Merge branch 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41
42 /*
43 * The inode lookup is done in batches to keep the amount of lock traffic and
44 * radix tree lookups to a minimum. The batch size is a trade off between
45 * lookup reduction and stack usage. This is in the reclaim path, so we can't
46 * be too greedy.
47 */
48 #define XFS_LOOKUP_BATCH 32
49
50 STATIC int
51 xfs_inode_ag_walk_grab(
52 struct xfs_inode *ip)
53 {
54 struct inode *inode = VFS_I(ip);
55
56 ASSERT(rcu_read_lock_held());
57
58 /*
59 * check for stale RCU freed inode
60 *
61 * If the inode has been reallocated, it doesn't matter if it's not in
62 * the AG we are walking - we are walking for writeback, so if it
63 * passes all the "valid inode" checks and is dirty, then we'll write
64 * it back anyway. If it has been reallocated and still being
65 * initialised, the XFS_INEW check below will catch it.
66 */
67 spin_lock(&ip->i_flags_lock);
68 if (!ip->i_ino)
69 goto out_unlock_noent;
70
71 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
72 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
73 goto out_unlock_noent;
74 spin_unlock(&ip->i_flags_lock);
75
76 /* nothing to sync during shutdown */
77 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
78 return EFSCORRUPTED;
79
80 /* If we can't grab the inode, it must on it's way to reclaim. */
81 if (!igrab(inode))
82 return ENOENT;
83
84 if (is_bad_inode(inode)) {
85 IRELE(ip);
86 return ENOENT;
87 }
88
89 /* inode is valid */
90 return 0;
91
92 out_unlock_noent:
93 spin_unlock(&ip->i_flags_lock);
94 return ENOENT;
95 }
96
97 STATIC int
98 xfs_inode_ag_walk(
99 struct xfs_mount *mp,
100 struct xfs_perag *pag,
101 int (*execute)(struct xfs_inode *ip,
102 struct xfs_perag *pag, int flags),
103 int flags)
104 {
105 uint32_t first_index;
106 int last_error = 0;
107 int skipped;
108 int done;
109 int nr_found;
110
111 restart:
112 done = 0;
113 skipped = 0;
114 first_index = 0;
115 nr_found = 0;
116 do {
117 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
118 int error = 0;
119 int i;
120
121 rcu_read_lock();
122 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
123 (void **)batch, first_index,
124 XFS_LOOKUP_BATCH);
125 if (!nr_found) {
126 rcu_read_unlock();
127 break;
128 }
129
130 /*
131 * Grab the inodes before we drop the lock. if we found
132 * nothing, nr == 0 and the loop will be skipped.
133 */
134 for (i = 0; i < nr_found; i++) {
135 struct xfs_inode *ip = batch[i];
136
137 if (done || xfs_inode_ag_walk_grab(ip))
138 batch[i] = NULL;
139
140 /*
141 * Update the index for the next lookup. Catch
142 * overflows into the next AG range which can occur if
143 * we have inodes in the last block of the AG and we
144 * are currently pointing to the last inode.
145 *
146 * Because we may see inodes that are from the wrong AG
147 * due to RCU freeing and reallocation, only update the
148 * index if it lies in this AG. It was a race that lead
149 * us to see this inode, so another lookup from the
150 * same index will not find it again.
151 */
152 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
153 continue;
154 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
155 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
156 done = 1;
157 }
158
159 /* unlock now we've grabbed the inodes. */
160 rcu_read_unlock();
161
162 for (i = 0; i < nr_found; i++) {
163 if (!batch[i])
164 continue;
165 error = execute(batch[i], pag, flags);
166 IRELE(batch[i]);
167 if (error == EAGAIN) {
168 skipped++;
169 continue;
170 }
171 if (error && last_error != EFSCORRUPTED)
172 last_error = error;
173 }
174
175 /* bail out if the filesystem is corrupted. */
176 if (error == EFSCORRUPTED)
177 break;
178
179 } while (nr_found && !done);
180
181 if (skipped) {
182 delay(1);
183 goto restart;
184 }
185 return last_error;
186 }
187
188 int
189 xfs_inode_ag_iterator(
190 struct xfs_mount *mp,
191 int (*execute)(struct xfs_inode *ip,
192 struct xfs_perag *pag, int flags),
193 int flags)
194 {
195 struct xfs_perag *pag;
196 int error = 0;
197 int last_error = 0;
198 xfs_agnumber_t ag;
199
200 ag = 0;
201 while ((pag = xfs_perag_get(mp, ag))) {
202 ag = pag->pag_agno + 1;
203 error = xfs_inode_ag_walk(mp, pag, execute, flags);
204 xfs_perag_put(pag);
205 if (error) {
206 last_error = error;
207 if (error == EFSCORRUPTED)
208 break;
209 }
210 }
211 return XFS_ERROR(last_error);
212 }
213
214 STATIC int
215 xfs_sync_inode_data(
216 struct xfs_inode *ip,
217 struct xfs_perag *pag,
218 int flags)
219 {
220 struct inode *inode = VFS_I(ip);
221 struct address_space *mapping = inode->i_mapping;
222 int error = 0;
223
224 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
225 goto out_wait;
226
227 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
228 if (flags & SYNC_TRYLOCK)
229 goto out_wait;
230 xfs_ilock(ip, XFS_IOLOCK_SHARED);
231 }
232
233 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
234 0 : XBF_ASYNC, FI_NONE);
235 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
236
237 out_wait:
238 if (flags & SYNC_WAIT)
239 xfs_ioend_wait(ip);
240 return error;
241 }
242
243 STATIC int
244 xfs_sync_inode_attr(
245 struct xfs_inode *ip,
246 struct xfs_perag *pag,
247 int flags)
248 {
249 int error = 0;
250
251 xfs_ilock(ip, XFS_ILOCK_SHARED);
252 if (xfs_inode_clean(ip))
253 goto out_unlock;
254 if (!xfs_iflock_nowait(ip)) {
255 if (!(flags & SYNC_WAIT))
256 goto out_unlock;
257 xfs_iflock(ip);
258 }
259
260 if (xfs_inode_clean(ip)) {
261 xfs_ifunlock(ip);
262 goto out_unlock;
263 }
264
265 error = xfs_iflush(ip, flags);
266
267 out_unlock:
268 xfs_iunlock(ip, XFS_ILOCK_SHARED);
269 return error;
270 }
271
272 /*
273 * Write out pagecache data for the whole filesystem.
274 */
275 STATIC int
276 xfs_sync_data(
277 struct xfs_mount *mp,
278 int flags)
279 {
280 int error;
281
282 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
283
284 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
285 if (error)
286 return XFS_ERROR(error);
287
288 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
289 return 0;
290 }
291
292 /*
293 * Write out inode metadata (attributes) for the whole filesystem.
294 */
295 STATIC int
296 xfs_sync_attr(
297 struct xfs_mount *mp,
298 int flags)
299 {
300 ASSERT((flags & ~SYNC_WAIT) == 0);
301
302 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
303 }
304
305 STATIC int
306 xfs_sync_fsdata(
307 struct xfs_mount *mp)
308 {
309 struct xfs_buf *bp;
310
311 /*
312 * If the buffer is pinned then push on the log so we won't get stuck
313 * waiting in the write for someone, maybe ourselves, to flush the log.
314 *
315 * Even though we just pushed the log above, we did not have the
316 * superblock buffer locked at that point so it can become pinned in
317 * between there and here.
318 */
319 bp = xfs_getsb(mp, 0);
320 if (XFS_BUF_ISPINNED(bp))
321 xfs_log_force(mp, 0);
322
323 return xfs_bwrite(mp, bp);
324 }
325
326 /*
327 * When remounting a filesystem read-only or freezing the filesystem, we have
328 * two phases to execute. This first phase is syncing the data before we
329 * quiesce the filesystem, and the second is flushing all the inodes out after
330 * we've waited for all the transactions created by the first phase to
331 * complete. The second phase ensures that the inodes are written to their
332 * location on disk rather than just existing in transactions in the log. This
333 * means after a quiesce there is no log replay required to write the inodes to
334 * disk (this is the main difference between a sync and a quiesce).
335 */
336 /*
337 * First stage of freeze - no writers will make progress now we are here,
338 * so we flush delwri and delalloc buffers here, then wait for all I/O to
339 * complete. Data is frozen at that point. Metadata is not frozen,
340 * transactions can still occur here so don't bother flushing the buftarg
341 * because it'll just get dirty again.
342 */
343 int
344 xfs_quiesce_data(
345 struct xfs_mount *mp)
346 {
347 int error, error2 = 0;
348
349 /* push non-blocking */
350 xfs_sync_data(mp, 0);
351 xfs_qm_sync(mp, SYNC_TRYLOCK);
352
353 /* push and block till complete */
354 xfs_sync_data(mp, SYNC_WAIT);
355 xfs_qm_sync(mp, SYNC_WAIT);
356
357 /* write superblock and hoover up shutdown errors */
358 error = xfs_sync_fsdata(mp);
359
360 /* make sure all delwri buffers are written out */
361 xfs_flush_buftarg(mp->m_ddev_targp, 1);
362
363 /* mark the log as covered if needed */
364 if (xfs_log_need_covered(mp))
365 error2 = xfs_fs_log_dummy(mp);
366
367 /* flush data-only devices */
368 if (mp->m_rtdev_targp)
369 XFS_bflush(mp->m_rtdev_targp);
370
371 return error ? error : error2;
372 }
373
374 STATIC void
375 xfs_quiesce_fs(
376 struct xfs_mount *mp)
377 {
378 int count = 0, pincount;
379
380 xfs_reclaim_inodes(mp, 0);
381 xfs_flush_buftarg(mp->m_ddev_targp, 0);
382
383 /*
384 * This loop must run at least twice. The first instance of the loop
385 * will flush most meta data but that will generate more meta data
386 * (typically directory updates). Which then must be flushed and
387 * logged before we can write the unmount record. We also so sync
388 * reclaim of inodes to catch any that the above delwri flush skipped.
389 */
390 do {
391 xfs_reclaim_inodes(mp, SYNC_WAIT);
392 xfs_sync_attr(mp, SYNC_WAIT);
393 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
394 if (!pincount) {
395 delay(50);
396 count++;
397 }
398 } while (count < 2);
399 }
400
401 /*
402 * Second stage of a quiesce. The data is already synced, now we have to take
403 * care of the metadata. New transactions are already blocked, so we need to
404 * wait for any remaining transactions to drain out before proceding.
405 */
406 void
407 xfs_quiesce_attr(
408 struct xfs_mount *mp)
409 {
410 int error = 0;
411
412 /* wait for all modifications to complete */
413 while (atomic_read(&mp->m_active_trans) > 0)
414 delay(100);
415
416 /* flush inodes and push all remaining buffers out to disk */
417 xfs_quiesce_fs(mp);
418
419 /*
420 * Just warn here till VFS can correctly support
421 * read-only remount without racing.
422 */
423 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
424
425 /* Push the superblock and write an unmount record */
426 error = xfs_log_sbcount(mp, 1);
427 if (error)
428 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
429 "Frozen image may not be consistent.");
430 xfs_log_unmount_write(mp);
431 xfs_unmountfs_writesb(mp);
432 }
433
434 /*
435 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
436 * Doing this has two advantages:
437 * - It saves on stack space, which is tight in certain situations
438 * - It can be used (with care) as a mechanism to avoid deadlocks.
439 * Flushing while allocating in a full filesystem requires both.
440 */
441 STATIC void
442 xfs_syncd_queue_work(
443 struct xfs_mount *mp,
444 void *data,
445 void (*syncer)(struct xfs_mount *, void *),
446 struct completion *completion)
447 {
448 struct xfs_sync_work *work;
449
450 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
451 INIT_LIST_HEAD(&work->w_list);
452 work->w_syncer = syncer;
453 work->w_data = data;
454 work->w_mount = mp;
455 work->w_completion = completion;
456 spin_lock(&mp->m_sync_lock);
457 list_add_tail(&work->w_list, &mp->m_sync_list);
458 spin_unlock(&mp->m_sync_lock);
459 wake_up_process(mp->m_sync_task);
460 }
461
462 /*
463 * Flush delayed allocate data, attempting to free up reserved space
464 * from existing allocations. At this point a new allocation attempt
465 * has failed with ENOSPC and we are in the process of scratching our
466 * heads, looking about for more room...
467 */
468 STATIC void
469 xfs_flush_inodes_work(
470 struct xfs_mount *mp,
471 void *arg)
472 {
473 struct inode *inode = arg;
474 xfs_sync_data(mp, SYNC_TRYLOCK);
475 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
476 iput(inode);
477 }
478
479 void
480 xfs_flush_inodes(
481 xfs_inode_t *ip)
482 {
483 struct inode *inode = VFS_I(ip);
484 DECLARE_COMPLETION_ONSTACK(completion);
485
486 igrab(inode);
487 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
488 wait_for_completion(&completion);
489 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
490 }
491
492 /*
493 * Every sync period we need to unpin all items, reclaim inodes and sync
494 * disk quotas. We might need to cover the log to indicate that the
495 * filesystem is idle and not frozen.
496 */
497 STATIC void
498 xfs_sync_worker(
499 struct xfs_mount *mp,
500 void *unused)
501 {
502 int error;
503
504 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
505 /* dgc: errors ignored here */
506 if (mp->m_super->s_frozen == SB_UNFROZEN &&
507 xfs_log_need_covered(mp))
508 error = xfs_fs_log_dummy(mp);
509 else
510 xfs_log_force(mp, 0);
511 xfs_reclaim_inodes(mp, 0);
512 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
513 }
514 mp->m_sync_seq++;
515 wake_up(&mp->m_wait_single_sync_task);
516 }
517
518 STATIC int
519 xfssyncd(
520 void *arg)
521 {
522 struct xfs_mount *mp = arg;
523 long timeleft;
524 xfs_sync_work_t *work, *n;
525 LIST_HEAD (tmp);
526
527 set_freezable();
528 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
529 for (;;) {
530 if (list_empty(&mp->m_sync_list))
531 timeleft = schedule_timeout_interruptible(timeleft);
532 /* swsusp */
533 try_to_freeze();
534 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
535 break;
536
537 spin_lock(&mp->m_sync_lock);
538 /*
539 * We can get woken by laptop mode, to do a sync -
540 * that's the (only!) case where the list would be
541 * empty with time remaining.
542 */
543 if (!timeleft || list_empty(&mp->m_sync_list)) {
544 if (!timeleft)
545 timeleft = xfs_syncd_centisecs *
546 msecs_to_jiffies(10);
547 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
548 list_add_tail(&mp->m_sync_work.w_list,
549 &mp->m_sync_list);
550 }
551 list_splice_init(&mp->m_sync_list, &tmp);
552 spin_unlock(&mp->m_sync_lock);
553
554 list_for_each_entry_safe(work, n, &tmp, w_list) {
555 (*work->w_syncer)(mp, work->w_data);
556 list_del(&work->w_list);
557 if (work == &mp->m_sync_work)
558 continue;
559 if (work->w_completion)
560 complete(work->w_completion);
561 kmem_free(work);
562 }
563 }
564
565 return 0;
566 }
567
568 int
569 xfs_syncd_init(
570 struct xfs_mount *mp)
571 {
572 mp->m_sync_work.w_syncer = xfs_sync_worker;
573 mp->m_sync_work.w_mount = mp;
574 mp->m_sync_work.w_completion = NULL;
575 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
576 if (IS_ERR(mp->m_sync_task))
577 return -PTR_ERR(mp->m_sync_task);
578 return 0;
579 }
580
581 void
582 xfs_syncd_stop(
583 struct xfs_mount *mp)
584 {
585 kthread_stop(mp->m_sync_task);
586 }
587
588 void
589 __xfs_inode_set_reclaim_tag(
590 struct xfs_perag *pag,
591 struct xfs_inode *ip)
592 {
593 radix_tree_tag_set(&pag->pag_ici_root,
594 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
595 XFS_ICI_RECLAIM_TAG);
596
597 if (!pag->pag_ici_reclaimable) {
598 /* propagate the reclaim tag up into the perag radix tree */
599 spin_lock(&ip->i_mount->m_perag_lock);
600 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
601 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
602 XFS_ICI_RECLAIM_TAG);
603 spin_unlock(&ip->i_mount->m_perag_lock);
604 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
605 -1, _RET_IP_);
606 }
607 pag->pag_ici_reclaimable++;
608 }
609
610 /*
611 * We set the inode flag atomically with the radix tree tag.
612 * Once we get tag lookups on the radix tree, this inode flag
613 * can go away.
614 */
615 void
616 xfs_inode_set_reclaim_tag(
617 xfs_inode_t *ip)
618 {
619 struct xfs_mount *mp = ip->i_mount;
620 struct xfs_perag *pag;
621
622 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
623 spin_lock(&pag->pag_ici_lock);
624 spin_lock(&ip->i_flags_lock);
625 __xfs_inode_set_reclaim_tag(pag, ip);
626 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
627 spin_unlock(&ip->i_flags_lock);
628 spin_unlock(&pag->pag_ici_lock);
629 xfs_perag_put(pag);
630 }
631
632 STATIC void
633 __xfs_inode_clear_reclaim(
634 xfs_perag_t *pag,
635 xfs_inode_t *ip)
636 {
637 pag->pag_ici_reclaimable--;
638 if (!pag->pag_ici_reclaimable) {
639 /* clear the reclaim tag from the perag radix tree */
640 spin_lock(&ip->i_mount->m_perag_lock);
641 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
642 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
643 XFS_ICI_RECLAIM_TAG);
644 spin_unlock(&ip->i_mount->m_perag_lock);
645 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
646 -1, _RET_IP_);
647 }
648 }
649
650 void
651 __xfs_inode_clear_reclaim_tag(
652 xfs_mount_t *mp,
653 xfs_perag_t *pag,
654 xfs_inode_t *ip)
655 {
656 radix_tree_tag_clear(&pag->pag_ici_root,
657 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
658 __xfs_inode_clear_reclaim(pag, ip);
659 }
660
661 /*
662 * Grab the inode for reclaim exclusively.
663 * Return 0 if we grabbed it, non-zero otherwise.
664 */
665 STATIC int
666 xfs_reclaim_inode_grab(
667 struct xfs_inode *ip,
668 int flags)
669 {
670 ASSERT(rcu_read_lock_held());
671
672 /* quick check for stale RCU freed inode */
673 if (!ip->i_ino)
674 return 1;
675
676 /*
677 * do some unlocked checks first to avoid unnecessary lock traffic.
678 * The first is a flush lock check, the second is a already in reclaim
679 * check. Only do these checks if we are not going to block on locks.
680 */
681 if ((flags & SYNC_TRYLOCK) &&
682 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
683 return 1;
684 }
685
686 /*
687 * The radix tree lock here protects a thread in xfs_iget from racing
688 * with us starting reclaim on the inode. Once we have the
689 * XFS_IRECLAIM flag set it will not touch us.
690 *
691 * Due to RCU lookup, we may find inodes that have been freed and only
692 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
693 * aren't candidates for reclaim at all, so we must check the
694 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
695 */
696 spin_lock(&ip->i_flags_lock);
697 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
698 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
699 /* not a reclaim candidate. */
700 spin_unlock(&ip->i_flags_lock);
701 return 1;
702 }
703 __xfs_iflags_set(ip, XFS_IRECLAIM);
704 spin_unlock(&ip->i_flags_lock);
705 return 0;
706 }
707
708 /*
709 * Inodes in different states need to be treated differently, and the return
710 * value of xfs_iflush is not sufficient to get this right. The following table
711 * lists the inode states and the reclaim actions necessary for non-blocking
712 * reclaim:
713 *
714 *
715 * inode state iflush ret required action
716 * --------------- ---------- ---------------
717 * bad - reclaim
718 * shutdown EIO unpin and reclaim
719 * clean, unpinned 0 reclaim
720 * stale, unpinned 0 reclaim
721 * clean, pinned(*) 0 requeue
722 * stale, pinned EAGAIN requeue
723 * dirty, delwri ok 0 requeue
724 * dirty, delwri blocked EAGAIN requeue
725 * dirty, sync flush 0 reclaim
726 *
727 * (*) dgc: I don't think the clean, pinned state is possible but it gets
728 * handled anyway given the order of checks implemented.
729 *
730 * As can be seen from the table, the return value of xfs_iflush() is not
731 * sufficient to correctly decide the reclaim action here. The checks in
732 * xfs_iflush() might look like duplicates, but they are not.
733 *
734 * Also, because we get the flush lock first, we know that any inode that has
735 * been flushed delwri has had the flush completed by the time we check that
736 * the inode is clean. The clean inode check needs to be done before flushing
737 * the inode delwri otherwise we would loop forever requeuing clean inodes as
738 * we cannot tell apart a successful delwri flush and a clean inode from the
739 * return value of xfs_iflush().
740 *
741 * Note that because the inode is flushed delayed write by background
742 * writeback, the flush lock may already be held here and waiting on it can
743 * result in very long latencies. Hence for sync reclaims, where we wait on the
744 * flush lock, the caller should push out delayed write inodes first before
745 * trying to reclaim them to minimise the amount of time spent waiting. For
746 * background relaim, we just requeue the inode for the next pass.
747 *
748 * Hence the order of actions after gaining the locks should be:
749 * bad => reclaim
750 * shutdown => unpin and reclaim
751 * pinned, delwri => requeue
752 * pinned, sync => unpin
753 * stale => reclaim
754 * clean => reclaim
755 * dirty, delwri => flush and requeue
756 * dirty, sync => flush, wait and reclaim
757 */
758 STATIC int
759 xfs_reclaim_inode(
760 struct xfs_inode *ip,
761 struct xfs_perag *pag,
762 int sync_mode)
763 {
764 int error = 0;
765
766 xfs_ilock(ip, XFS_ILOCK_EXCL);
767 if (!xfs_iflock_nowait(ip)) {
768 if (!(sync_mode & SYNC_WAIT))
769 goto out;
770 xfs_iflock(ip);
771 }
772
773 if (is_bad_inode(VFS_I(ip)))
774 goto reclaim;
775 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
776 xfs_iunpin_wait(ip);
777 goto reclaim;
778 }
779 if (xfs_ipincount(ip)) {
780 if (!(sync_mode & SYNC_WAIT)) {
781 xfs_ifunlock(ip);
782 goto out;
783 }
784 xfs_iunpin_wait(ip);
785 }
786 if (xfs_iflags_test(ip, XFS_ISTALE))
787 goto reclaim;
788 if (xfs_inode_clean(ip))
789 goto reclaim;
790
791 /* Now we have an inode that needs flushing */
792 error = xfs_iflush(ip, sync_mode);
793 if (sync_mode & SYNC_WAIT) {
794 xfs_iflock(ip);
795 goto reclaim;
796 }
797
798 /*
799 * When we have to flush an inode but don't have SYNC_WAIT set, we
800 * flush the inode out using a delwri buffer and wait for the next
801 * call into reclaim to find it in a clean state instead of waiting for
802 * it now. We also don't return errors here - if the error is transient
803 * then the next reclaim pass will flush the inode, and if the error
804 * is permanent then the next sync reclaim will reclaim the inode and
805 * pass on the error.
806 */
807 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
808 xfs_warn(ip->i_mount,
809 "inode 0x%llx background reclaim flush failed with %d",
810 (long long)ip->i_ino, error);
811 }
812 out:
813 xfs_iflags_clear(ip, XFS_IRECLAIM);
814 xfs_iunlock(ip, XFS_ILOCK_EXCL);
815 /*
816 * We could return EAGAIN here to make reclaim rescan the inode tree in
817 * a short while. However, this just burns CPU time scanning the tree
818 * waiting for IO to complete and xfssyncd never goes back to the idle
819 * state. Instead, return 0 to let the next scheduled background reclaim
820 * attempt to reclaim the inode again.
821 */
822 return 0;
823
824 reclaim:
825 xfs_ifunlock(ip);
826 xfs_iunlock(ip, XFS_ILOCK_EXCL);
827
828 XFS_STATS_INC(xs_ig_reclaims);
829 /*
830 * Remove the inode from the per-AG radix tree.
831 *
832 * Because radix_tree_delete won't complain even if the item was never
833 * added to the tree assert that it's been there before to catch
834 * problems with the inode life time early on.
835 */
836 spin_lock(&pag->pag_ici_lock);
837 if (!radix_tree_delete(&pag->pag_ici_root,
838 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
839 ASSERT(0);
840 __xfs_inode_clear_reclaim(pag, ip);
841 spin_unlock(&pag->pag_ici_lock);
842
843 /*
844 * Here we do an (almost) spurious inode lock in order to coordinate
845 * with inode cache radix tree lookups. This is because the lookup
846 * can reference the inodes in the cache without taking references.
847 *
848 * We make that OK here by ensuring that we wait until the inode is
849 * unlocked after the lookup before we go ahead and free it. We get
850 * both the ilock and the iolock because the code may need to drop the
851 * ilock one but will still hold the iolock.
852 */
853 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
854 xfs_qm_dqdetach(ip);
855 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
856
857 xfs_inode_free(ip);
858 return error;
859
860 }
861
862 /*
863 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
864 * corrupted, we still want to try to reclaim all the inodes. If we don't,
865 * then a shut down during filesystem unmount reclaim walk leak all the
866 * unreclaimed inodes.
867 */
868 int
869 xfs_reclaim_inodes_ag(
870 struct xfs_mount *mp,
871 int flags,
872 int *nr_to_scan)
873 {
874 struct xfs_perag *pag;
875 int error = 0;
876 int last_error = 0;
877 xfs_agnumber_t ag;
878 int trylock = flags & SYNC_TRYLOCK;
879 int skipped;
880
881 restart:
882 ag = 0;
883 skipped = 0;
884 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
885 unsigned long first_index = 0;
886 int done = 0;
887 int nr_found = 0;
888
889 ag = pag->pag_agno + 1;
890
891 if (trylock) {
892 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
893 skipped++;
894 xfs_perag_put(pag);
895 continue;
896 }
897 first_index = pag->pag_ici_reclaim_cursor;
898 } else
899 mutex_lock(&pag->pag_ici_reclaim_lock);
900
901 do {
902 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
903 int i;
904
905 rcu_read_lock();
906 nr_found = radix_tree_gang_lookup_tag(
907 &pag->pag_ici_root,
908 (void **)batch, first_index,
909 XFS_LOOKUP_BATCH,
910 XFS_ICI_RECLAIM_TAG);
911 if (!nr_found) {
912 rcu_read_unlock();
913 break;
914 }
915
916 /*
917 * Grab the inodes before we drop the lock. if we found
918 * nothing, nr == 0 and the loop will be skipped.
919 */
920 for (i = 0; i < nr_found; i++) {
921 struct xfs_inode *ip = batch[i];
922
923 if (done || xfs_reclaim_inode_grab(ip, flags))
924 batch[i] = NULL;
925
926 /*
927 * Update the index for the next lookup. Catch
928 * overflows into the next AG range which can
929 * occur if we have inodes in the last block of
930 * the AG and we are currently pointing to the
931 * last inode.
932 *
933 * Because we may see inodes that are from the
934 * wrong AG due to RCU freeing and
935 * reallocation, only update the index if it
936 * lies in this AG. It was a race that lead us
937 * to see this inode, so another lookup from
938 * the same index will not find it again.
939 */
940 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
941 pag->pag_agno)
942 continue;
943 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
944 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
945 done = 1;
946 }
947
948 /* unlock now we've grabbed the inodes. */
949 rcu_read_unlock();
950
951 for (i = 0; i < nr_found; i++) {
952 if (!batch[i])
953 continue;
954 error = xfs_reclaim_inode(batch[i], pag, flags);
955 if (error && last_error != EFSCORRUPTED)
956 last_error = error;
957 }
958
959 *nr_to_scan -= XFS_LOOKUP_BATCH;
960
961 } while (nr_found && !done && *nr_to_scan > 0);
962
963 if (trylock && !done)
964 pag->pag_ici_reclaim_cursor = first_index;
965 else
966 pag->pag_ici_reclaim_cursor = 0;
967 mutex_unlock(&pag->pag_ici_reclaim_lock);
968 xfs_perag_put(pag);
969 }
970
971 /*
972 * if we skipped any AG, and we still have scan count remaining, do
973 * another pass this time using blocking reclaim semantics (i.e
974 * waiting on the reclaim locks and ignoring the reclaim cursors). This
975 * ensure that when we get more reclaimers than AGs we block rather
976 * than spin trying to execute reclaim.
977 */
978 if (trylock && skipped && *nr_to_scan > 0) {
979 trylock = 0;
980 goto restart;
981 }
982 return XFS_ERROR(last_error);
983 }
984
985 int
986 xfs_reclaim_inodes(
987 xfs_mount_t *mp,
988 int mode)
989 {
990 int nr_to_scan = INT_MAX;
991
992 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
993 }
994
995 /*
996 * Shrinker infrastructure.
997 */
998 static int
999 xfs_reclaim_inode_shrink(
1000 struct shrinker *shrink,
1001 int nr_to_scan,
1002 gfp_t gfp_mask)
1003 {
1004 struct xfs_mount *mp;
1005 struct xfs_perag *pag;
1006 xfs_agnumber_t ag;
1007 int reclaimable;
1008
1009 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
1010 if (nr_to_scan) {
1011 if (!(gfp_mask & __GFP_FS))
1012 return -1;
1013
1014 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK, &nr_to_scan);
1015 /* terminate if we don't exhaust the scan */
1016 if (nr_to_scan > 0)
1017 return -1;
1018 }
1019
1020 reclaimable = 0;
1021 ag = 0;
1022 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1023 ag = pag->pag_agno + 1;
1024 reclaimable += pag->pag_ici_reclaimable;
1025 xfs_perag_put(pag);
1026 }
1027 return reclaimable;
1028 }
1029
1030 void
1031 xfs_inode_shrinker_register(
1032 struct xfs_mount *mp)
1033 {
1034 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
1035 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
1036 register_shrinker(&mp->m_inode_shrink);
1037 }
1038
1039 void
1040 xfs_inode_shrinker_unregister(
1041 struct xfs_mount *mp)
1042 {
1043 unregister_shrinker(&mp->m_inode_shrink);
1044 }