buf_item_format(bip);
357 xfs_buf_item_log_check(bip);
358 }
359
360 /*
361 * This is called to pin the buffer associated with the buf log item in memory
362 * so it cannot be written out.
363 *
364 * We also always take a reference to the buffer log item here so that the bli
365 * is held while the item is pinned in memory. This means that we can
366 * unconditionally drop the reference count a transaction holds when the
367 * transaction is completed.
368 */
369 STATIC void
370 xfs_buf_item_pin(
371 struct xfs_log_item *lip)
372 {
373 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
374
375 ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
376 ASSERT(atomic_read(&bip->bli_refcount) > 0);
377 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
378 (bip->bli_flags & XFS_BLI_STALE));
379
380 trace_xfs_buf_item_pin(bip);
381
382 atomic_inc(&bip->bli_refcount);
383 atomic_inc(&bip->bli_buf->b_pin_count);
384 }
385
386 /*
387 * This is called to unpin the buffer associated with the buf log
388 * item which was previously pinned with a call to xfs_buf_item_pin().
389 *
390 * Also drop the reference to the buf item for the current transaction.
391 * If the XFS_BLI_STALE flag is set and we are the last reference,
392 * then free up the buf log item and unlock the buffer.
393 *
394 * If the remove flag is set we are called from uncommit in the
395 * forced-shutdown path. If that is true and the reference count on
396 * the log item is going to drop to zero we need to free the item's
397 * descriptor in the transaction.
398 */
399 STATIC void
400 xfs_buf_item_unpin(
401 struct xfs_log_item *lip,
402 int remove)
403 {
404 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
405 xfs_buf_t *bp = bip->bli_buf;
406 struct xfs_ail *ailp = lip->li_ailp;
407 int stale = bip->bli_flags & XFS_BLI_STALE;
408 int freed;
409
410 ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
411 ASSERT(atomic_read(&bip->bli_refcount) > 0);
412
413 trace_xfs_buf_item_unpin(bip);
414
415 freed = atomic_dec_and_test(&bip->bli_refcount);
416
417 if (atomic_dec_and_test(&bp->b_pin_count))
418 wake_up_all(&bp->b_waiters);
419
420 if (freed && stale) {
421 ASSERT(bip->bli_flags & XFS_BLI_STALE);
422 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
423 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
424 ASSERT(XFS_BUF_ISSTALE(bp));
425 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
426
427 trace_xfs_buf_item_unpin_stale(bip);
428
429 if (remove) {
430 /*
431 * We have to remove the log item from the transaction
432 * as we are about to release our reference to the
433 * buffer. If we don't, the unlock that occurs later
434 * in xfs_trans_uncommit() will ry to reference the
435 * buffer which we no longer have a hold on.
436 */
437 xfs_trans_del_item(lip);
438
439 /*
440 * Since the transaction no longer refers to the buffer,
441 * the buffer should no longer refer to the transaction.
442 */
443 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
444 }
445
446 /*
447 * If we get called here because of an IO error, we may
448 * or may not have the item on the AIL. xfs_trans_ail_delete()
449 * will take care of that situation.
450 * xfs_trans_ail_delete() drops the AIL lock.
451 */
452 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
453 xfs_buf_do_callbacks(bp);
454 XFS_BUF_SET_FSPRIVATE(bp, NULL);
455 XFS_BUF_CLR_IODONE_FUNC(bp);
456 } else {
457 spin_lock(&ailp->xa_lock);
458 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
459 xfs_buf_item_relse(bp);
460 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
461 }
462 xfs_buf_relse(bp);
463 }
464 }
465
466 /*
467 * This is called to attempt to lock the buffer associated with this
468 * buf log item. Don't sleep on the buffer lock. If we can't get
469 * the lock right away, return 0. If we can get the lock, take a
470 * reference to the buffer. If this is a delayed write buffer that
471 * needs AIL help to be written back, invoke the pushbuf routine
472 * rather than the normal success path.
473 */
474 STATIC uint
475 xfs_buf_item_trylock(
476 struct xfs_log_item *lip)
477 {
478 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
479 struct xfs_buf *bp = bip->bli_buf;
480
481 if (XFS_BUF_ISPINNED(bp))
482 return XFS_ITEM_PINNED;
483 if (!XFS_BUF_CPSEMA(bp))
484 return XFS_ITEM_LOCKED;
485
486 /* take a reference to the buffer. */
487 XFS_BUF_HOLD(bp);
488
489 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
490 trace_xfs_buf_item_trylock(bip);
491 if (XFS_BUF_ISDELAYWRITE(bp))
492 return XFS_ITEM_PUSHBUF;
493 return XFS_ITEM_SUCCESS;
494 }
495
496 /*
497 * Release the buffer associated with the buf log item. If there is no dirty
498 * logged data associated with the buffer recorded in the buf log item, then
499 * free the buf log item and remove the reference to it in the buffer.
500 *
501 * This call ignores the recursion count. It is only called when the buffer
502 * should REALLY be unlocked, regardless of the recursion count.
503 *
504 * We unconditionally drop the transaction's reference to the log item. If the
505 * item was logged, then another reference was taken when it was pinned, so we
506 * can safely drop the transaction reference now. This also allows us to avoid
507 * potential races with the unpin code freeing the bli by not referencing the
508 * bli after we've dropped the reference count.
509 *
510 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
511 * if necessary but do not unlock the buffer. This is for support of
512 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
513 * free the item.
514 */
515 STATIC void
516 xfs_buf_item_unlock(
517 struct xfs_log_item *lip)
518 {
519 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
520 struct xfs_buf *bp = bip->bli_buf;
521 int aborted;
522 uint hold;
523
524 /* Clear the buffer's association with this transaction. */
525 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
526
527 /*
528 * If this is a transaction abort, don't return early. Instead, allow
529 * the brelse to happen. Normally it would be done for stale
530 * (cancelled) buffers at unpin time, but we'll never go through the
531 * pin/unpin cycle if we abort inside commit.
532 */
533 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
534
535 /*
536 * Before possibly freeing the buf item, determine if we should
537 * release the buffer at the end of this routine.
538 */
539 hold = bip->bli_flags & XFS_BLI_HOLD;
540
541 /* Clear the per transaction state. */
542 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
543
544 /*
545 * If the buf item is marked stale, then don't do anything. We'll
546 * unlock the buffer and free the buf item when the buffer is unpinned
547 * for the last time.
548 */
549 if (bip->bli_flags & XFS_BLI_STALE) {
550 trace_xfs_buf_item_unlock_stale(bip);
551 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
552 if (!aborted) {
553 atomic_dec(&bip->bli_refcount);
554 return;
555 }
556 }
557
558 trace_xfs_buf_item_unlock(bip);
559
560 /*
561 * If the buf item isn't tracking any data, free it, otherwise drop the
562 * reference we hold to it.
563 */
564 if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
565 bip->bli_format.blf_map_size))
566 xfs_buf_item_relse(bp);
567 else
568 atomic_dec(&bip->bli_refcount);
569
570 if (!hold)
571 xfs_buf_relse(bp);
572 }
573
574 /*
575 * This is called to find out where the oldest active copy of the
576 * buf log item in the on disk log resides now that the last log
577 * write of it completed at the given lsn.
578 * We always re-log all the dirty data in a buffer, so usually the
579 * latest copy in the on disk log is the only one that matters. For
580 * those cases we simply return the given lsn.
581 *
582 * The one exception to this is for buffers full of newly allocated
583 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
584 * flag set, indicating that only the di_next_unlinked fields from the
585 * inodes in the buffers will be replayed during recovery. If the
586 * original newly allocated inode images have not yet been flushed
587 * when the buffer is so relogged, then we need to make sure that we
588 * keep the old images in the 'active' portion of the log. We do this
589 * by returning the original lsn of that transaction here rather than
590 * the current one.
591 */
592 STATIC xfs_lsn_t
593 xfs_buf_item_committed(
594 struct xfs_log_item *lip,
595 xfs_lsn_t lsn)
596 {
597 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
598
599 trace_xfs_buf_item_committed(bip);
600
601 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
602 return lip->li_lsn;
603 return lsn;
604 }
605
606 /*
607 * The buffer is locked, but is not a delayed write buffer. This happens
608 * if we race with IO completion and hence we don't want to try to write it
609 * again. Just release the buffer.
610 */
611 STATIC void
612 xfs_buf_item_push(
613 struct xfs_log_item *lip)
614 {
615 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
616 struct xfs_buf *bp = bip->bli_buf;
617
618 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
619 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
620
621 trace_xfs_buf_item_push(bip);
622
623 xfs_buf_relse(bp);
624 }
625
626 /*
627 * The buffer is locked and is a delayed write buffer. Promote the buffer
628 * in the delayed write queue as the caller knows that they must invoke
629 * the xfsbufd to get this buffer written. We have to unlock the buffer
630 * to allow the xfsbufd to write it, too.
631 */
632 STATIC void
633 xfs_buf_item_pushbuf(
634 struct xfs_log_item *lip)
635 {
636 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
637 struct xfs_buf *bp = bip->bli_buf;
638
639 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
640 ASSERT(XFS_BUF_ISDELAYWRITE(bp));
641
642 trace_xfs_buf_item_pushbuf(bip);
643
644 xfs_buf_delwri_promote(bp);
645 xfs_buf_relse(bp);
646 }
647
648 STATIC void
649 xfs_buf_item_committing(
650 struct xfs_log_item *lip,
651 xfs_lsn_t commit_lsn)
652 {
653 }
654
655 /*
656 * This is the ops vector shared by all buf log items.
657 */
658 static struct xfs_item_ops xfs_buf_item_ops = {
659 .iop_size = xfs_buf_item_size,
660 .iop_format = xfs_buf_item_format,
661 .iop_pin = xfs_buf_item_pin,
662 .iop_unpin = xfs_buf_item_unpin,
663 .iop_trylock = xfs_buf_item_trylock,
664 .iop_unlock = xfs_buf_item_unlock,
665 .iop_committed = xfs_buf_item_committed,
666 .iop_push = xfs_buf_item_push,
667 .iop_pushbuf = xfs_buf_item_pushbuf,
668 .iop_committing = xfs_buf_item_committing
669 };
670
671
672 /*
673 * Allocate a new buf log item to go with the given buffer.
674 * Set the buffer's b_fsprivate field to point to the new
675 * buf log item. If there are other item's attached to the
676 * buffer (see xfs_buf_attach_iodone() below), then put the
677 * buf log item at the front.
678 */
679 void
680 xfs_buf_item_init(
681 xfs_buf_t *bp,
682 xfs_mount_t *mp)
683 {
684 xfs_log_item_t *lip;
685 xfs_buf_log_item_t *bip;
686 int chunks;
687 int map_size;
688
689 /*
690 * Check to see if there is already a buf log item for
691 * this buffer. If there is, it is guaranteed to be
692 * the first. If we do already have one, there is
693 * nothing to do here so return.
694 */
695 ASSERT(bp->b_target->bt_mount == mp);
696 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
697 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
698 if (lip->li_type == XFS_LI_BUF) {
699 return;
700 }
701 }
702
703 /*
704 * chunks is the number of XFS_BLF_CHUNK size pieces
705 * the buffer can be divided into. Make sure not to
706 * truncate any pieces. map_size is the size of the
707 * bitmap needed to describe the chunks of the buffer.
708 */
709 chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
710 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
711
712 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
713 KM_SLEEP);
714 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
715 bip->bli_buf = bp;
716 xfs_buf_hold(bp);
717 bip->bli_format.blf_type = XFS_LI_BUF;
718 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
719 bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
720 bip->bli_format.blf_map_size = map_size;
721
722 #ifdef XFS_TRANS_DEBUG
723 /*
724 * Allocate the arrays for tracking what needs to be logged
725 * and what our callers request to be logged. bli_orig
726 * holds a copy of the original, clean buffer for comparison
727 * against, and bli_logged keeps a 1 bit flag per byte in
728 * the buffer to indicate which bytes the callers have asked
729 * to have logged.
730 */
731 bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
732 memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
733 bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
734 #endif
735
736 /*
737 * Put the buf item into the list of items attached to the
738 * buffer at the front.
739 */
740 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
741 bip->bli_item.li_bio_list =
742 XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
743 }
744 XFS_BUF_SET_FSPRIVATE(bp, bip);
745 }
746
747
748 /*
749 * Mark bytes first through last inclusive as dirty in the buf
750 * item's bitmap.
751 */
752 void
753 xfs_buf_item_log(
754 xfs_buf_log_item_t *bip,
755 uint first,
756 uint last)
757 {
758 uint first_bit;
759 uint last_bit;
760 uint bits_to_set;
761 uint bits_set;
762 uint word_num;
763 uint *wordp;
764 uint bit;
765 uint end_bit;
766 uint mask;
767
768 /*
769 * Mark the item as having some dirty data for
770 * quick reference in xfs_buf_item_dirty.
771 */
772 bip->bli_flags |= XFS_BLI_DIRTY;
773
774 /*
775 * Convert byte offsets to bit numbers.
776 */
777 first_bit = first >> XFS_BLF_SHIFT;
778 last_bit = last >> XFS_BLF_SHIFT;
779
780 /*
781 * Calculate the total number of bits to be set.
782 */
783 bits_to_set = last_bit - first_bit + 1;
784
785 /*
786 * Get a pointer to the first word in the bitmap
787 * to set a bit in.
788 */
789 word_num = first_bit >> BIT_TO_WORD_SHIFT;
790 wordp = &(bip->bli_format.blf_data_map[word_num]);
791
792 /*
793 * Calculate the starting bit in the first word.
794 */
795 bit = first_bit & (uint)(NBWORD - 1);
796
797 /*
798 * First set any bits in the first word of our range.
799 * If it starts at bit 0 of the word, it will be
800 * set below rather than here. That is what the variable
801 * bit tells us. The variable bits_set tracks the number
802 * of bits that have been set so far. End_bit is the number
803 * of the last bit to be set in this word plus one.
804 */
805 if (bit) {
806 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
807 mask = ((1 << (end_bit - bit)) - 1) << bit;
808 *wordp |= mask;
809 wordp++;
810 bits_set = end_bit - bit;
811 } else {
812 bits_set = 0;
813 }
814
815 /*
816 * Now set bits a whole word at a time that are between
817 * first_bit and last_bit.
818 */
819 while ((bits_to_set - bits_set) >= NBWORD) {
820 *wordp |= 0xffffffff;
821 bits_set += NBWORD;
822 wordp++;
823 }
824
825 /*
826 * Finally, set any bits left to be set in one last partial word.
827 */
828 end_bit = bits_to_set - bits_set;
829 if (end_bit) {
830 mask = (1 << end_bit) - 1;
831 *wordp |= mask;
832 }
833
834 xfs_buf_item_log_debug(bip, first, last);
835 }
836
837
838 /*
839 * Return 1 if the buffer has some data that has been logged (at any
840 * point, not just the current transaction) and 0 if not.
841 */
842 uint
843 xfs_buf_item_dirty(
844 xfs_buf_log_item_t *bip)
845 {
846 return (bip->bli_flags & XFS_BLI_DIRTY);
847 }
848
849 STATIC void
850 xfs_buf_item_free(
851 xfs_buf_log_item_t *bip)
852 {
853 #ifdef XFS_TRANS_DEBUG
854 kmem_free(bip->bli_orig);
855 kmem_free(bip->bli_logged);
856 #endif /* XFS_TRANS_DEBUG */
857
858 kmem_zone_free(xfs_buf_item_zone, bip);
859 }
860
861 /*
862 * This is called when the buf log item is no longer needed. It should
863 * free the buf log item associated with the given buffer and clear
864 * the buffer's pointer to the buf log item. If there are no more
865 * items in the list, clear the b_iodone field of the buffer (see
866 * xfs_buf_attach_iodone() below).
867 */
868 void
869 xfs_buf_item_relse(
870 xfs_buf_t *bp)
871 {
872 xfs_buf_log_item_t *bip;
873
874 trace_xfs_buf_item_relse(bp, _RET_IP_);
875
876 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
877 XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
878 if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
879 (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
880 XFS_BUF_CLR_IODONE_FUNC(bp);
881 }
882 xfs_buf_rele(bp);
883 xfs_buf_item_free(bip);
884 }
885
886
887 /*
888 * Add the given log item with its callback to the list of callbacks
889 * to be called when the buffer's I/O completes. If it is not set
890 * already, set the buffer's b_iodone() routine to be
891 * xfs_buf_iodone_callbacks() and link the log item into the list of
892 * items rooted at b_fsprivate. Items are always added as the second
893 * entry in the list if there is a first, because the buf item code
894 * assumes that the buf log item is first.
895 */
896 void
897 xfs_buf_attach_iodone(
898 xfs_buf_t *bp,
899 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
900 xfs_log_item_t *lip)
901 {
902 xfs_log_item_t *head_lip;
903
904 ASSERT(XFS_BUF_ISBUSY(bp));
905 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
906
907 lip->li_cb = cb;
908 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
909 head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
910 lip->li_bio_list = head_lip->li_bio_list;
911 head_lip->li_bio_list = lip;
912 } else {
913 XFS_BUF_SET_FSPRIVATE(bp, lip);
914 }
915
916 ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
917 (XFS_BUF_IODONE_FUNC(bp) == NULL));
918 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
919 }
920
921 /*
922 * We can have many callbacks on a buffer. Running the callbacks individually
923 * can cause a lot of contention on the AIL lock, so we allow for a single
924 * callback to be able to scan the remaining lip->li_bio_list for other items
925 * of the same type and callback to be processed in the first call.
926 *
927 * As a result, the loop walking the callback list below will also modify the
928 * list. it removes the first item from the list and then runs the callback.
929 * The loop then restarts from the new head of the list. This allows the
930 * callback to scan and modify the list attached to the buffer and we don't
931 * have to care about maintaining a next item pointer.
932 */
933 STATIC void
934 xfs_buf_do_callbacks(
935 struct xfs_buf *bp)
936 {
937 struct xfs_log_item *lip;
938
939 while ((lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *)) != NULL) {
940 XFS_BUF_SET_FSPRIVATE(bp, lip->li_bio_list);
941 ASSERT(lip->li_cb != NULL);
942 /*
943 * Clear the next pointer so we don't have any
944 * confusion if the item is added to another buf.
945 * Don't touch the log item after calling its
946 * callback, because it could have freed itself.
947 */
948 lip->li_bio_list = NULL;
949 lip->li_cb(bp, lip);
950 }
951 }
952
953 /*
954 * This is the iodone() function for buffers which have had callbacks
955 * attached to them by xfs_buf_attach_iodone(). It should remove each
956 * log item from the buffer's list and call the callback of each in turn.
957 * When done, the buffer's fsprivate field is set to NULL and the buffer
958 * is unlocked with a call to iodone().
959 */
960 void
961 xfs_buf_iodone_callbacks(
962 xfs_buf_t *bp)
963 {
964 xfs_log_item_t *lip;
965 static ulong lasttime;
966 static xfs_buftarg_t *lasttarg;
967 xfs_mount_t *mp;
968
969 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
970 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
971
972 if (XFS_BUF_GETERROR(bp) != 0) {
973 /*
974 * If we've already decided to shutdown the filesystem
975 * because of IO errors, there's no point in giving this
976 * a retry.
977 */
978 mp = lip->li_mountp;
979 if (XFS_FORCED_SHUTDOWN(mp)) {
980 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
981 XFS_BUF_SUPER_STALE(bp);
982 trace_xfs_buf_item_iodone(bp, _RET_IP_);
983 xfs_buf_do_callbacks(bp);
984 XFS_BUF_SET_FSPRIVATE(bp, NULL);
985 XFS_BUF_CLR_IODONE_FUNC(bp);
986 xfs_buf_ioend(bp, 0);
987 return;
988 }
989
990 if ((XFS_BUF_TARGET(bp) != lasttarg) ||
991 (time_after(jiffies, (lasttime + 5*HZ)))) {
992 lasttime = jiffies;
993 cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
994 " block 0x%llx in %s",
995 XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
996 (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
997 }
998 lasttarg = XFS_BUF_TARGET(bp);
999
1000 if (XFS_BUF_ISASYNC(bp)) {
1001 /*
1002 * If the write was asynchronous then noone will be
1003 * looking for the error. Clear the error state
1004 * and write the buffer out again delayed write.
1005 *
1006 * XXXsup This is OK, so long as we catch these
1007 * before we start the umount; we don't want these
1008 * DELWRI metadata bufs to be hanging around.
1009 */
1010 XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */
1011
1012 if (!(XFS_BUF_ISSTALE(bp))) {
1013 XFS_BUF_DELAYWRITE(bp);
1014 XFS_BUF_DONE(bp);
1015 XFS_BUF_SET_START(bp);
1016 }
1017 ASSERT(XFS_BUF_IODONE_FUNC(bp));
1018 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1019 xfs_buf_relse(bp);
1020 } else {
1021 /*
1022 * If the write of the buffer was not asynchronous,
1023 * then we want to make sure to return the error
1024 * to the caller of bwrite(). Because of this we
1025 * cannot clear the B_ERROR state at this point.
1026 * Instead we install a callback function that
1027 * will be called when the buffer is released, and
1028 * that routine will clear the error state and
1029 * set the buffer to be written out again after
1030 * some delay.
1031 */
1032 /* We actually overwrite the existing b-relse
1033 function at times, but we're gonna be shutting down
1034 anyway. */
1035 XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse);
1036 XFS_BUF_DONE(bp);
1037 XFS_BUF_FINISH_IOWAIT(bp);
1038 }
1039 return;
1040 }
1041
1042 xfs_buf_do_callbacks(bp);
1043 XFS_BUF_SET_FSPRIVATE(bp, NULL);
1044 XFS_BUF_CLR_IODONE_FUNC(bp);
1045 xfs_buf_ioend(bp, 0);
1046 }
1047
1048 /*
1049 * This is a callback routine attached to a buffer which gets an error
1050 * when being written out synchronously.
1051 */
1052 STATIC void
1053 xfs_buf_error_relse(
1054 xfs_buf_t *bp)
1055 {
1056 xfs_log_item_t *lip;
1057 xfs_mount_t *mp;
1058
1059 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1060 mp = (xfs_mount_t *)lip->li_mountp;
1061 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
1062
1063 XFS_BUF_STALE(bp);
1064 XFS_BUF_DONE(bp);
1065 XFS_BUF_UNDELAYWRITE(bp);
1066 XFS_BUF_ERROR(bp,0);
1067
1068 trace_xfs_buf_error_relse(bp, _RET_IP_);
1069
1070 if (! XFS_FORCED_SHUTDOWN(mp))
1071 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1072 /*
1073 * We have to unpin the pinned buffers so do the
1074 * callbacks.
1075 */
1076 xfs_buf_do_callbacks(bp);
1077 XFS_BUF_SET_FSPRIVATE(bp, NULL);
1078 XFS_BUF_CLR_IODONE_FUNC(bp);
1079 XFS_BUF_SET_BRELSE_FUNC(bp,NULL);
1080 xfs_buf_relse(bp);
1081 }
1082
1083
1084 /*
1085 * This is the iodone() function for buffers which have been
1086 * logged. It is called when they are eventually flushed out.
1087 * It should remove the buf item from the AIL, and free the buf item.
1088 * It is called by xfs_buf_iodone_callbacks() above which will take
1089 * care of cleaning up the buffer itself.
1090 */
1091 void
1092 xfs_buf_iodone(
1093 struct xfs_buf *bp,
1094 struct xfs_log_item *lip)
1095 {
1096 struct xfs_ail *ailp = lip->li_ailp;
1097
1098 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1099
1100 xfs_buf_rele(bp);
1101
1102 /*
1103 * If we are forcibly shutting down, this may well be
1104 * off the AIL already. That's because we simulate the
1105 * log-committed callbacks to unpin these buffers. Or we may never
1106 * have put this item on AIL because of the transaction was
1107 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1108 *
1109 * Either way, AIL is useless if we're forcing a shutdown.
1110 */
1111 spin_lock(&ailp->xa_lock);
1112 xfs_trans_ail_delete(ailp, lip);
1113 xfs_buf_item_free(BUF_ITEM(lip));
1114 }