x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95 static inline void
96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98 {
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106
107 /*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111 static inline void
112 xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114 {
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120 }
121
122 /*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130 void
131 xfs_buf_stale(
132 struct xfs_buf *bp)
133 {
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161 }
162
163 static int
164 xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167 {
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181 }
182
183 /*
184 * Frees b_pages if it was allocated.
185 */
186 static void
187 xfs_buf_free_maps(
188 struct xfs_buf *bp)
189 {
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194 }
195
196 struct xfs_buf *
197 _xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202 {
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255 }
256
257 /*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261 STATIC int
262 _xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265 {
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280 }
281
282 /*
283 * Frees b_pages if it was allocated.
284 */
285 STATIC void
286 _xfs_buf_free_pages(
287 xfs_buf_t *bp)
288 {
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293 }
294
295 /*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302 void
303 xfs_buf_free(
304 xfs_buf_t *bp)
305 {
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327 }
328
329 /*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332 STATIC int
333 xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336 {
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372 use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387 retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422 out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 return error;
426 }
427
428 /*
429 * Map buffer into kernel address-space if necessary.
430 */
431 STATIC int
432 _xfs_buf_map_pages(
433 xfs_buf_t *bp,
434 uint flags)
435 {
436 ASSERT(bp->b_flags & _XBF_PAGES);
437 if (bp->b_page_count == 1) {
438 /* A single page buffer is always mappable */
439 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
440 } else if (flags & XBF_UNMAPPED) {
441 bp->b_addr = NULL;
442 } else {
443 int retried = 0;
444 unsigned noio_flag;
445
446 /*
447 * vm_map_ram() will allocate auxillary structures (e.g.
448 * pagetables) with GFP_KERNEL, yet we are likely to be under
449 * GFP_NOFS context here. Hence we need to tell memory reclaim
450 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
451 * memory reclaim re-entering the filesystem here and
452 * potentially deadlocking.
453 */
454 noio_flag = memalloc_noio_save();
455 do {
456 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
457 -1, PAGE_KERNEL);
458 if (bp->b_addr)
459 break;
460 vm_unmap_aliases();
461 } while (retried++ <= 1);
462 memalloc_noio_restore(noio_flag);
463
464 if (!bp->b_addr)
465 return -ENOMEM;
466 bp->b_addr += bp->b_offset;
467 }
468
469 return 0;
470 }
471
472 /*
473 * Finding and Reading Buffers
474 */
475 static int
476 _xfs_buf_obj_cmp(
477 struct rhashtable_compare_arg *arg,
478 const void *obj)
479 {
480 const struct xfs_buf_map *map = arg->key;
481 const struct xfs_buf *bp = obj;
482
483 /*
484 * The key hashing in the lookup path depends on the key being the
485 * first element of the compare_arg, make sure to assert this.
486 */
487 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
488
489 if (bp->b_bn != map->bm_bn)
490 return 1;
491
492 if (unlikely(bp->b_length != map->bm_len)) {
493 /*
494 * found a block number match. If the range doesn't
495 * match, the only way this is allowed is if the buffer
496 * in the cache is stale and the transaction that made
497 * it stale has not yet committed. i.e. we are
498 * reallocating a busy extent. Skip this buffer and
499 * continue searching for an exact match.
500 */
501 ASSERT(bp->b_flags & XBF_STALE);
502 return 1;
503 }
504 return 0;
505 }
506
507 static const struct rhashtable_params xfs_buf_hash_params = {
508 .min_size = 32, /* empty AGs have minimal footprint */
509 .nelem_hint = 16,
510 .key_len = sizeof(xfs_daddr_t),
511 .key_offset = offsetof(struct xfs_buf, b_bn),
512 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
513 .automatic_shrinking = true,
514 .obj_cmpfn = _xfs_buf_obj_cmp,
515 };
516
517 int
518 xfs_buf_hash_init(
519 struct xfs_perag *pag)
520 {
521 spin_lock_init(&pag->pag_buf_lock);
522 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
523 }
524
525 void
526 xfs_buf_hash_destroy(
527 struct xfs_perag *pag)
528 {
529 rhashtable_destroy(&pag->pag_buf_hash);
530 }
531
532 /*
533 * Look up, and creates if absent, a lockable buffer for
534 * a given range of an inode. The buffer is returned
535 * locked. No I/O is implied by this call.
536 */
537 xfs_buf_t *
538 _xfs_buf_find(
539 struct xfs_buftarg *btp,
540 struct xfs_buf_map *map,
541 int nmaps,
542 xfs_buf_flags_t flags,
543 xfs_buf_t *new_bp)
544 {
545 struct xfs_perag *pag;
546 xfs_buf_t *bp;
547 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
548 xfs_daddr_t eofs;
549 int i;
550
551 for (i = 0; i < nmaps; i++)
552 cmap.bm_len += map[i].bm_len;
553
554 /* Check for IOs smaller than the sector size / not sector aligned */
555 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
556 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
557
558 /*
559 * Corrupted block numbers can get through to here, unfortunately, so we
560 * have to check that the buffer falls within the filesystem bounds.
561 */
562 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
563 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
564 /*
565 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
566 * but none of the higher level infrastructure supports
567 * returning a specific error on buffer lookup failures.
568 */
569 xfs_alert(btp->bt_mount,
570 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
571 __func__, cmap.bm_bn, eofs);
572 WARN_ON(1);
573 return NULL;
574 }
575
576 pag = xfs_perag_get(btp->bt_mount,
577 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
578
579 spin_lock(&pag->pag_buf_lock);
580 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
581 xfs_buf_hash_params);
582 if (bp) {
583 atomic_inc(&bp->b_hold);
584 goto found;
585 }
586
587 /* No match found */
588 if (new_bp) {
589 /* the buffer keeps the perag reference until it is freed */
590 new_bp->b_pag = pag;
591 rhashtable_insert_fast(&pag->pag_buf_hash,
592 &new_bp->b_rhash_head,
593 xfs_buf_hash_params);
594 spin_unlock(&pag->pag_buf_lock);
595 } else {
596 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
597 spin_unlock(&pag->pag_buf_lock);
598 xfs_perag_put(pag);
599 }
600 return new_bp;
601
602 found:
603 spin_unlock(&pag->pag_buf_lock);
604 xfs_perag_put(pag);
605
606 if (!xfs_buf_trylock(bp)) {
607 if (flags & XBF_TRYLOCK) {
608 xfs_buf_rele(bp);
609 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
610 return NULL;
611 }
612 xfs_buf_lock(bp);
613 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
614 }
615
616 /*
617 * if the buffer is stale, clear all the external state associated with
618 * it. We need to keep flags such as how we allocated the buffer memory
619 * intact here.
620 */
621 if (bp->b_flags & XBF_STALE) {
622 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
623 ASSERT(bp->b_iodone == NULL);
624 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
625 bp->b_ops = NULL;
626 }
627
628 trace_xfs_buf_find(bp, flags, _RET_IP_);
629 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
630 return bp;
631 }
632
633 /*
634 * Assembles a buffer covering the specified range. The code is optimised for
635 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
636 * more hits than misses.
637 */
638 struct xfs_buf *
639 xfs_buf_get_map(
640 struct xfs_buftarg *target,
641 struct xfs_buf_map *map,
642 int nmaps,
643 xfs_buf_flags_t flags)
644 {
645 struct xfs_buf *bp;
646 struct xfs_buf *new_bp;
647 int error = 0;
648
649 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
650 if (likely(bp))
651 goto found;
652
653 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
654 if (unlikely(!new_bp))
655 return NULL;
656
657 error = xfs_buf_allocate_memory(new_bp, flags);
658 if (error) {
659 xfs_buf_free(new_bp);
660 return NULL;
661 }
662
663 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
664 if (!bp) {
665 xfs_buf_free(new_bp);
666 return NULL;
667 }
668
669 if (bp != new_bp)
670 xfs_buf_free(new_bp);
671
672 found:
673 if (!bp->b_addr) {
674 error = _xfs_buf_map_pages(bp, flags);
675 if (unlikely(error)) {
676 xfs_warn(target->bt_mount,
677 "%s: failed to map pagesn", __func__);
678 xfs_buf_relse(bp);
679 return NULL;
680 }
681 }
682
683 /*
684 * Clear b_error if this is a lookup from a caller that doesn't expect
685 * valid data to be found in the buffer.
686 */
687 if (!(flags & XBF_READ))
688 xfs_buf_ioerror(bp, 0);
689
690 XFS_STATS_INC(target->bt_mount, xb_get);
691 trace_xfs_buf_get(bp, flags, _RET_IP_);
692 return bp;
693 }
694
695 STATIC int
696 _xfs_buf_read(
697 xfs_buf_t *bp,
698 xfs_buf_flags_t flags)
699 {
700 ASSERT(!(flags & XBF_WRITE));
701 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
702
703 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
704 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
705
706 if (flags & XBF_ASYNC) {
707 xfs_buf_submit(bp);
708 return 0;
709 }
710 return xfs_buf_submit_wait(bp);
711 }
712
713 xfs_buf_t *
714 xfs_buf_read_map(
715 struct xfs_buftarg *target,
716 struct xfs_buf_map *map,
717 int nmaps,
718 xfs_buf_flags_t flags,
719 const struct xfs_buf_ops *ops)
720 {
721 struct xfs_buf *bp;
722
723 flags |= XBF_READ;
724
725 bp = xfs_buf_get_map(target, map, nmaps, flags);
726 if (bp) {
727 trace_xfs_buf_read(bp, flags, _RET_IP_);
728
729 if (!(bp->b_flags & XBF_DONE)) {
730 XFS_STATS_INC(target->bt_mount, xb_get_read);
731 bp->b_ops = ops;
732 _xfs_buf_read(bp, flags);
733 } else if (flags & XBF_ASYNC) {
734 /*
735 * Read ahead call which is already satisfied,
736 * drop the buffer
737 */
738 xfs_buf_relse(bp);
739 return NULL;
740 } else {
741 /* We do not want read in the flags */
742 bp->b_flags &= ~XBF_READ;
743 }
744 }
745
746 return bp;
747 }
748
749 /*
750 * If we are not low on memory then do the readahead in a deadlock
751 * safe manner.
752 */
753 void
754 xfs_buf_readahead_map(
755 struct xfs_buftarg *target,
756 struct xfs_buf_map *map,
757 int nmaps,
758 const struct xfs_buf_ops *ops)
759 {
760 if (bdi_read_congested(target->bt_bdi))
761 return;
762
763 xfs_buf_read_map(target, map, nmaps,
764 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
765 }
766
767 /*
768 * Read an uncached buffer from disk. Allocates and returns a locked
769 * buffer containing the disk contents or nothing.
770 */
771 int
772 xfs_buf_read_uncached(
773 struct xfs_buftarg *target,
774 xfs_daddr_t daddr,
775 size_t numblks,
776 int flags,
777 struct xfs_buf **bpp,
778 const struct xfs_buf_ops *ops)
779 {
780 struct xfs_buf *bp;
781
782 *bpp = NULL;
783
784 bp = xfs_buf_get_uncached(target, numblks, flags);
785 if (!bp)
786 return -ENOMEM;
787
788 /* set up the buffer for a read IO */
789 ASSERT(bp->b_map_count == 1);
790 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
791 bp->b_maps[0].bm_bn = daddr;
792 bp->b_flags |= XBF_READ;
793 bp->b_ops = ops;
794
795 xfs_buf_submit_wait(bp);
796 if (bp->b_error) {
797 int error = bp->b_error;
798 xfs_buf_relse(bp);
799 return error;
800 }
801
802 *bpp = bp;
803 return 0;
804 }
805
806 /*
807 * Return a buffer allocated as an empty buffer and associated to external
808 * memory via xfs_buf_associate_memory() back to it's empty state.
809 */
810 void
811 xfs_buf_set_empty(
812 struct xfs_buf *bp,
813 size_t numblks)
814 {
815 if (bp->b_pages)
816 _xfs_buf_free_pages(bp);
817
818 bp->b_pages = NULL;
819 bp->b_page_count = 0;
820 bp->b_addr = NULL;
821 bp->b_length = numblks;
822 bp->b_io_length = numblks;
823
824 ASSERT(bp->b_map_count == 1);
825 bp->b_bn = XFS_BUF_DADDR_NULL;
826 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_len = bp->b_length;
828 }
829
830 static inline struct page *
831 mem_to_page(
832 void *addr)
833 {
834 if ((!is_vmalloc_addr(addr))) {
835 return virt_to_page(addr);
836 } else {
837 return vmalloc_to_page(addr);
838 }
839 }
840
841 int
842 xfs_buf_associate_memory(
843 xfs_buf_t *bp,
844 void *mem,
845 size_t len)
846 {
847 int rval;
848 int i = 0;
849 unsigned long pageaddr;
850 unsigned long offset;
851 size_t buflen;
852 int page_count;
853
854 pageaddr = (unsigned long)mem & PAGE_MASK;
855 offset = (unsigned long)mem - pageaddr;
856 buflen = PAGE_ALIGN(len + offset);
857 page_count = buflen >> PAGE_SHIFT;
858
859 /* Free any previous set of page pointers */
860 if (bp->b_pages)
861 _xfs_buf_free_pages(bp);
862
863 bp->b_pages = NULL;
864 bp->b_addr = mem;
865
866 rval = _xfs_buf_get_pages(bp, page_count);
867 if (rval)
868 return rval;
869
870 bp->b_offset = offset;
871
872 for (i = 0; i < bp->b_page_count; i++) {
873 bp->b_pages[i] = mem_to_page((void *)pageaddr);
874 pageaddr += PAGE_SIZE;
875 }
876
877 bp->b_io_length = BTOBB(len);
878 bp->b_length = BTOBB(buflen);
879
880 return 0;
881 }
882
883 xfs_buf_t *
884 xfs_buf_get_uncached(
885 struct xfs_buftarg *target,
886 size_t numblks,
887 int flags)
888 {
889 unsigned long page_count;
890 int error, i;
891 struct xfs_buf *bp;
892 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
893
894 /* flags might contain irrelevant bits, pass only what we care about */
895 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
896 if (unlikely(bp == NULL))
897 goto fail;
898
899 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
900 error = _xfs_buf_get_pages(bp, page_count);
901 if (error)
902 goto fail_free_buf;
903
904 for (i = 0; i < page_count; i++) {
905 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
906 if (!bp->b_pages[i])
907 goto fail_free_mem;
908 }
909 bp->b_flags |= _XBF_PAGES;
910
911 error = _xfs_buf_map_pages(bp, 0);
912 if (unlikely(error)) {
913 xfs_warn(target->bt_mount,
914 "%s: failed to map pages", __func__);
915 goto fail_free_mem;
916 }
917
918 trace_xfs_buf_get_uncached(bp, _RET_IP_);
919 return bp;
920
921 fail_free_mem:
922 while (--i >= 0)
923 __free_page(bp->b_pages[i]);
924 _xfs_buf_free_pages(bp);
925 fail_free_buf:
926 xfs_buf_free_maps(bp);
927 kmem_zone_free(xfs_buf_zone, bp);
928 fail:
929 return NULL;
930 }
931
932 /*
933 * Increment reference count on buffer, to hold the buffer concurrently
934 * with another thread which may release (free) the buffer asynchronously.
935 * Must hold the buffer already to call this function.
936 */
937 void
938 xfs_buf_hold(
939 xfs_buf_t *bp)
940 {
941 trace_xfs_buf_hold(bp, _RET_IP_);
942 atomic_inc(&bp->b_hold);
943 }
944
945 /*
946 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
947 * placed on LRU or freed (depending on b_lru_ref).
948 */
949 void
950 xfs_buf_rele(
951 xfs_buf_t *bp)
952 {
953 struct xfs_perag *pag = bp->b_pag;
954 bool release;
955 bool freebuf = false;
956
957 trace_xfs_buf_rele(bp, _RET_IP_);
958
959 if (!pag) {
960 ASSERT(list_empty(&bp->b_lru));
961 if (atomic_dec_and_test(&bp->b_hold)) {
962 xfs_buf_ioacct_dec(bp);
963 xfs_buf_free(bp);
964 }
965 return;
966 }
967
968 ASSERT(atomic_read(&bp->b_hold) > 0);
969
970 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
971 spin_lock(&bp->b_lock);
972 if (!release) {
973 /*
974 * Drop the in-flight state if the buffer is already on the LRU
975 * and it holds the only reference. This is racy because we
976 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
977 * ensures the decrement occurs only once per-buf.
978 */
979 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
980 xfs_buf_ioacct_dec(bp);
981 goto out_unlock;
982 }
983
984 /* the last reference has been dropped ... */
985 xfs_buf_ioacct_dec(bp);
986 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
987 /*
988 * If the buffer is added to the LRU take a new reference to the
989 * buffer for the LRU and clear the (now stale) dispose list
990 * state flag
991 */
992 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
993 bp->b_state &= ~XFS_BSTATE_DISPOSE;
994 atomic_inc(&bp->b_hold);
995 }
996 spin_unlock(&pag->pag_buf_lock);
997 } else {
998 /*
999 * most of the time buffers will already be removed from the
1000 * LRU, so optimise that case by checking for the
1001 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1002 * was on was the disposal list
1003 */
1004 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1005 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1006 } else {
1007 ASSERT(list_empty(&bp->b_lru));
1008 }
1009
1010 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1011 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1012 xfs_buf_hash_params);
1013 spin_unlock(&pag->pag_buf_lock);
1014 xfs_perag_put(pag);
1015 freebuf = true;
1016 }
1017
1018 out_unlock:
1019 spin_unlock(&bp->b_lock);
1020
1021 if (freebuf)
1022 xfs_buf_free(bp);
1023 }
1024
1025
1026 /*
1027 * Lock a buffer object, if it is not already locked.
1028 *
1029 * If we come across a stale, pinned, locked buffer, we know that we are
1030 * being asked to lock a buffer that has been reallocated. Because it is
1031 * pinned, we know that the log has not been pushed to disk and hence it
1032 * will still be locked. Rather than continuing to have trylock attempts
1033 * fail until someone else pushes the log, push it ourselves before
1034 * returning. This means that the xfsaild will not get stuck trying
1035 * to push on stale inode buffers.
1036 */
1037 int
1038 xfs_buf_trylock(
1039 struct xfs_buf *bp)
1040 {
1041 int locked;
1042
1043 locked = down_trylock(&bp->b_sema) == 0;
1044 if (locked) {
1045 XB_SET_OWNER(bp);
1046 trace_xfs_buf_trylock(bp, _RET_IP_);
1047 } else {
1048 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1049 }
1050 return locked;
1051 }
1052
1053 /*
1054 * Lock a buffer object.
1055 *
1056 * If we come across a stale, pinned, locked buffer, we know that we
1057 * are being asked to lock a buffer that has been reallocated. Because
1058 * it is pinned, we know that the log has not been pushed to disk and
1059 * hence it will still be locked. Rather than sleeping until someone
1060 * else pushes the log, push it ourselves before trying to get the lock.
1061 */
1062 void
1063 xfs_buf_lock(
1064 struct xfs_buf *bp)
1065 {
1066 trace_xfs_buf_lock(bp, _RET_IP_);
1067
1068 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1069 xfs_log_force(bp->b_target->bt_mount, 0);
1070 down(&bp->b_sema);
1071 XB_SET_OWNER(bp);
1072
1073 trace_xfs_buf_lock_done(bp, _RET_IP_);
1074 }
1075
1076 void
1077 xfs_buf_unlock(
1078 struct xfs_buf *bp)
1079 {
1080 XB_CLEAR_OWNER(bp);
1081 up(&bp->b_sema);
1082
1083 trace_xfs_buf_unlock(bp, _RET_IP_);
1084 }
1085
1086 STATIC void
1087 xfs_buf_wait_unpin(
1088 xfs_buf_t *bp)
1089 {
1090 DECLARE_WAITQUEUE (wait, current);
1091
1092 if (atomic_read(&bp->b_pin_count) == 0)
1093 return;
1094
1095 add_wait_queue(&bp->b_waiters, &wait);
1096 for (;;) {
1097 set_current_state(TASK_UNINTERRUPTIBLE);
1098 if (atomic_read(&bp->b_pin_count) == 0)
1099 break;
1100 io_schedule();
1101 }
1102 remove_wait_queue(&bp->b_waiters, &wait);
1103 set_current_state(TASK_RUNNING);
1104 }
1105
1106 /*
1107 * Buffer Utility Routines
1108 */
1109
1110 void
1111 xfs_buf_ioend(
1112 struct xfs_buf *bp)
1113 {
1114 bool read = bp->b_flags & XBF_READ;
1115
1116 trace_xfs_buf_iodone(bp, _RET_IP_);
1117
1118 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1119
1120 /*
1121 * Pull in IO completion errors now. We are guaranteed to be running
1122 * single threaded, so we don't need the lock to read b_io_error.
1123 */
1124 if (!bp->b_error && bp->b_io_error)
1125 xfs_buf_ioerror(bp, bp->b_io_error);
1126
1127 /* Only validate buffers that were read without errors */
1128 if (read && !bp->b_error && bp->b_ops) {
1129 ASSERT(!bp->b_iodone);
1130 bp->b_ops->verify_read(bp);
1131 }
1132
1133 if (!bp->b_error)
1134 bp->b_flags |= XBF_DONE;
1135
1136 if (bp->b_iodone)
1137 (*(bp->b_iodone))(bp);
1138 else if (bp->b_flags & XBF_ASYNC)
1139 xfs_buf_relse(bp);
1140 else
1141 complete(&bp->b_iowait);
1142 }
1143
1144 static void
1145 xfs_buf_ioend_work(
1146 struct work_struct *work)
1147 {
1148 struct xfs_buf *bp =
1149 container_of(work, xfs_buf_t, b_ioend_work);
1150
1151 xfs_buf_ioend(bp);
1152 }
1153
1154 static void
1155 xfs_buf_ioend_async(
1156 struct xfs_buf *bp)
1157 {
1158 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1159 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1160 }
1161
1162 void
1163 xfs_buf_ioerror(
1164 xfs_buf_t *bp,
1165 int error)
1166 {
1167 ASSERT(error <= 0 && error >= -1000);
1168 bp->b_error = error;
1169 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1170 }
1171
1172 void
1173 xfs_buf_ioerror_alert(
1174 struct xfs_buf *bp,
1175 const char *func)
1176 {
1177 xfs_alert(bp->b_target->bt_mount,
1178 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1179 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1180 }
1181
1182 int
1183 xfs_bwrite(
1184 struct xfs_buf *bp)
1185 {
1186 int error;
1187
1188 ASSERT(xfs_buf_islocked(bp));
1189
1190 bp->b_flags |= XBF_WRITE;
1191 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1192 XBF_WRITE_FAIL | XBF_DONE);
1193
1194 error = xfs_buf_submit_wait(bp);
1195 if (error) {
1196 xfs_force_shutdown(bp->b_target->bt_mount,
1197 SHUTDOWN_META_IO_ERROR);
1198 }
1199 return error;
1200 }
1201
1202 static void
1203 xfs_buf_bio_end_io(
1204 struct bio *bio)
1205 {
1206 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1207
1208 /*
1209 * don't overwrite existing errors - otherwise we can lose errors on
1210 * buffers that require multiple bios to complete.
1211 */
1212 if (bio->bi_error)
1213 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1214
1215 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1216 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1217
1218 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1219 xfs_buf_ioend_async(bp);
1220 bio_put(bio);
1221 }
1222
1223 static void
1224 xfs_buf_ioapply_map(
1225 struct xfs_buf *bp,
1226 int map,
1227 int *buf_offset,
1228 int *count,
1229 int op,
1230 int op_flags)
1231 {
1232 int page_index;
1233 int total_nr_pages = bp->b_page_count;
1234 int nr_pages;
1235 struct bio *bio;
1236 sector_t sector = bp->b_maps[map].bm_bn;
1237 int size;
1238 int offset;
1239
1240 total_nr_pages = bp->b_page_count;
1241
1242 /* skip the pages in the buffer before the start offset */
1243 page_index = 0;
1244 offset = *buf_offset;
1245 while (offset >= PAGE_SIZE) {
1246 page_index++;
1247 offset -= PAGE_SIZE;
1248 }
1249
1250 /*
1251 * Limit the IO size to the length of the current vector, and update the
1252 * remaining IO count for the next time around.
1253 */
1254 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1255 *count -= size;
1256 *buf_offset += size;
1257
1258 next_chunk:
1259 atomic_inc(&bp->b_io_remaining);
1260 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1261
1262 bio = bio_alloc(GFP_NOIO, nr_pages);
1263 bio->bi_bdev = bp->b_target->bt_bdev;
1264 bio->bi_iter.bi_sector = sector;
1265 bio->bi_end_io = xfs_buf_bio_end_io;
1266 bio->bi_private = bp;
1267 bio_set_op_attrs(bio, op, op_flags);
1268
1269 for (; size && nr_pages; nr_pages--, page_index++) {
1270 int rbytes, nbytes = PAGE_SIZE - offset;
1271
1272 if (nbytes > size)
1273 nbytes = size;
1274
1275 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1276 offset);
1277 if (rbytes < nbytes)
1278 break;
1279
1280 offset = 0;
1281 sector += BTOBB(nbytes);
1282 size -= nbytes;
1283 total_nr_pages--;
1284 }
1285
1286 if (likely(bio->bi_iter.bi_size)) {
1287 if (xfs_buf_is_vmapped(bp)) {
1288 flush_kernel_vmap_range(bp->b_addr,
1289 xfs_buf_vmap_len(bp));
1290 }
1291 submit_bio(bio);
1292 if (size)
1293 goto next_chunk;
1294 } else {
1295 /*
1296 * This is guaranteed not to be the last io reference count
1297 * because the caller (xfs_buf_submit) holds a count itself.
1298 */
1299 atomic_dec(&bp->b_io_remaining);
1300 xfs_buf_ioerror(bp, -EIO);
1301 bio_put(bio);
1302 }
1303
1304 }
1305
1306 STATIC void
1307 _xfs_buf_ioapply(
1308 struct xfs_buf *bp)
1309 {
1310 struct blk_plug plug;
1311 int op;
1312 int op_flags = 0;
1313 int offset;
1314 int size;
1315 int i;
1316
1317 /*
1318 * Make sure we capture only current IO errors rather than stale errors
1319 * left over from previous use of the buffer (e.g. failed readahead).
1320 */
1321 bp->b_error = 0;
1322
1323 /*
1324 * Initialize the I/O completion workqueue if we haven't yet or the
1325 * submitter has not opted to specify a custom one.
1326 */
1327 if (!bp->b_ioend_wq)
1328 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1329
1330 if (bp->b_flags & XBF_WRITE) {
1331 op = REQ_OP_WRITE;
1332 if (bp->b_flags & XBF_SYNCIO)
1333 op_flags = REQ_SYNC;
1334 if (bp->b_flags & XBF_FUA)
1335 op_flags |= REQ_FUA;
1336 if (bp->b_flags & XBF_FLUSH)
1337 op_flags |= REQ_PREFLUSH;
1338
1339 /*
1340 * Run the write verifier callback function if it exists. If
1341 * this function fails it will mark the buffer with an error and
1342 * the IO should not be dispatched.
1343 */
1344 if (bp->b_ops) {
1345 bp->b_ops->verify_write(bp);
1346 if (bp->b_error) {
1347 xfs_force_shutdown(bp->b_target->bt_mount,
1348 SHUTDOWN_CORRUPT_INCORE);
1349 return;
1350 }
1351 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1352 struct xfs_mount *mp = bp->b_target->bt_mount;
1353
1354 /*
1355 * non-crc filesystems don't attach verifiers during
1356 * log recovery, so don't warn for such filesystems.
1357 */
1358 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1359 xfs_warn(mp,
1360 "%s: no ops on block 0x%llx/0x%x",
1361 __func__, bp->b_bn, bp->b_length);
1362 xfs_hex_dump(bp->b_addr, 64);
1363 dump_stack();
1364 }
1365 }
1366 } else if (bp->b_flags & XBF_READ_AHEAD) {
1367 op = REQ_OP_READ;
1368 op_flags = REQ_RAHEAD;
1369 } else {
1370 op = REQ_OP_READ;
1371 }
1372
1373 /* we only use the buffer cache for meta-data */
1374 op_flags |= REQ_META;
1375
1376 /*
1377 * Walk all the vectors issuing IO on them. Set up the initial offset
1378 * into the buffer and the desired IO size before we start -
1379 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1380 * subsequent call.
1381 */
1382 offset = bp->b_offset;
1383 size = BBTOB(bp->b_io_length);
1384 blk_start_plug(&plug);
1385 for (i = 0; i < bp->b_map_count; i++) {
1386 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1387 if (bp->b_error)
1388 break;
1389 if (size <= 0)
1390 break; /* all done */
1391 }
1392 blk_finish_plug(&plug);
1393 }
1394
1395 /*
1396 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1397 * the current reference to the IO. It is not safe to reference the buffer after
1398 * a call to this function unless the caller holds an additional reference
1399 * itself.
1400 */
1401 void
1402 xfs_buf_submit(
1403 struct xfs_buf *bp)
1404 {
1405 trace_xfs_buf_submit(bp, _RET_IP_);
1406
1407 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1408 ASSERT(bp->b_flags & XBF_ASYNC);
1409
1410 /* on shutdown we stale and complete the buffer immediately */
1411 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1412 xfs_buf_ioerror(bp, -EIO);
1413 bp->b_flags &= ~XBF_DONE;
1414 xfs_buf_stale(bp);
1415 xfs_buf_ioend(bp);
1416 return;
1417 }
1418
1419 if (bp->b_flags & XBF_WRITE)
1420 xfs_buf_wait_unpin(bp);
1421
1422 /* clear the internal error state to avoid spurious errors */
1423 bp->b_io_error = 0;
1424
1425 /*
1426 * The caller's reference is released during I/O completion.
1427 * This occurs some time after the last b_io_remaining reference is
1428 * released, so after we drop our Io reference we have to have some
1429 * other reference to ensure the buffer doesn't go away from underneath
1430 * us. Take a direct reference to ensure we have safe access to the
1431 * buffer until we are finished with it.
1432 */
1433 xfs_buf_hold(bp);
1434
1435 /*
1436 * Set the count to 1 initially, this will stop an I/O completion
1437 * callout which happens before we have started all the I/O from calling
1438 * xfs_buf_ioend too early.
1439 */
1440 atomic_set(&bp->b_io_remaining, 1);
1441 xfs_buf_ioacct_inc(bp);
1442 _xfs_buf_ioapply(bp);
1443
1444 /*
1445 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1446 * reference we took above. If we drop it to zero, run completion so
1447 * that we don't return to the caller with completion still pending.
1448 */
1449 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1450 if (bp->b_error)
1451 xfs_buf_ioend(bp);
1452 else
1453 xfs_buf_ioend_async(bp);
1454 }
1455
1456 xfs_buf_rele(bp);
1457 /* Note: it is not safe to reference bp now we've dropped our ref */
1458 }
1459
1460 /*
1461 * Synchronous buffer IO submission path, read or write.
1462 */
1463 int
1464 xfs_buf_submit_wait(
1465 struct xfs_buf *bp)
1466 {
1467 int error;
1468
1469 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1470
1471 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1472
1473 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1474 xfs_buf_ioerror(bp, -EIO);
1475 xfs_buf_stale(bp);
1476 bp->b_flags &= ~XBF_DONE;
1477 return -EIO;
1478 }
1479
1480 if (bp->b_flags & XBF_WRITE)
1481 xfs_buf_wait_unpin(bp);
1482
1483 /* clear the internal error state to avoid spurious errors */
1484 bp->b_io_error = 0;
1485
1486 /*
1487 * For synchronous IO, the IO does not inherit the submitters reference
1488 * count, nor the buffer lock. Hence we cannot release the reference we
1489 * are about to take until we've waited for all IO completion to occur,
1490 * including any xfs_buf_ioend_async() work that may be pending.
1491 */
1492 xfs_buf_hold(bp);
1493
1494 /*
1495 * Set the count to 1 initially, this will stop an I/O completion
1496 * callout which happens before we have started all the I/O from calling
1497 * xfs_buf_ioend too early.
1498 */
1499 atomic_set(&bp->b_io_remaining, 1);
1500 _xfs_buf_ioapply(bp);
1501
1502 /*
1503 * make sure we run completion synchronously if it raced with us and is
1504 * already complete.
1505 */
1506 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1507 xfs_buf_ioend(bp);
1508
1509 /* wait for completion before gathering the error from the buffer */
1510 trace_xfs_buf_iowait(bp, _RET_IP_);
1511 wait_for_completion(&bp->b_iowait);
1512 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1513 error = bp->b_error;
1514
1515 /*
1516 * all done now, we can release the hold that keeps the buffer
1517 * referenced for the entire IO.
1518 */
1519 xfs_buf_rele(bp);
1520 return error;
1521 }
1522
1523 void *
1524 xfs_buf_offset(
1525 struct xfs_buf *bp,
1526 size_t offset)
1527 {
1528 struct page *page;
1529
1530 if (bp->b_addr)
1531 return bp->b_addr + offset;
1532
1533 offset += bp->b_offset;
1534 page = bp->b_pages[offset >> PAGE_SHIFT];
1535 return page_address(page) + (offset & (PAGE_SIZE-1));
1536 }
1537
1538 /*
1539 * Move data into or out of a buffer.
1540 */
1541 void
1542 xfs_buf_iomove(
1543 xfs_buf_t *bp, /* buffer to process */
1544 size_t boff, /* starting buffer offset */
1545 size_t bsize, /* length to copy */
1546 void *data, /* data address */
1547 xfs_buf_rw_t mode) /* read/write/zero flag */
1548 {
1549 size_t bend;
1550
1551 bend = boff + bsize;
1552 while (boff < bend) {
1553 struct page *page;
1554 int page_index, page_offset, csize;
1555
1556 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1557 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1558 page = bp->b_pages[page_index];
1559 csize = min_t(size_t, PAGE_SIZE - page_offset,
1560 BBTOB(bp->b_io_length) - boff);
1561
1562 ASSERT((csize + page_offset) <= PAGE_SIZE);
1563
1564 switch (mode) {
1565 case XBRW_ZERO:
1566 memset(page_address(page) + page_offset, 0, csize);
1567 break;
1568 case XBRW_READ:
1569 memcpy(data, page_address(page) + page_offset, csize);
1570 break;
1571 case XBRW_WRITE:
1572 memcpy(page_address(page) + page_offset, data, csize);
1573 }
1574
1575 boff += csize;
1576 data += csize;
1577 }
1578 }
1579
1580 /*
1581 * Handling of buffer targets (buftargs).
1582 */
1583
1584 /*
1585 * Wait for any bufs with callbacks that have been submitted but have not yet
1586 * returned. These buffers will have an elevated hold count, so wait on those
1587 * while freeing all the buffers only held by the LRU.
1588 */
1589 static enum lru_status
1590 xfs_buftarg_wait_rele(
1591 struct list_head *item,
1592 struct list_lru_one *lru,
1593 spinlock_t *lru_lock,
1594 void *arg)
1595
1596 {
1597 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1598 struct list_head *dispose = arg;
1599
1600 if (atomic_read(&bp->b_hold) > 1) {
1601 /* need to wait, so skip it this pass */
1602 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1603 return LRU_SKIP;
1604 }
1605 if (!spin_trylock(&bp->b_lock))
1606 return LRU_SKIP;
1607
1608 /*
1609 * clear the LRU reference count so the buffer doesn't get
1610 * ignored in xfs_buf_rele().
1611 */
1612 atomic_set(&bp->b_lru_ref, 0);
1613 bp->b_state |= XFS_BSTATE_DISPOSE;
1614 list_lru_isolate_move(lru, item, dispose);
1615 spin_unlock(&bp->b_lock);
1616 return LRU_REMOVED;
1617 }
1618
1619 void
1620 xfs_wait_buftarg(
1621 struct xfs_buftarg *btp)
1622 {
1623 LIST_HEAD(dispose);
1624 int loop = 0;
1625
1626 /*
1627 * First wait on the buftarg I/O count for all in-flight buffers to be
1628 * released. This is critical as new buffers do not make the LRU until
1629 * they are released.
1630 *
1631 * Next, flush the buffer workqueue to ensure all completion processing
1632 * has finished. Just waiting on buffer locks is not sufficient for
1633 * async IO as the reference count held over IO is not released until
1634 * after the buffer lock is dropped. Hence we need to ensure here that
1635 * all reference counts have been dropped before we start walking the
1636 * LRU list.
1637 */
1638 while (percpu_counter_sum(&btp->bt_io_count))
1639 delay(100);
1640 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1641
1642 /* loop until there is nothing left on the lru list. */
1643 while (list_lru_count(&btp->bt_lru)) {
1644 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1645 &dispose, LONG_MAX);
1646
1647 while (!list_empty(&dispose)) {
1648 struct xfs_buf *bp;
1649 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1650 list_del_init(&bp->b_lru);
1651 if (bp->b_flags & XBF_WRITE_FAIL) {
1652 xfs_alert(btp->bt_mount,
1653 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1654 (long long)bp->b_bn);
1655 xfs_alert(btp->bt_mount,
1656 "Please run xfs_repair to determine the extent of the problem.");
1657 }
1658 xfs_buf_rele(bp);
1659 }
1660 if (loop++ != 0)
1661 delay(100);
1662 }
1663 }
1664
1665 static enum lru_status
1666 xfs_buftarg_isolate(
1667 struct list_head *item,
1668 struct list_lru_one *lru,
1669 spinlock_t *lru_lock,
1670 void *arg)
1671 {
1672 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1673 struct list_head *dispose = arg;
1674
1675 /*
1676 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1677 * If we fail to get the lock, just skip it.
1678 */
1679 if (!spin_trylock(&bp->b_lock))
1680 return LRU_SKIP;
1681 /*
1682 * Decrement the b_lru_ref count unless the value is already
1683 * zero. If the value is already zero, we need to reclaim the
1684 * buffer, otherwise it gets another trip through the LRU.
1685 */
1686 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1687 spin_unlock(&bp->b_lock);
1688 return LRU_ROTATE;
1689 }
1690
1691 bp->b_state |= XFS_BSTATE_DISPOSE;
1692 list_lru_isolate_move(lru, item, dispose);
1693 spin_unlock(&bp->b_lock);
1694 return LRU_REMOVED;
1695 }
1696
1697 static unsigned long
1698 xfs_buftarg_shrink_scan(
1699 struct shrinker *shrink,
1700 struct shrink_control *sc)
1701 {
1702 struct xfs_buftarg *btp = container_of(shrink,
1703 struct xfs_buftarg, bt_shrinker);
1704 LIST_HEAD(dispose);
1705 unsigned long freed;
1706
1707 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1708 xfs_buftarg_isolate, &dispose);
1709
1710 while (!list_empty(&dispose)) {
1711 struct xfs_buf *bp;
1712 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1713 list_del_init(&bp->b_lru);
1714 xfs_buf_rele(bp);
1715 }
1716
1717 return freed;
1718 }
1719
1720 static unsigned long
1721 xfs_buftarg_shrink_count(
1722 struct shrinker *shrink,
1723 struct shrink_control *sc)
1724 {
1725 struct xfs_buftarg *btp = container_of(shrink,
1726 struct xfs_buftarg, bt_shrinker);
1727 return list_lru_shrink_count(&btp->bt_lru, sc);
1728 }
1729
1730 void
1731 xfs_free_buftarg(
1732 struct xfs_mount *mp,
1733 struct xfs_buftarg *btp)
1734 {
1735 unregister_shrinker(&btp->bt_shrinker);
1736 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1737 percpu_counter_destroy(&btp->bt_io_count);
1738 list_lru_destroy(&btp->bt_lru);
1739
1740 xfs_blkdev_issue_flush(btp);
1741
1742 kmem_free(btp);
1743 }
1744
1745 int
1746 xfs_setsize_buftarg(
1747 xfs_buftarg_t *btp,
1748 unsigned int sectorsize)
1749 {
1750 /* Set up metadata sector size info */
1751 btp->bt_meta_sectorsize = sectorsize;
1752 btp->bt_meta_sectormask = sectorsize - 1;
1753
1754 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1755 xfs_warn(btp->bt_mount,
1756 "Cannot set_blocksize to %u on device %pg",
1757 sectorsize, btp->bt_bdev);
1758 return -EINVAL;
1759 }
1760
1761 /* Set up device logical sector size mask */
1762 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1763 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * When allocating the initial buffer target we have not yet
1770 * read in the superblock, so don't know what sized sectors
1771 * are being used at this early stage. Play safe.
1772 */
1773 STATIC int
1774 xfs_setsize_buftarg_early(
1775 xfs_buftarg_t *btp,
1776 struct block_device *bdev)
1777 {
1778 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1779 }
1780
1781 xfs_buftarg_t *
1782 xfs_alloc_buftarg(
1783 struct xfs_mount *mp,
1784 struct block_device *bdev)
1785 {
1786 xfs_buftarg_t *btp;
1787
1788 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1789
1790 btp->bt_mount = mp;
1791 btp->bt_dev = bdev->bd_dev;
1792 btp->bt_bdev = bdev;
1793 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1794
1795 if (xfs_setsize_buftarg_early(btp, bdev))
1796 goto error;
1797
1798 if (list_lru_init(&btp->bt_lru))
1799 goto error;
1800
1801 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1802 goto error;
1803
1804 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1805 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1806 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1807 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1808 register_shrinker(&btp->bt_shrinker);
1809 return btp;
1810
1811 error:
1812 kmem_free(btp);
1813 return NULL;
1814 }
1815
1816 /*
1817 * Add a buffer to the delayed write list.
1818 *
1819 * This queues a buffer for writeout if it hasn't already been. Note that
1820 * neither this routine nor the buffer list submission functions perform
1821 * any internal synchronization. It is expected that the lists are thread-local
1822 * to the callers.
1823 *
1824 * Returns true if we queued up the buffer, or false if it already had
1825 * been on the buffer list.
1826 */
1827 bool
1828 xfs_buf_delwri_queue(
1829 struct xfs_buf *bp,
1830 struct list_head *list)
1831 {
1832 ASSERT(xfs_buf_islocked(bp));
1833 ASSERT(!(bp->b_flags & XBF_READ));
1834
1835 /*
1836 * If the buffer is already marked delwri it already is queued up
1837 * by someone else for imediate writeout. Just ignore it in that
1838 * case.
1839 */
1840 if (bp->b_flags & _XBF_DELWRI_Q) {
1841 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1842 return false;
1843 }
1844
1845 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1846
1847 /*
1848 * If a buffer gets written out synchronously or marked stale while it
1849 * is on a delwri list we lazily remove it. To do this, the other party
1850 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1851 * It remains referenced and on the list. In a rare corner case it
1852 * might get readded to a delwri list after the synchronous writeout, in
1853 * which case we need just need to re-add the flag here.
1854 */
1855 bp->b_flags |= _XBF_DELWRI_Q;
1856 if (list_empty(&bp->b_list)) {
1857 atomic_inc(&bp->b_hold);
1858 list_add_tail(&bp->b_list, list);
1859 }
1860
1861 return true;
1862 }
1863
1864 /*
1865 * Compare function is more complex than it needs to be because
1866 * the return value is only 32 bits and we are doing comparisons
1867 * on 64 bit values
1868 */
1869 static int
1870 xfs_buf_cmp(
1871 void *priv,
1872 struct list_head *a,
1873 struct list_head *b)
1874 {
1875 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1876 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1877 xfs_daddr_t diff;
1878
1879 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1880 if (diff < 0)
1881 return -1;
1882 if (diff > 0)
1883 return 1;
1884 return 0;
1885 }
1886
1887 /*
1888 * submit buffers for write.
1889 *
1890 * When we have a large buffer list, we do not want to hold all the buffers
1891 * locked while we block on the request queue waiting for IO dispatch. To avoid
1892 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1893 * the lock hold times for lists which may contain thousands of objects.
1894 *
1895 * To do this, we sort the buffer list before we walk the list to lock and
1896 * submit buffers, and we plug and unplug around each group of buffers we
1897 * submit.
1898 */
1899 static int
1900 xfs_buf_delwri_submit_buffers(
1901 struct list_head *buffer_list,
1902 struct list_head *wait_list)
1903 {
1904 struct xfs_buf *bp, *n;
1905 LIST_HEAD (submit_list);
1906 int pinned = 0;
1907 struct blk_plug plug;
1908
1909 list_sort(NULL, buffer_list, xfs_buf_cmp);
1910
1911 blk_start_plug(&plug);
1912 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1913 if (!wait_list) {
1914 if (xfs_buf_ispinned(bp)) {
1915 pinned++;
1916 continue;
1917 }
1918 if (!xfs_buf_trylock(bp))
1919 continue;
1920 } else {
1921 xfs_buf_lock(bp);
1922 }
1923
1924 /*
1925 * Someone else might have written the buffer synchronously or
1926 * marked it stale in the meantime. In that case only the
1927 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1928 * reference and remove it from the list here.
1929 */
1930 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1931 list_del_init(&bp->b_list);
1932 xfs_buf_relse(bp);
1933 continue;
1934 }
1935
1936 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1937
1938 /*
1939 * We do all IO submission async. This means if we need
1940 * to wait for IO completion we need to take an extra
1941 * reference so the buffer is still valid on the other
1942 * side. We need to move the buffer onto the io_list
1943 * at this point so the caller can still access it.
1944 */
1945 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1946 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1947 if (wait_list) {
1948 xfs_buf_hold(bp);
1949 list_move_tail(&bp->b_list, wait_list);
1950 } else
1951 list_del_init(&bp->b_list);
1952
1953 xfs_buf_submit(bp);
1954 }
1955 blk_finish_plug(&plug);
1956
1957 return pinned;
1958 }
1959
1960 /*
1961 * Write out a buffer list asynchronously.
1962 *
1963 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1964 * out and not wait for I/O completion on any of the buffers. This interface
1965 * is only safely useable for callers that can track I/O completion by higher
1966 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1967 * function.
1968 */
1969 int
1970 xfs_buf_delwri_submit_nowait(
1971 struct list_head *buffer_list)
1972 {
1973 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1974 }
1975
1976 /*
1977 * Write out a buffer list synchronously.
1978 *
1979 * This will take the @buffer_list, write all buffers out and wait for I/O
1980 * completion on all of the buffers. @buffer_list is consumed by the function,
1981 * so callers must have some other way of tracking buffers if they require such
1982 * functionality.
1983 */
1984 int
1985 xfs_buf_delwri_submit(
1986 struct list_head *buffer_list)
1987 {
1988 LIST_HEAD (wait_list);
1989 int error = 0, error2;
1990 struct xfs_buf *bp;
1991
1992 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1993
1994 /* Wait for IO to complete. */
1995 while (!list_empty(&wait_list)) {
1996 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1997
1998 list_del_init(&bp->b_list);
1999
2000 /* locking the buffer will wait for async IO completion. */
2001 xfs_buf_lock(bp);
2002 error2 = bp->b_error;
2003 xfs_buf_relse(bp);
2004 if (!error)
2005 error = error2;
2006 }
2007
2008 return error;
2009 }
2010
2011 int __init
2012 xfs_buf_init(void)
2013 {
2014 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2015 KM_ZONE_HWALIGN, NULL);
2016 if (!xfs_buf_zone)
2017 goto out;
2018
2019 return 0;
2020
2021 out:
2022 return -ENOMEM;
2023 }
2024
2025 void
2026 xfs_buf_terminate(void)
2027 {
2028 kmem_zone_destroy(xfs_buf_zone);
2029 }