Merge ssh://master.kernel.org/pub/scm/linux/kernel/git/linville/wireless-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41
42 /*
43 * The inode lookup is done in batches to keep the amount of lock traffic and
44 * radix tree lookups to a minimum. The batch size is a trade off between
45 * lookup reduction and stack usage. This is in the reclaim path, so we can't
46 * be too greedy.
47 */
48 #define XFS_LOOKUP_BATCH 32
49
50 STATIC int
51 xfs_inode_ag_walk_grab(
52 struct xfs_inode *ip)
53 {
54 struct inode *inode = VFS_I(ip);
55
56 ASSERT(rcu_read_lock_held());
57
58 /*
59 * check for stale RCU freed inode
60 *
61 * If the inode has been reallocated, it doesn't matter if it's not in
62 * the AG we are walking - we are walking for writeback, so if it
63 * passes all the "valid inode" checks and is dirty, then we'll write
64 * it back anyway. If it has been reallocated and still being
65 * initialised, the XFS_INEW check below will catch it.
66 */
67 spin_lock(&ip->i_flags_lock);
68 if (!ip->i_ino)
69 goto out_unlock_noent;
70
71 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
72 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
73 goto out_unlock_noent;
74 spin_unlock(&ip->i_flags_lock);
75
76 /* nothing to sync during shutdown */
77 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
78 return EFSCORRUPTED;
79
80 /* If we can't grab the inode, it must on it's way to reclaim. */
81 if (!igrab(inode))
82 return ENOENT;
83
84 if (is_bad_inode(inode)) {
85 IRELE(ip);
86 return ENOENT;
87 }
88
89 /* inode is valid */
90 return 0;
91
92 out_unlock_noent:
93 spin_unlock(&ip->i_flags_lock);
94 return ENOENT;
95 }
96
97 STATIC int
98 xfs_inode_ag_walk(
99 struct xfs_mount *mp,
100 struct xfs_perag *pag,
101 int (*execute)(struct xfs_inode *ip,
102 struct xfs_perag *pag, int flags),
103 int flags)
104 {
105 uint32_t first_index;
106 int last_error = 0;
107 int skipped;
108 int done;
109 int nr_found;
110
111 restart:
112 done = 0;
113 skipped = 0;
114 first_index = 0;
115 nr_found = 0;
116 do {
117 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
118 int error = 0;
119 int i;
120
121 rcu_read_lock();
122 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
123 (void **)batch, first_index,
124 XFS_LOOKUP_BATCH);
125 if (!nr_found) {
126 rcu_read_unlock();
127 break;
128 }
129
130 /*
131 * Grab the inodes before we drop the lock. if we found
132 * nothing, nr == 0 and the loop will be skipped.
133 */
134 for (i = 0; i < nr_found; i++) {
135 struct xfs_inode *ip = batch[i];
136
137 if (done || xfs_inode_ag_walk_grab(ip))
138 batch[i] = NULL;
139
140 /*
141 * Update the index for the next lookup. Catch
142 * overflows into the next AG range which can occur if
143 * we have inodes in the last block of the AG and we
144 * are currently pointing to the last inode.
145 *
146 * Because we may see inodes that are from the wrong AG
147 * due to RCU freeing and reallocation, only update the
148 * index if it lies in this AG. It was a race that lead
149 * us to see this inode, so another lookup from the
150 * same index will not find it again.
151 */
152 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
153 continue;
154 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
155 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
156 done = 1;
157 }
158
159 /* unlock now we've grabbed the inodes. */
160 rcu_read_unlock();
161
162 for (i = 0; i < nr_found; i++) {
163 if (!batch[i])
164 continue;
165 error = execute(batch[i], pag, flags);
166 IRELE(batch[i]);
167 if (error == EAGAIN) {
168 skipped++;
169 continue;
170 }
171 if (error && last_error != EFSCORRUPTED)
172 last_error = error;
173 }
174
175 /* bail out if the filesystem is corrupted. */
176 if (error == EFSCORRUPTED)
177 break;
178
179 } while (nr_found && !done);
180
181 if (skipped) {
182 delay(1);
183 goto restart;
184 }
185 return last_error;
186 }
187
188 int
189 xfs_inode_ag_iterator(
190 struct xfs_mount *mp,
191 int (*execute)(struct xfs_inode *ip,
192 struct xfs_perag *pag, int flags),
193 int flags)
194 {
195 struct xfs_perag *pag;
196 int error = 0;
197 int last_error = 0;
198 xfs_agnumber_t ag;
199
200 ag = 0;
201 while ((pag = xfs_perag_get(mp, ag))) {
202 ag = pag->pag_agno + 1;
203 error = xfs_inode_ag_walk(mp, pag, execute, flags);
204 xfs_perag_put(pag);
205 if (error) {
206 last_error = error;
207 if (error == EFSCORRUPTED)
208 break;
209 }
210 }
211 return XFS_ERROR(last_error);
212 }
213
214 STATIC int
215 xfs_sync_inode_data(
216 struct xfs_inode *ip,
217 struct xfs_perag *pag,
218 int flags)
219 {
220 struct inode *inode = VFS_I(ip);
221 struct address_space *mapping = inode->i_mapping;
222 int error = 0;
223
224 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
225 goto out_wait;
226
227 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
228 if (flags & SYNC_TRYLOCK)
229 goto out_wait;
230 xfs_ilock(ip, XFS_IOLOCK_SHARED);
231 }
232
233 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
234 0 : XBF_ASYNC, FI_NONE);
235 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
236
237 out_wait:
238 if (flags & SYNC_WAIT)
239 xfs_ioend_wait(ip);
240 return error;
241 }
242
243 STATIC int
244 xfs_sync_inode_attr(
245 struct xfs_inode *ip,
246 struct xfs_perag *pag,
247 int flags)
248 {
249 int error = 0;
250
251 xfs_ilock(ip, XFS_ILOCK_SHARED);
252 if (xfs_inode_clean(ip))
253 goto out_unlock;
254 if (!xfs_iflock_nowait(ip)) {
255 if (!(flags & SYNC_WAIT))
256 goto out_unlock;
257 xfs_iflock(ip);
258 }
259
260 if (xfs_inode_clean(ip)) {
261 xfs_ifunlock(ip);
262 goto out_unlock;
263 }
264
265 error = xfs_iflush(ip, flags);
266
267 out_unlock:
268 xfs_iunlock(ip, XFS_ILOCK_SHARED);
269 return error;
270 }
271
272 /*
273 * Write out pagecache data for the whole filesystem.
274 */
275 STATIC int
276 xfs_sync_data(
277 struct xfs_mount *mp,
278 int flags)
279 {
280 int error;
281
282 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
283
284 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
285 if (error)
286 return XFS_ERROR(error);
287
288 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
289 return 0;
290 }
291
292 /*
293 * Write out inode metadata (attributes) for the whole filesystem.
294 */
295 STATIC int
296 xfs_sync_attr(
297 struct xfs_mount *mp,
298 int flags)
299 {
300 ASSERT((flags & ~SYNC_WAIT) == 0);
301
302 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
303 }
304
305 STATIC int
306 xfs_sync_fsdata(
307 struct xfs_mount *mp)
308 {
309 struct xfs_buf *bp;
310
311 /*
312 * If the buffer is pinned then push on the log so we won't get stuck
313 * waiting in the write for someone, maybe ourselves, to flush the log.
314 *
315 * Even though we just pushed the log above, we did not have the
316 * superblock buffer locked at that point so it can become pinned in
317 * between there and here.
318 */
319 bp = xfs_getsb(mp, 0);
320 if (XFS_BUF_ISPINNED(bp))
321 xfs_log_force(mp, 0);
322
323 return xfs_bwrite(mp, bp);
324 }
325
326 /*
327 * When remounting a filesystem read-only or freezing the filesystem, we have
328 * two phases to execute. This first phase is syncing the data before we
329 * quiesce the filesystem, and the second is flushing all the inodes out after
330 * we've waited for all the transactions created by the first phase to
331 * complete. The second phase ensures that the inodes are written to their
332 * location on disk rather than just existing in transactions in the log. This
333 * means after a quiesce there is no log replay required to write the inodes to
334 * disk (this is the main difference between a sync and a quiesce).
335 */
336 /*
337 * First stage of freeze - no writers will make progress now we are here,
338 * so we flush delwri and delalloc buffers here, then wait for all I/O to
339 * complete. Data is frozen at that point. Metadata is not frozen,
340 * transactions can still occur here so don't bother flushing the buftarg
341 * because it'll just get dirty again.
342 */
343 int
344 xfs_quiesce_data(
345 struct xfs_mount *mp)
346 {
347 int error, error2 = 0;
348
349 /* push non-blocking */
350 xfs_sync_data(mp, 0);
351 xfs_qm_sync(mp, SYNC_TRYLOCK);
352
353 /* push and block till complete */
354 xfs_sync_data(mp, SYNC_WAIT);
355 xfs_qm_sync(mp, SYNC_WAIT);
356
357 /* write superblock and hoover up shutdown errors */
358 error = xfs_sync_fsdata(mp);
359
360 /* make sure all delwri buffers are written out */
361 xfs_flush_buftarg(mp->m_ddev_targp, 1);
362
363 /* mark the log as covered if needed */
364 if (xfs_log_need_covered(mp))
365 error2 = xfs_fs_log_dummy(mp);
366
367 /* flush data-only devices */
368 if (mp->m_rtdev_targp)
369 XFS_bflush(mp->m_rtdev_targp);
370
371 return error ? error : error2;
372 }
373
374 STATIC void
375 xfs_quiesce_fs(
376 struct xfs_mount *mp)
377 {
378 int count = 0, pincount;
379
380 xfs_reclaim_inodes(mp, 0);
381 xfs_flush_buftarg(mp->m_ddev_targp, 0);
382
383 /*
384 * This loop must run at least twice. The first instance of the loop
385 * will flush most meta data but that will generate more meta data
386 * (typically directory updates). Which then must be flushed and
387 * logged before we can write the unmount record. We also so sync
388 * reclaim of inodes to catch any that the above delwri flush skipped.
389 */
390 do {
391 xfs_reclaim_inodes(mp, SYNC_WAIT);
392 xfs_sync_attr(mp, SYNC_WAIT);
393 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
394 if (!pincount) {
395 delay(50);
396 count++;
397 }
398 } while (count < 2);
399 }
400
401 /*
402 * Second stage of a quiesce. The data is already synced, now we have to take
403 * care of the metadata. New transactions are already blocked, so we need to
404 * wait for any remaining transactions to drain out before proceding.
405 */
406 void
407 xfs_quiesce_attr(
408 struct xfs_mount *mp)
409 {
410 int error = 0;
411
412 /* wait for all modifications to complete */
413 while (atomic_read(&mp->m_active_trans) > 0)
414 delay(100);
415
416 /* flush inodes and push all remaining buffers out to disk */
417 xfs_quiesce_fs(mp);
418
419 /*
420 * Just warn here till VFS can correctly support
421 * read-only remount without racing.
422 */
423 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
424
425 /* Push the superblock and write an unmount record */
426 error = xfs_log_sbcount(mp, 1);
427 if (error)
428 xfs_fs_cmn_err(CE_WARN, mp,
429 "xfs_attr_quiesce: failed to log sb changes. "
430 "Frozen image may not be consistent.");
431 xfs_log_unmount_write(mp);
432 xfs_unmountfs_writesb(mp);
433 }
434
435 /*
436 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
437 * Doing this has two advantages:
438 * - It saves on stack space, which is tight in certain situations
439 * - It can be used (with care) as a mechanism to avoid deadlocks.
440 * Flushing while allocating in a full filesystem requires both.
441 */
442 STATIC void
443 xfs_syncd_queue_work(
444 struct xfs_mount *mp,
445 void *data,
446 void (*syncer)(struct xfs_mount *, void *),
447 struct completion *completion)
448 {
449 struct xfs_sync_work *work;
450
451 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
452 INIT_LIST_HEAD(&work->w_list);
453 work->w_syncer = syncer;
454 work->w_data = data;
455 work->w_mount = mp;
456 work->w_completion = completion;
457 spin_lock(&mp->m_sync_lock);
458 list_add_tail(&work->w_list, &mp->m_sync_list);
459 spin_unlock(&mp->m_sync_lock);
460 wake_up_process(mp->m_sync_task);
461 }
462
463 /*
464 * Flush delayed allocate data, attempting to free up reserved space
465 * from existing allocations. At this point a new allocation attempt
466 * has failed with ENOSPC and we are in the process of scratching our
467 * heads, looking about for more room...
468 */
469 STATIC void
470 xfs_flush_inodes_work(
471 struct xfs_mount *mp,
472 void *arg)
473 {
474 struct inode *inode = arg;
475 xfs_sync_data(mp, SYNC_TRYLOCK);
476 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
477 iput(inode);
478 }
479
480 void
481 xfs_flush_inodes(
482 xfs_inode_t *ip)
483 {
484 struct inode *inode = VFS_I(ip);
485 DECLARE_COMPLETION_ONSTACK(completion);
486
487 igrab(inode);
488 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
489 wait_for_completion(&completion);
490 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
491 }
492
493 /*
494 * Every sync period we need to unpin all items, reclaim inodes and sync
495 * disk quotas. We might need to cover the log to indicate that the
496 * filesystem is idle and not frozen.
497 */
498 STATIC void
499 xfs_sync_worker(
500 struct xfs_mount *mp,
501 void *unused)
502 {
503 int error;
504
505 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
506 /* dgc: errors ignored here */
507 if (mp->m_super->s_frozen == SB_UNFROZEN &&
508 xfs_log_need_covered(mp))
509 error = xfs_fs_log_dummy(mp);
510 else
511 xfs_log_force(mp, 0);
512 xfs_reclaim_inodes(mp, 0);
513 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
514 }
515 mp->m_sync_seq++;
516 wake_up(&mp->m_wait_single_sync_task);
517 }
518
519 STATIC int
520 xfssyncd(
521 void *arg)
522 {
523 struct xfs_mount *mp = arg;
524 long timeleft;
525 xfs_sync_work_t *work, *n;
526 LIST_HEAD (tmp);
527
528 set_freezable();
529 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
530 for (;;) {
531 if (list_empty(&mp->m_sync_list))
532 timeleft = schedule_timeout_interruptible(timeleft);
533 /* swsusp */
534 try_to_freeze();
535 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
536 break;
537
538 spin_lock(&mp->m_sync_lock);
539 /*
540 * We can get woken by laptop mode, to do a sync -
541 * that's the (only!) case where the list would be
542 * empty with time remaining.
543 */
544 if (!timeleft || list_empty(&mp->m_sync_list)) {
545 if (!timeleft)
546 timeleft = xfs_syncd_centisecs *
547 msecs_to_jiffies(10);
548 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
549 list_add_tail(&mp->m_sync_work.w_list,
550 &mp->m_sync_list);
551 }
552 list_splice_init(&mp->m_sync_list, &tmp);
553 spin_unlock(&mp->m_sync_lock);
554
555 list_for_each_entry_safe(work, n, &tmp, w_list) {
556 (*work->w_syncer)(mp, work->w_data);
557 list_del(&work->w_list);
558 if (work == &mp->m_sync_work)
559 continue;
560 if (work->w_completion)
561 complete(work->w_completion);
562 kmem_free(work);
563 }
564 }
565
566 return 0;
567 }
568
569 int
570 xfs_syncd_init(
571 struct xfs_mount *mp)
572 {
573 mp->m_sync_work.w_syncer = xfs_sync_worker;
574 mp->m_sync_work.w_mount = mp;
575 mp->m_sync_work.w_completion = NULL;
576 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
577 if (IS_ERR(mp->m_sync_task))
578 return -PTR_ERR(mp->m_sync_task);
579 return 0;
580 }
581
582 void
583 xfs_syncd_stop(
584 struct xfs_mount *mp)
585 {
586 kthread_stop(mp->m_sync_task);
587 }
588
589 void
590 __xfs_inode_set_reclaim_tag(
591 struct xfs_perag *pag,
592 struct xfs_inode *ip)
593 {
594 radix_tree_tag_set(&pag->pag_ici_root,
595 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
596 XFS_ICI_RECLAIM_TAG);
597
598 if (!pag->pag_ici_reclaimable) {
599 /* propagate the reclaim tag up into the perag radix tree */
600 spin_lock(&ip->i_mount->m_perag_lock);
601 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
602 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
603 XFS_ICI_RECLAIM_TAG);
604 spin_unlock(&ip->i_mount->m_perag_lock);
605 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
606 -1, _RET_IP_);
607 }
608 pag->pag_ici_reclaimable++;
609 }
610
611 /*
612 * We set the inode flag atomically with the radix tree tag.
613 * Once we get tag lookups on the radix tree, this inode flag
614 * can go away.
615 */
616 void
617 xfs_inode_set_reclaim_tag(
618 xfs_inode_t *ip)
619 {
620 struct xfs_mount *mp = ip->i_mount;
621 struct xfs_perag *pag;
622
623 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
624 spin_lock(&pag->pag_ici_lock);
625 spin_lock(&ip->i_flags_lock);
626 __xfs_inode_set_reclaim_tag(pag, ip);
627 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
628 spin_unlock(&ip->i_flags_lock);
629 spin_unlock(&pag->pag_ici_lock);
630 xfs_perag_put(pag);
631 }
632
633 STATIC void
634 __xfs_inode_clear_reclaim(
635 xfs_perag_t *pag,
636 xfs_inode_t *ip)
637 {
638 pag->pag_ici_reclaimable--;
639 if (!pag->pag_ici_reclaimable) {
640 /* clear the reclaim tag from the perag radix tree */
641 spin_lock(&ip->i_mount->m_perag_lock);
642 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
643 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
644 XFS_ICI_RECLAIM_TAG);
645 spin_unlock(&ip->i_mount->m_perag_lock);
646 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
647 -1, _RET_IP_);
648 }
649 }
650
651 void
652 __xfs_inode_clear_reclaim_tag(
653 xfs_mount_t *mp,
654 xfs_perag_t *pag,
655 xfs_inode_t *ip)
656 {
657 radix_tree_tag_clear(&pag->pag_ici_root,
658 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
659 __xfs_inode_clear_reclaim(pag, ip);
660 }
661
662 /*
663 * Grab the inode for reclaim exclusively.
664 * Return 0 if we grabbed it, non-zero otherwise.
665 */
666 STATIC int
667 xfs_reclaim_inode_grab(
668 struct xfs_inode *ip,
669 int flags)
670 {
671 ASSERT(rcu_read_lock_held());
672
673 /* quick check for stale RCU freed inode */
674 if (!ip->i_ino)
675 return 1;
676
677 /*
678 * do some unlocked checks first to avoid unnecessary lock traffic.
679 * The first is a flush lock check, the second is a already in reclaim
680 * check. Only do these checks if we are not going to block on locks.
681 */
682 if ((flags & SYNC_TRYLOCK) &&
683 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
684 return 1;
685 }
686
687 /*
688 * The radix tree lock here protects a thread in xfs_iget from racing
689 * with us starting reclaim on the inode. Once we have the
690 * XFS_IRECLAIM flag set it will not touch us.
691 *
692 * Due to RCU lookup, we may find inodes that have been freed and only
693 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
694 * aren't candidates for reclaim at all, so we must check the
695 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
696 */
697 spin_lock(&ip->i_flags_lock);
698 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
699 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
700 /* not a reclaim candidate. */
701 spin_unlock(&ip->i_flags_lock);
702 return 1;
703 }
704 __xfs_iflags_set(ip, XFS_IRECLAIM);
705 spin_unlock(&ip->i_flags_lock);
706 return 0;
707 }
708
709 /*
710 * Inodes in different states need to be treated differently, and the return
711 * value of xfs_iflush is not sufficient to get this right. The following table
712 * lists the inode states and the reclaim actions necessary for non-blocking
713 * reclaim:
714 *
715 *
716 * inode state iflush ret required action
717 * --------------- ---------- ---------------
718 * bad - reclaim
719 * shutdown EIO unpin and reclaim
720 * clean, unpinned 0 reclaim
721 * stale, unpinned 0 reclaim
722 * clean, pinned(*) 0 requeue
723 * stale, pinned EAGAIN requeue
724 * dirty, delwri ok 0 requeue
725 * dirty, delwri blocked EAGAIN requeue
726 * dirty, sync flush 0 reclaim
727 *
728 * (*) dgc: I don't think the clean, pinned state is possible but it gets
729 * handled anyway given the order of checks implemented.
730 *
731 * As can be seen from the table, the return value of xfs_iflush() is not
732 * sufficient to correctly decide the reclaim action here. The checks in
733 * xfs_iflush() might look like duplicates, but they are not.
734 *
735 * Also, because we get the flush lock first, we know that any inode that has
736 * been flushed delwri has had the flush completed by the time we check that
737 * the inode is clean. The clean inode check needs to be done before flushing
738 * the inode delwri otherwise we would loop forever requeuing clean inodes as
739 * we cannot tell apart a successful delwri flush and a clean inode from the
740 * return value of xfs_iflush().
741 *
742 * Note that because the inode is flushed delayed write by background
743 * writeback, the flush lock may already be held here and waiting on it can
744 * result in very long latencies. Hence for sync reclaims, where we wait on the
745 * flush lock, the caller should push out delayed write inodes first before
746 * trying to reclaim them to minimise the amount of time spent waiting. For
747 * background relaim, we just requeue the inode for the next pass.
748 *
749 * Hence the order of actions after gaining the locks should be:
750 * bad => reclaim
751 * shutdown => unpin and reclaim
752 * pinned, delwri => requeue
753 * pinned, sync => unpin
754 * stale => reclaim
755 * clean => reclaim
756 * dirty, delwri => flush and requeue
757 * dirty, sync => flush, wait and reclaim
758 */
759 STATIC int
760 xfs_reclaim_inode(
761 struct xfs_inode *ip,
762 struct xfs_perag *pag,
763 int sync_mode)
764 {
765 int error = 0;
766
767 xfs_ilock(ip, XFS_ILOCK_EXCL);
768 if (!xfs_iflock_nowait(ip)) {
769 if (!(sync_mode & SYNC_WAIT))
770 goto out;
771 xfs_iflock(ip);
772 }
773
774 if (is_bad_inode(VFS_I(ip)))
775 goto reclaim;
776 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
777 xfs_iunpin_wait(ip);
778 goto reclaim;
779 }
780 if (xfs_ipincount(ip)) {
781 if (!(sync_mode & SYNC_WAIT)) {
782 xfs_ifunlock(ip);
783 goto out;
784 }
785 xfs_iunpin_wait(ip);
786 }
787 if (xfs_iflags_test(ip, XFS_ISTALE))
788 goto reclaim;
789 if (xfs_inode_clean(ip))
790 goto reclaim;
791
792 /* Now we have an inode that needs flushing */
793 error = xfs_iflush(ip, sync_mode);
794 if (sync_mode & SYNC_WAIT) {
795 xfs_iflock(ip);
796 goto reclaim;
797 }
798
799 /*
800 * When we have to flush an inode but don't have SYNC_WAIT set, we
801 * flush the inode out using a delwri buffer and wait for the next
802 * call into reclaim to find it in a clean state instead of waiting for
803 * it now. We also don't return errors here - if the error is transient
804 * then the next reclaim pass will flush the inode, and if the error
805 * is permanent then the next sync reclaim will reclaim the inode and
806 * pass on the error.
807 */
808 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
809 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
810 "inode 0x%llx background reclaim flush failed with %d",
811 (long long)ip->i_ino, error);
812 }
813 out:
814 xfs_iflags_clear(ip, XFS_IRECLAIM);
815 xfs_iunlock(ip, XFS_ILOCK_EXCL);
816 /*
817 * We could return EAGAIN here to make reclaim rescan the inode tree in
818 * a short while. However, this just burns CPU time scanning the tree
819 * waiting for IO to complete and xfssyncd never goes back to the idle
820 * state. Instead, return 0 to let the next scheduled background reclaim
821 * attempt to reclaim the inode again.
822 */
823 return 0;
824
825 reclaim:
826 xfs_ifunlock(ip);
827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
828
829 XFS_STATS_INC(xs_ig_reclaims);
830 /*
831 * Remove the inode from the per-AG radix tree.
832 *
833 * Because radix_tree_delete won't complain even if the item was never
834 * added to the tree assert that it's been there before to catch
835 * problems with the inode life time early on.
836 */
837 spin_lock(&pag->pag_ici_lock);
838 if (!radix_tree_delete(&pag->pag_ici_root,
839 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
840 ASSERT(0);
841 __xfs_inode_clear_reclaim(pag, ip);
842 spin_unlock(&pag->pag_ici_lock);
843
844 /*
845 * Here we do an (almost) spurious inode lock in order to coordinate
846 * with inode cache radix tree lookups. This is because the lookup
847 * can reference the inodes in the cache without taking references.
848 *
849 * We make that OK here by ensuring that we wait until the inode is
850 * unlocked after the lookup before we go ahead and free it. We get
851 * both the ilock and the iolock because the code may need to drop the
852 * ilock one but will still hold the iolock.
853 */
854 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
855 xfs_qm_dqdetach(ip);
856 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
857
858 xfs_inode_free(ip);
859 return error;
860
861 }
862
863 /*
864 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
865 * corrupted, we still want to try to reclaim all the inodes. If we don't,
866 * then a shut down during filesystem unmount reclaim walk leak all the
867 * unreclaimed inodes.
868 */
869 int
870 xfs_reclaim_inodes_ag(
871 struct xfs_mount *mp,
872 int flags,
873 int *nr_to_scan)
874 {
875 struct xfs_perag *pag;
876 int error = 0;
877 int last_error = 0;
878 xfs_agnumber_t ag;
879 int trylock = flags & SYNC_TRYLOCK;
880 int skipped;
881
882 restart:
883 ag = 0;
884 skipped = 0;
885 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
886 unsigned long first_index = 0;
887 int done = 0;
888 int nr_found = 0;
889
890 ag = pag->pag_agno + 1;
891
892 if (trylock) {
893 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
894 skipped++;
895 xfs_perag_put(pag);
896 continue;
897 }
898 first_index = pag->pag_ici_reclaim_cursor;
899 } else
900 mutex_lock(&pag->pag_ici_reclaim_lock);
901
902 do {
903 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
904 int i;
905
906 rcu_read_lock();
907 nr_found = radix_tree_gang_lookup_tag(
908 &pag->pag_ici_root,
909 (void **)batch, first_index,
910 XFS_LOOKUP_BATCH,
911 XFS_ICI_RECLAIM_TAG);
912 if (!nr_found) {
913 rcu_read_unlock();
914 break;
915 }
916
917 /*
918 * Grab the inodes before we drop the lock. if we found
919 * nothing, nr == 0 and the loop will be skipped.
920 */
921 for (i = 0; i < nr_found; i++) {
922 struct xfs_inode *ip = batch[i];
923
924 if (done || xfs_reclaim_inode_grab(ip, flags))
925 batch[i] = NULL;
926
927 /*
928 * Update the index for the next lookup. Catch
929 * overflows into the next AG range which can
930 * occur if we have inodes in the last block of
931 * the AG and we are currently pointing to the
932 * last inode.
933 *
934 * Because we may see inodes that are from the
935 * wrong AG due to RCU freeing and
936 * reallocation, only update the index if it
937 * lies in this AG. It was a race that lead us
938 * to see this inode, so another lookup from
939 * the same index will not find it again.
940 */
941 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
942 pag->pag_agno)
943 continue;
944 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
945 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
946 done = 1;
947 }
948
949 /* unlock now we've grabbed the inodes. */
950 rcu_read_unlock();
951
952 for (i = 0; i < nr_found; i++) {
953 if (!batch[i])
954 continue;
955 error = xfs_reclaim_inode(batch[i], pag, flags);
956 if (error && last_error != EFSCORRUPTED)
957 last_error = error;
958 }
959
960 *nr_to_scan -= XFS_LOOKUP_BATCH;
961
962 } while (nr_found && !done && *nr_to_scan > 0);
963
964 if (trylock && !done)
965 pag->pag_ici_reclaim_cursor = first_index;
966 else
967 pag->pag_ici_reclaim_cursor = 0;
968 mutex_unlock(&pag->pag_ici_reclaim_lock);
969 xfs_perag_put(pag);
970 }
971
972 /*
973 * if we skipped any AG, and we still have scan count remaining, do
974 * another pass this time using blocking reclaim semantics (i.e
975 * waiting on the reclaim locks and ignoring the reclaim cursors). This
976 * ensure that when we get more reclaimers than AGs we block rather
977 * than spin trying to execute reclaim.
978 */
979 if (trylock && skipped && *nr_to_scan > 0) {
980 trylock = 0;
981 goto restart;
982 }
983 return XFS_ERROR(last_error);
984 }
985
986 int
987 xfs_reclaim_inodes(
988 xfs_mount_t *mp,
989 int mode)
990 {
991 int nr_to_scan = INT_MAX;
992
993 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
994 }
995
996 /*
997 * Shrinker infrastructure.
998 */
999 static int
1000 xfs_reclaim_inode_shrink(
1001 struct shrinker *shrink,
1002 int nr_to_scan,
1003 gfp_t gfp_mask)
1004 {
1005 struct xfs_mount *mp;
1006 struct xfs_perag *pag;
1007 xfs_agnumber_t ag;
1008 int reclaimable;
1009
1010 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
1011 if (nr_to_scan) {
1012 if (!(gfp_mask & __GFP_FS))
1013 return -1;
1014
1015 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK, &nr_to_scan);
1016 /* terminate if we don't exhaust the scan */
1017 if (nr_to_scan > 0)
1018 return -1;
1019 }
1020
1021 reclaimable = 0;
1022 ag = 0;
1023 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1024 ag = pag->pag_agno + 1;
1025 reclaimable += pag->pag_ici_reclaimable;
1026 xfs_perag_put(pag);
1027 }
1028 return reclaimable;
1029 }
1030
1031 void
1032 xfs_inode_shrinker_register(
1033 struct xfs_mount *mp)
1034 {
1035 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1036 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1037 register_shrinker(&mp->m_inode_shrink);
1038 }
1039
1040 void
1041 xfs_inode_shrinker_unregister(
1042 struct xfs_mount *mp)
1043 {
1044 unregister_shrinker(&mp->m_inode_shrink);
1045 }